Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Cancer remains a significant global health challenge, necessitating innovative approaches to enhance the efficacy and specificity of therapeutic interventions while minimizing adverse effects on healthy tissues. Nanotechnology has emerged as a promising avenue in cancer treatment, offering novel strategies for targeted drug delivery. Nanoparticles, liposomes, and polymer-based systems have played pivotal roles in revolutionizing cancer therapy. Nanotechnology possesses unique physicochemical properties, enabling efficient encapsulation of therapeutic agents and controlled and prolonged release at tumour sites. Advancement in formulations using nanotechnology has made it possible to make multifunctional systems that respond to the microenvironment of a tumour by releasing payloads in response to changes in pH, temperature, or enzymes. Stimuli-responsive polymers can release drugs in response to external cues, enabling site-specific drug release and minimizing systemic exposure. This review explores recent studies and preclinical trials that show how nanoparticles, liposomes, and polymer-based systems could be used to treat cancer, discussing challenges such as scalability, regulatory approval, and potential toxicity concerns along with patents published recently.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010279483240417050548
2024-04-22
2025-10-03
Loading full text...

Full text loading...

References

  1. BaskarR. LeeK.A. YeoR. YeohK.W. Cancer and radiation therapy: Current advances and future directions.Int. J. Med. Sci.20129319319910.7150/ijms.363522408567
    [Google Scholar]
  2. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑037814270
    [Google Scholar]
  3. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑833277608
    [Google Scholar]
  4. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.0019332974385
    [Google Scholar]
  5. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: structure, composition, types, and clinical applications.Heliyon202285e0939410.1016/j.heliyon.2022.e0939435600452
    [Google Scholar]
  6. AlrushaidN. KhanF.A. Al-SuhaimiE.A. ElaissariA. Nanotechnology in cancer diagnosis and treatment.Pharmaceutics2023153102510.3390/pharmaceutics1503102536986885
    [Google Scholar]
  7. ElmowafyM. ShalabyK. ElkomyM.H. AlsaidanO.A. GomaaH.A.M. AbdelgawadM.A. MostafaE.M. Polymeric nanoparticles for delivery of natural bioactive agents: recent advances and challenges.Polymers2023155112310.3390/polym1505112336904364
    [Google Scholar]
  8. BoberZ. Bartusik-AebisherD. AebisherD. Application of dendrimers in anticancer diagnostics and therapy.Molecules20222710323710.3390/molecules2710323735630713
    [Google Scholar]
  9. PatraJ.K. DasG. FracetoL.F. CamposE.V.R. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑830231877
    [Google Scholar]
  10. GambardellaV. TarazonaN. CejalvoJ.M. LombardiP. HuertaM. RosellóS. FleitasT. RodaD. CervantesA. Personalized medicine: recent progress in cancer therapy.Cancers2020124100910.3390/cancers1204100932325878
    [Google Scholar]
  11. TranS. DeGiovanniP.J. PielB. RaiP. Cancer nanomedicine: A review of recent success in drug delivery.Clin. Transl. Med.201761e4410.1186/s40169‑017‑0175‑029230567
    [Google Scholar]
  12. CorboC. MolinaroR. ParodiA. Toledano FurmanN.E. SalvatoreF. TasciottiE. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery.Nanomedicine20161118110010.2217/nnm.15.18826653875
    [Google Scholar]
  13. Jiménez-JiménezC. ManzanoM. Vallet-RegíM. Nanoparticles coated with cell membranes for biomedical applications.Biology202091140610.3390/biology911040633218092
    [Google Scholar]
  14. ZhangM. GaoS. YangD. FangY. LinX. JinX. LiuY. LiuX. SuK. ShiK. Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharm. Sin. B20211182265228510.1016/j.apsb.2021.03.03334522587
    [Google Scholar]
  15. MaY. CaiF. LiY. ChenJ. HanF. LinW. A review of the application of nanoparticles in the diagnosis and treatment of chronic kidney disease.Bioact. Mater.20205373274310.1016/j.bioactmat.2020.05.00232596555
    [Google Scholar]
  16. TillmanL. TabishT.A. KamalyN. MossP. El-bririA. ThiemermannC. PranjolM.Z.I. YaqoobM.M. Advancements in nanomedicines for the detection and treatment of diabetic kidney disease.Biomat. Biosyst.2022610004710.1016/j.bbiosy.2022.10004736824160
    [Google Scholar]
  17. SinghA.P. BiswasA. ShuklaA. MaitiP. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles.Signal Transduct. Target. Ther.2019413310.1038/s41392‑019‑0068‑331637012
    [Google Scholar]
  18. PandeyP.K. SharmaA.K. GuptaU. Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking.Tissue Barriers201641e112947610.1080/21688370.2015.112947627141418
    [Google Scholar]
  19. HartlN. AdamsF. MerkelO.M. From adsorption to covalent bonding: Apolipoprotein E functionalization of polymeric nanoparticles for drug delivery across the blood-brain barrier.Adv. Ther. (Weinh.)202141200009210.1002/adtp.20200009233542947
    [Google Scholar]
  20. LombardoS.M. SchneiderM. TüreliA.E. Günday TüreliN. Key for crossing the BBB with nanoparticles: the rational design.Beilstein J. Nanotechnol.20201186688310.3762/bjnano.11.7232551212
    [Google Scholar]
  21. SouriM. SoltaniM. Moradi KashkooliF. Kiani ShahvandiM. ChianiM. ShariatiF.S. MehrabiM.R. MunnL.L. Towards principled design of cancer nanomedicine to accelerate clinical translation.Mater. Today Bio20221310020810.1016/j.mtbio.2022.10020835198957
    [Google Scholar]
  22. KarimiM. GhasemiA. Sahandi ZangabadP. RahighiR. Moosavi BasriS.M. MirshekariH. AmiriM. Shafaei PishabadZ. AslaniA. BozorgomidM. GhoshD. BeyzaviA. VaseghiA. ArefA.R. HaghaniL. BahramiS. HamblinM.R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems.Chem. Soc. Rev.20164551457150110.1039/C5CS00798D26776487
    [Google Scholar]
  23. PuriA. LoomisK. SmithB. LeeJ.H. YavlovichA. HeldmanE. BlumenthalR. Lipid based nanoparticles as pharmaceutical drug carriers: from concepts to clinic.Crit. Rev. Ther. Drug Carrier Syst.200926652358010.1615/CritRevTherDrugCarrierSyst.v26.i6.1020402623
    [Google Scholar]
  24. SinghR. LillardJ.W.Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986321522310.1016/j.yexmp.2008.12.00419186176
    [Google Scholar]
  25. GbianD.L. OmriA. Lipid-based drug delivery systems for diseases managements.Biomedicines2022109213710.3390/biomedicines1009213736140237
    [Google Scholar]
  26. ChengZ. LiM. DeyR. ChenY. Nanomaterials for cancer therapy: Current progress and perspectives.J. Hematol. Oncol.20211418510.1186/s13045‑021‑01096‑034059100
    [Google Scholar]
  27. XiaW. TaoZ. ZhuB. ZhangW. LiuC. ChenS. SongM. Targeted delivery of drugs and genes using polymer nanocarriers for cancer therapy.Int. J. Mol. Sci.20212217911810.3390/ijms2217911834502028
    [Google Scholar]
  28. JinC. WangK. Oppong-GyebiA. HuJ. Application of nanotechnology in cancer diagnosis and therapy : A mini-review.Int. J. Med. Sci.202017182964297310.7150/ijms.4980133173417
    [Google Scholar]
  29. DesaiN. Challenges in development of nanoparticle-based therapeutics.AAPS J.201214228229510.1208/s12248‑012‑9339‑422407288
    [Google Scholar]
  30. CaiQ. WangL. DengG. LiuJ. ChenQ. ChenZ. Systemic delivery to central nervous system by engineered PLGA nanoparticles.Am. J. Transl. Res.20168274976427158367
    [Google Scholar]
  31. NieS. Understanding and overcoming major barriers in cancer nanomedicine.Nanomedicine20105452352810.2217/nnm.10.2320528447
    [Google Scholar]
  32. BazakR. HouriM. AchyS.E. HusseinW. RefaatT. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature.Mol. Clin. Oncol.20142690490810.3892/mco.2014.35625279172
    [Google Scholar]
  33. WuJ. The enhanced permeability and retention (epr) effect: The significance of the concept and methods to enhance its application.J. Pers. Med.202111877110.3390/jpm1108077134442415
    [Google Scholar]
  34. ChenthamaraD. SubramaniamS. RamakrishnanS.G. KrishnaswamyS. EssaM.M. LinF.H. QoronflehM.W. Therapeutic efficacy of nanoparticles and routes of administration.Biomater. Res.20192312010.1186/s40824‑019‑0166‑x31832232
    [Google Scholar]
  35. StewartR.H. A modern view of the interstitial space in health and disease.Front. Vet. Sci.2020760958310.3389/fvets.2020.60958333251275
    [Google Scholar]
  36. SutradharK.B. AminM.L. Nanotechnology in cancer drug delivery and selective targeting.ISRN Nanotech.2014201411210.1155/2014/939378
    [Google Scholar]
  37. FarjadianF. GhasemiA. GohariO. RoointanA. KarimiM. HamblinM.R. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities.Nanomedicine20191419312610.2217/nnm‑2018‑012030451076
    [Google Scholar]
  38. YuB. TaiH.C. XueW. LeeL.J. LeeR.J. Receptor targeted nanocarriers for therapeutic delivery to cancer.Mol. Membr. Biol.201027728629810.3109/09687688.2010.52120021028937
    [Google Scholar]
  39. TangX. LocW.S. DongC. MattersG.L. ButlerP.J. KesterM. MeyersC. JiangY. AdairJ.H. The use of nanoparticulates to treat breast cancer.Nanomedicine201712192367238810.2217/nnm‑2017‑020228868970
    [Google Scholar]
  40. AlviM. YaqoobA. RehmanK. ShoaibS.M. AkashM.S.H. PLGA-based nanoparticles for the treatment of cancer: current strategies and perspectives.AAPS Open2022811210.1186/s41120‑022‑00060‑735071739
    [Google Scholar]
  41. GmeinerW.H. GhoshS. Nanotechnology for cancer treatment.Nanotechnol. Rev.20153211112226082884
    [Google Scholar]
  42. MaP. MumperR.J. Paclitaxel nano-delivery systems: A comprehensive review.J. Nanomed. Nanotechnol.201342100016410.4172/2157‑7439.100016424163786
    [Google Scholar]
  43. WangF. PorterM. KonstantopoulosA. ZhangP. CuiH. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy.J. Control. Release201726710011810.1016/j.jconrel.2017.09.02628958854
    [Google Scholar]
  44. GagliardiA. GiulianoE. VenkateswararaoE. FrestaM. BulottaS. AwasthiV. CoscoD. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors.Front. Pharmacol.20211260162610.3389/fphar.2021.60162633613290
    [Google Scholar]
  45. YingchoncharoenP. KalinowskiD.S. RichardsonD.R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come.Pharmacol. Rev.201668370178710.1124/pr.115.01207027363439
    [Google Scholar]
  46. MatsumuraY. GotohM. MuroK. YamadaY. ShiraoK. ShimadaY. OkuwaM. MatsumotoS. MiyataY. OhkuraH. ChinK. BabaS. YamaoT. KannamiA. TakamatsuY. ItoK. TakahashiK. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer.Ann. Oncol.200415351752510.1093/annonc/mdh09214998859
    [Google Scholar]
  47. ArifM. NawazA.F. Ullah khanS. MueenH. RashidF. HemegH.A. RaufA. Nanotechnology-based radiation therapy to cure cancer and the challenges in its clinical applications.Heliyon202396e1725210.1016/j.heliyon.2023.e1725237389057
    [Google Scholar]
  48. TaherM. SusantiD. HarisM.S. RushdanA.A. WidodoR.T. SyukriY. KhotibJ. PEGylated liposomes enhance the effect of cytotoxic drug: A review.Heliyon202393e1382310.1016/j.heliyon.2023.e1382336873538
    [Google Scholar]
  49. TanC. WangY. FanW. Exploring polymeric micelles for improved delivery of anticancer agents: recent developments in preclinical studies.Pharmaceutics20135420121910.3390/pharmaceutics501020124300405
    [Google Scholar]
  50. Pakdaman GoliP. Bikhof TorbatiM. ParivarK. Akbarzadeh KhiaviA. YousefiM. Preparation and evaluation of gemcitabin and cisplatin-entrapped Folate-PEGylated liposomes as targeting co-drug delivery system in cancer therapy.J. Drug Deliv. Sci. Technol.20216510275610.1016/j.jddst.2021.102756
    [Google Scholar]
  51. ShakibZ. MahmoudiA. MoosavianS.A. Malaekeh-NikoueiB. PEGylated solid lipid nanoparticles functionalized by aptamer for targeted delivery of docetaxel in mice bearing C26 tumor.Drug Dev. Ind. Pharm.2022482697810.1080/03639045.2022.209539835758194
    [Google Scholar]
  52. KimK.T. LeeJ.Y. KimD.D. YoonI.S. ChoH.J. Recent progress in the development of poly(lactic-co-glycolic acid)-based nanostructures for cancer imaging and therapy.Pharmaceutics201911628010.3390/pharmaceutics1106028031197096
    [Google Scholar]
  53. HanH. LiS. ZhongY. HuangY. WangK. JinQ. JiJ. YaoK. Emerging pro-drug and nano-drug strategies for gemcitabine-based cancer therapy.Asian. J. Pharmac. Sci.2022171355210.1016/j.ajps.2021.06.00135261643
    [Google Scholar]
  54. DastidarD.G. GhoshD. DasA. Recent developments in nanocarriers for cancer chemotherapy.OpenNano2022810008010.1016/j.onano.2022.100080
    [Google Scholar]
  55. Vieira GonzagaR. da Silva SantosS. da SilvaJ. Campos PrietoD. Feliciano SavinoD. GiarollaJ. Igne FerreiraE. Targeting groups employed in selective dendrons and dendrimers.Pharmaceutics201810421910.3390/pharmaceutics1004021930413047
    [Google Scholar]
  56. HosseiniM. AmiriM. GhanbariM. MahdiM.A. AbdulsahibW.K. Salavati-NiasariM. Drug delivery based on chitosan, β-cyclodextrin and sodium carboxymethyl cellulose as well as nanocarriers for advanced leukemia treatment.Biomed. Pharmacother.202215311336910.1016/j.biopha.2022.11336935780615
    [Google Scholar]
  57. MaterónE.M. MiyazakiC.M. CarrO. JoshiN. PiccianiP.H.S. DalmaschioC.J. DavisF. ShimizuF.M. Magnetic nanoparticles in biomedical applications: A review.Appl.Surf. Sci. Adv.2021610016310.1016/j.apsadv.2021.100163
    [Google Scholar]
  58. SivadasanD. SultanM.H. MadkhaliO. AlmoshariY. ThangavelN. Polymeric lipid hybrid nanoparticles (plns) as emerging drug delivery platform—a comprehensive review of their properties, preparation methods, and therapeutic applications.Pharmaceutics2021138129110.3390/pharmaceutics1308129134452251
    [Google Scholar]
  59. MengR ZhuH WangZ HaoS WangB. Preparation of drug-loaded albumin nanoparticles and its application in cancer therapy.J Nanomater20222022
    [Google Scholar]
  60. AlvenS. NqoroX. BuyanaB. AderibigbeB.A. Polymer-drug conjugate, a potential therapeutic to combat breast and lung cancer.Pharmaceutics202012540610.3390/pharmaceutics1205040632365495
    [Google Scholar]
  61. HajebiS. RabieeN. BagherzadehM. AhmadiS. RabieeM. Roghani-MamaqaniH. TahririM. TayebiL. HamblinM.R. Stimulus-responsive polymeric nanogels as smart drug delivery systems.Acta Biomater.20199211810.1016/j.actbio.2019.05.01831096042
    [Google Scholar]
  62. GoyalR. ChopraH. singhI. DuaK. GautamR.K. Insights on prospects of nano-siRNA based approaches in treatment of Cancer.Front. Pharmacol.20221398567010.3389/fphar.2022.98567036091772
    [Google Scholar]
  63. AvciP. ErdemS.S. HamblinM.R. Photodynamic therapy: one step ahead with self-assembled nanoparticles.J. Biomed. Nanotechnol.20141091937195210.1166/jbn.2014.195325580097
    [Google Scholar]
  64. CrapanzanoR. SecchiV. VillaI. Co-adjuvant nanoparticles for radiotherapy treatments of oncological diseases.Appl. Sci.20211115707310.3390/app11157073
    [Google Scholar]
  65. SanoffH.K. MoonD.H. MooreD.T. BolesJ. BuiC. BlackstockW. O’NeilB.H. SubramaniamS. McReeA.J. CarlsonC. LeeM.S. TepperJ.E. WangA.Z. Phase I/II trial of nano-camptothecin CRLX101 with capecitabine and radiotherapy as neoadjuvant treatment for locally advanced rectal cancer.Nanomedicine201918618919510.1016/j.nano.2019.02.02130858085
    [Google Scholar]
  66. LeeK.J. KoE.J. ParkY.Y. ParkS.S. JuE.J. ParkJ. ShinS.H. SuhY.A. HongS.M. ParkI.J. KimK. HwangJ.J. JangS.J. LeeJ.S. SongS.Y. JeongS.Y. ChoiE.K. A novel nanoparticle-based theranostic agent targeting LRP-1 enhances the efficacy of neoadjuvant radiotherapy in colorectal cancer.Biomaterials202025512015110.1016/j.biomaterials.2020.12015132505033
    [Google Scholar]
  67. QuX. ZhouD. LuJ. QinD. ZhouJ. LiuH.J. Cancer nanomedicine in preoperative therapeutics: Nanotechnology-enabled neoadjuvant chemotherapy, radiotherapy, immunotherapy, and phototherapy.Bioact. Mater.20232413615210.1016/j.bioactmat.2022.12.01036606253
    [Google Scholar]
  68. KrishnamoorthyM. LenehanJ.G. Maleki VarekiS. Neoadjuvant immunotherapy for high-risk, resectable malignancies: Scientific rationale and clinical challenges.J. Natl. Cancer Inst.2021113782383210.1093/jnci/djaa21633432320
    [Google Scholar]
  69. AtukoraleP.U. MoonT.J. BokatchA.R. LusiC.F. RouthierJ.T. DengV.J. KarathanasisE. Dual agonist immunostimulatory nanoparticles combine with PD1 blockade for curative neoadjuvant immunotherapy of aggressive cancers.Nanoscale20221441144115910.1039/D1NR06577G35023530
    [Google Scholar]
  70. AikinsM.E. XuC. MoonJ.J. Engineered nanoparticles for cancer vaccination and immunotherapy.Acc. Chem. Res.202053102094210510.1021/acs.accounts.0c0045633017150
    [Google Scholar]
  71. HeT. HuM. ZhuS. ShenM. KouX. LiangX. LiL. LiX. ZhangM. WuQ. GongC. A tactical nanomissile mobilizing antitumor immunity enables neoadjuvant chemo-immunotherapy to minimize postsurgical tumor metastasis and recurrence.Acta Pharm. Sin. B202313280481810.1016/j.apsb.2022.09.01736873172
    [Google Scholar]
  72. JiaJ. WuX. LongG. YuJ. HeW. ZhangH. WangD. YeZ. TianJ. Revolutionizing cancer treatment: Nanotechnology-enabled photodynamic therapy and immunotherapy with advanced photosensitizers.Front. Immunol.202314121978510.3389/fimmu.2023.121978537860012
    [Google Scholar]
  73. JinF. LiuD. XuX. JiJ. DuY. Nanomaterials-based photodynamic therapy with combined treatment improves antitumor efficacy through boosting immunogenic cell death.Int. J. Nanomedicine2021164693471210.2147/IJN.S31450634267518
    [Google Scholar]
  74. XuJ.J. ZhangW.C. GuoY.W. ChenX.Y. ZhangY.N. Metal nanoparticles as a promising technology in targeted cancer treatment.Drug Deliv.202229166467810.1080/10717544.2022.203980435209786
    [Google Scholar]
  75. RileyR.S. DayE.S. Gold nanoparticle mediated photothermal therapy: applications and opportunities for multimodal cancer treatment.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201794e144910.1002/wnan.144928160445
    [Google Scholar]
  76. AminM. LammersT. ten HagenT.L.M. Temperature sensitive polymers to promote heat-triggered drug release from liposomes: Towards bypassing EPR.Adv. Drug Deliv. Rev.202218911450310.1016/j.addr.2022.11450335998827
    [Google Scholar]
  77. FangX. LanH. JinK. GongD. QianJ. Nanovaccines for cancer prevention and immunotherapy: An update review.Cancers20221416384210.3390/cancers1416384236010836
    [Google Scholar]
  78. MengZ. ZhangY. ZhouX. JiJ. LiuZ. Nanovaccines with cell-derived components for cancer immunotherapy.Adv. Drug Deliv. Rev.202218211410710.1016/j.addr.2021.11410734995678
    [Google Scholar]
  79. QuY. XuJ. ZhangT. ChenQ. SunT. JiangC. Advanced nano-based strategies for mRNA tumor vaccine.Acta Pharm. Sin. B2023
    [Google Scholar]
  80. MakandarA.I. JainM. YubaE. SethiG. GuptaR.K. Canvassing prospects of glyco-nanovaccines for developing cross-presentation mediated anti-tumor immunotherapy.Vaccines20221012204910.3390/vaccines1012204936560459
    [Google Scholar]
  81. DavodabadiF. SarhadiM. ArabpourJ. SargaziS. RahdarA. Díez-PascualA.M. Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches.J. Control. Release202234984487510.1016/j.jconrel.2022.07.03635908621
    [Google Scholar]
  82. YuM.K. ParkJ. JonS. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy.Theranostics20122134410.7150/thno.346322272217
    [Google Scholar]
  83. GantaS. SinghA. RawalY. CacaccioJ. PatelN.R. KulkarniP. FerrisC.F. AmijiM.M. ColemanT.P. Formulation development of a novel targeted theranostic nanoemulsion of docetaxel to overcome multidrug resistance in ovarian cancer.Drug Deliv.201623395897010.3109/10717544.2014.92306824901206
    [Google Scholar]
  84. GuliaM. NishalS. MaddiboyinaB. DuttR. Kumar DesuP. WadhwaR. JhawatV. Physiological pathway, diagnosis and nanotechnology based treatment strategies for ovarian cancer: A review.Medicine in Omics2023810002010.1016/j.meomic.2023.100020
    [Google Scholar]
  85. MenonJ.U. JadejaP. TambeP. VuK. YuanB. NguyenK.T. Nanomaterials for photo-based diagnostic and therapeutic applications.Theranostics20133315216610.7150/thno.532723471164
    [Google Scholar]
  86. WuP.H. OpadeleA.E. OnoderaY. NamJ.M. Targeting integrins in cancer nanomedicine: Applications in cancer diagnosis and therapy.Cancers20191111178310.3390/cancers1111178331766201
    [Google Scholar]
  87. RizviS.A.A. SalehA.M. Applications of nanoparticle systems in drug delivery technology.Saudi Pharm. J.2018261647010.1016/j.jsps.2017.10.01229379334
    [Google Scholar]
  88. AlossK. HamarP. Recent preclinical and clinical progress in liposomal doxorubicin.Pharmaceutics202315389310.3390/pharmaceutics1503089336986754
    [Google Scholar]
  89. KosakaN. McCannT.E. MitsunagaM. ChoykeP.L. KobayashiH. Real-time optical imaging using quantum dot and related nanocrystals.Nanomedicine20105576577610.2217/nnm.10.4920662647
    [Google Scholar]
  90. WablerM. ZhuW. HedayatiM. AttaluriA. ZhouH. MihalicJ. GeyhA. DeWeeseT.L. IvkovR. ArtemovD. Magnetic resonance imaging contrast of iron oxide nanoparticles developed for hyperthermia is dominated by iron content.Int. J. Hyperthermia201430319220010.3109/02656736.2014.91332124773041
    [Google Scholar]
  91. KesharwaniP. MaR. SangL. FatimaM. SheikhA. AbourehabM.A.S. GuptaN. ChenZ.S. ZhouY. Gold nanoparticles and gold nanorods in the landscape of cancer therapy.Mol. Cancer20232219810.1186/s12943‑023‑01798‑837344887
    [Google Scholar]
  92. MadaniS.Y. NaderiN. DissanayakeO. TanA. SeifalianA.M. A new era of cancer treatment: Carbon nanotubes as drug delivery tools.Int. J. Nanomedicine201162963297922162655
    [Google Scholar]
  93. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials2020107140310.3390/nano1007140332707641
    [Google Scholar]
  94. ZhangW.H. HuX.X. ZhangX.B. Dye-doped fluorescent silica nanoparticles for live cell and in vivo bioimaging.Nanomaterials2016658110.3390/nano605008128335209
    [Google Scholar]
  95. HanH. LiS. XuM. ZhongY. FanW. XuJ. ZhouT. JiJ. YeJ. YaoK. Polymer and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives.Adv. Drug Deliv. Rev.202319611477010.1016/j.addr.2023.11477036894134
    [Google Scholar]
  96. DevulapallyR. PaulmuruganR. Polymer nanoparticles for drug and small silencing RNA delivery to treat cancers of different phenotypes.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.201461406010.1002/wnan.124223996830
    [Google Scholar]
  97. DuceacL.D. CalinG. EvaL. MarcuC. Bogdan GorofteiE.R. DabijaM.G. MitreaG. LucaA.C. HanganuE. GutuC. StafieL. BanuE.A. GrierosuC. IordacheA.C. Third-generation cephalosporin-loaded chitosan used to limit microorganisms resistance.Materials20201321479210.3390/ma1321479233120990
    [Google Scholar]
  98. TharkarP. VaranasiR. WongW.S.F. JinC.T. ChrzanowskiW. Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond.Front. Bioeng. Biotechnol.2019732410.3389/fbioe.2019.0032431824930
    [Google Scholar]
  99. ShafieeA. IravaniS. VarmaR.S. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives.MedComm202231e11810.1002/mco2.11835281783
    [Google Scholar]
  100. JiaH. ZhangX. ZengX. CaiR. WangZ. YuanY. YueT. Construction of silver nanoparticles anchored flower-like magnetic Fe3O4@SiO2@MnO2 hybrids with antibacterial and wound healing activity.Appl. Surf. Sci.202156715079710.1016/j.apsusc.2021.150797
    [Google Scholar]
  101. DürrS. JankoC. LyerS. TripalP. SchwarzM. ZalogaJ. TietzeR. AlexiouC. Magnetic nanoparticles for cancer therapy.Nanotechnol. Rev.20132439540910.1515/ntrev‑2013‑0011
    [Google Scholar]
  102. FernandesD.A. Liposomes for cancer theranostics.Pharmaceutics20231510244810.3390/pharmaceutics1510244837896208
    [Google Scholar]
  103. BabuA. MuralidharanR. AmreddyN. MehtaM. MunshiA. RameshR. Nanoparticles for siRNA-based gene silencing in tumor therapy.IEEE Trans. Nanobiosci.201615884986310.1109/TNB.2016.262173028092499
    [Google Scholar]
  104. YangS.T. CaoL. LuoP.G. LuF. WangX. WangH. MezianiM.J. LiuY. QiG. SunY.P. Carbon dots for optical imaging in vivo.J. Am. Chem. Soc.200913132113081130910.1021/ja904843x19722643
    [Google Scholar]
  105. GaoY. GaoD. ShenJ. WangQ. A review of mesoporous silica nanoparticle delivery systems in chemo-based combination cancer therapies.Front Chem.2020859872210.3389/fchem.2020.59872233330389
    [Google Scholar]
  106. TianY. QiangS. WangL. Gold nanomaterials for imaging-guided near-infrared in vivo cancer therapy.Front. Bioeng. Biotechnol.2019739810.3389/fbioe.2019.0039831867323
    [Google Scholar]
  107. LimongiT. SusaF. MariniM. AllioneM. TorreB. PisanoR. di FabrizioE. Lipid-based nanovesicular drug delivery systems.Nanomaterials20211112339110.3390/nano1112339134947740
    [Google Scholar]
  108. IsraelL.L. GalstyanA. HollerE. LjubimovaJ.Y. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain.J. Control. Release2020320456210.1016/j.jconrel.2020.01.00931923537
    [Google Scholar]
  109. LüJ.M. WangX. Marin-MullerC. WangH. LinP.H. YaoQ. ChenC. Current advances in research and clinical applications of PLGA-based nanotechnology.Expert Rev. Mol. Diagn.20099432534110.1586/erm.09.1519435455
    [Google Scholar]
  110. SciortinoA CannizzoA MessinaF. A Review from the current understanding of the fundamental photophysics to the full control of the optical response.C20184467
    [Google Scholar]
  111. MamunA. SabantinaL. Electrospun magnetic nanofiber mats for magnetic hyperthermia in cancer treatment applications technology, mechanism, and materials.Polymers2023158190210.3390/polym1508190237112049
    [Google Scholar]
  112. KimH. LeeD. Near-infrared-responsive cancer photothermal and photodynamic therapy using gold nanoparticles.Polymers201810996110.3390/polym1009096130960886
    [Google Scholar]
  113. KarunakaranB. GuptaR. PatelP. SalaveS. SharmaA. DesaiD. BenivalD. KommineniN. Emerging trends in lipid-based vaccine delivery: a special focus on developmental strategies, fabrication methods, and applications.Vaccines202311366110.3390/vaccines1103066136992244
    [Google Scholar]
  114. AbbasiR. ShinehG. MobarakiM. DoughtyS. TayebiL. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review.J. Nanopart. Res.20232534310.1007/s11051‑023‑05690‑w36875184
    [Google Scholar]
  115. YangL. MaoH. CaoZ. WangY.A. PengX. WangX. SajjaH.K. WangL. DuanH. NiC. StaleyC.A. WoodW.C. GaoX. NieS. Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles.Gastroenterology2009136515141525.e210.1053/j.gastro.2009.01.00619208341
    [Google Scholar]
  116. LiH. MeadeT.J. MolecularM.R. Imaging with Gd(III)-based Agents: Challenges and key advances.J. Am. Chem. Soc.2019141431702510.1021/jacs.9b0914931593630
    [Google Scholar]
  117. TiwariD. TanakaS.I. InouyeY. YoshizawaK. WatanabeT. JinT. Synthesis and characterization of Anti-HER2 antibody conjugated cdse/cdzns quantum dots for fluorescence imaging of breast cancer cells.Sensors20099119332935410.3390/s9110933222291567
    [Google Scholar]
  118. TaylorM.L. WilsonR.E.Jr AmrheinK.D. HuangX. Gold nanorod-assisted photothermal therapy and improvement strategies.Bioengineering20229520010.3390/bioengineering905020035621478
    [Google Scholar]
  119. PranavL.P. LaskarP. JaggiM. ChauhanS.C. YallapuM.M. Biomolecule-functionalized nanoformulations for prostate cancer theranostics.J. Adv. Res.20235119721710.1016/j.jare.2022.11.00136368516
    [Google Scholar]
  120. DharS. LiuZ. ThomaleJ. DaiH. LippardS.J. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device.J. Am. Chem. Soc.200813034114671147610.1021/ja803036e18661990
    [Google Scholar]
  121. AlhamhoomY KakinaniG RahamathullaM AliM. Recent advances in the liposomal nanovesicles based immunotherapy in the treatment of cancer: A review.Saudi Pharm J SPJ.2023312279
    [Google Scholar]
  122. Gisbert-GarzaránM. LozanoD. Vallet-RegíM. Mesoporous silica nanoparticles for targeting subcellular organelles.Int. J. Mol. Sci.20202124969610.3390/ijms2124969633353212
    [Google Scholar]
  123. WuS.Y. WuF.G. ChenX. Antibody‐incorporated nanomedicines for cancer therapy.Adv. Mater.20223424210921010.1002/adma.20210921035142395
    [Google Scholar]
  124. LathaB.D. SoumyaK. MoreN. MounikaC. GuduruA.T. SinghG. KapusettiG. Fluorescent carbon quantum dots for effective tumor diagnosis: A comprehensive review.Biomed. Engi. Adv.2023510007210.1016/j.bea.2023.100072
    [Google Scholar]
  125. FangM. PengC.W. PangD.W. LiY. Quantum dots for cancer research: current status, remaining issues, and future perspectives.Cancer Biol. Med.20129315116323691472
    [Google Scholar]
  126. ZhangM. KimH.S. JinT. MoonW.K. Near-infrared photothermal therapy using EGFR-targeted gold nanoparticles increases autophagic cell death in breast cancer.J. Photochem. Photobiol. B2017170586410.1016/j.jphotobiol.2017.03.02528390259
    [Google Scholar]
  127. SanitàG. CarreseB. LambertiA. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization.Front. Mol. Biosci.2020758701210.3389/fmolb.2020.58701233324678
    [Google Scholar]
  128. OzpolatB. SoodA.K. Lopez-BeresteinG. Liposomal siRNA nanocarriers for cancer therapy.Adv. Drug Deliv. Rev.20146611011610.1016/j.addr.2013.12.00824384374
    [Google Scholar]
  129. HuangK.W. ChiehJ.J. LinI.T. HorngH.E. YangH.C. HongC.Y. Anti-CEA-functionalized superparamagnetic iron oxide nanoparticles for examining colorectal tumors in vivo.Nanoscale Res. Lett.20138141310.1186/1556‑276X‑8‑41324103079
    [Google Scholar]
  130. TaiJ. FanS. DingS. RenL. Gold nanoparticles based optical biosensors for cancer biomarker proteins: A review of the current practices.Front. Bioeng. Biotechnol.20221087719310.3389/fbioe.2022.87719335557858
    [Google Scholar]
  131. VendittoV.J. SimanekE.E. Cancer therapies utilizing the camptothecins: A review of the in vivo literature.Mol. Pharm.20107230734910.1021/mp900243b20108971
    [Google Scholar]
  132. GokdumanK. Strategies targeting DNA topoisomerase i in cancer chemotherapy: camptothecins, nanocarriers for camptothecins, organic non-camptothecin compounds and metal complexes.Curr. Drug Targets201617161928193910.2174/138945011766616050215170727138759
    [Google Scholar]
  133. OlusanyaTOB AhmadRRH IbegbuDM SmithJR ElkordyAA Liposomal drug delivery systems and anticancer drugs.A J Synth Chem Nat Prod Chem201823410.3390/molecules23040907
    [Google Scholar]
  134. KirpotinD.B. HayesM.E. NobleC.O. HuangZ.R. WaniK. MooreD. KesperK. BrienD.O. DrummondD.C. Drug stability and minimized acid-/drug-catalyzed phospholipid degradation in liposomal irinotecan.J. Pharm. Sci.2023112241643410.1016/j.xphs.2022.11.02536462709
    [Google Scholar]
  135. RampadoR. CrottiS. CalicetiP. PucciarelliS. AgostiniM. Recent advances in understanding the protein corona of nanoparticles and in the formulation of “stealthy” nanomaterials.Front. Bioeng. Biotechnol.2020816610.3389/fbioe.2020.0016632309278
    [Google Scholar]
  136. BreznicaP. KoliqiR. DakaA. A review of the current understanding of nanoparticles protein corona composition.Med. Pharm. Rep.202093434235010.15386/mpr‑175633225259
    [Google Scholar]
  137. SandraF. KhaliqN.U. SunnaA. CareA. Developing protein-based nanoparticles as versatile delivery systems for cancer therapy and imaging.Nanomaterials201999132910.3390/nano909132931527483
    [Google Scholar]
  138. SubhanM.A. YalamartyS.S.K. FilipczakN. ParveenF. TorchilinV.P. Recent advances in tumor targeting via epr effect for cancer treatment.J. Pers. Med.202111657110.3390/jpm1106057134207137
    [Google Scholar]
  139. AttiaM.F. AntonN. WallynJ. OmranZ. VandammeT.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites.J. Pharm. Pharmacol.20197181185119810.1111/jphp.1309831049986
    [Google Scholar]
  140. SharmaS. ParveenR. ChatterjiB.P. Toxicology of nanoparticles in drug delivery.Curr. Pathobiol. Rep.20219413314410.1007/s40139‑021‑00227‑z34840918
    [Google Scholar]
  141. BegM.S. BrennerA.J. SachdevJ. BoradM. KangY.K. StoudemireJ. SmithS. BaderA.G. KimS. HongD.S. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors.Invest. New Drugs201735218018810.1007/s10637‑016‑0407‑y27917453
    [Google Scholar]
  142. SunL. LiuH. YeY. LeiY. IslamR. TanS. TongR. MiaoY.B. CaiL. Smart nanoparticles for cancer therapy.Signal Transduct. Target. Ther.20238141810.1038/s41392‑023‑01642‑x37919282
    [Google Scholar]
  143. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules2509219332397080
    [Google Scholar]
  144. TenchovR. BirdR. CurtzeA.E. ZhouQ. Lipid nanoparticles from liposomes to mrna vaccine delivery, a landscape of research diversity and advancement.ACS Nano20211511169821701510.1021/acsnano.1c0499634181394
    [Google Scholar]
  145. HassaninI.A. ElzoghbyA.O. Self assembled non-covalent protein drug nanoparticles: An emerging delivery platform for anti-cancer drugs.Expert Opin. Drug Deliv.202017101437145810.1080/17425247.2020.181371332820954
    [Google Scholar]
  146. IoeleG. ChieffalloM. OcchiuzziM.A. De LucaM. GarofaloA. RagnoG. GrandeF. Anticancer Drugs: Recent strategies to improve stability profile, pharmacokinetic and pharmacodynamic properties.Molecules20222717543610.3390/molecules2717543636080203
    [Google Scholar]
  147. MorchY. SchmidR. SulheimE. StenstadP. JohnsenH. FlatmarkK. FletenK.G. Drug delivery system for treatment of cancer.U.S. Patent 20220257525A12021
    [Google Scholar]
  148. XuT. ForsayethJ. FerraraK. Nanocarriers for cancer treatment.U.S. Patent 20170165382A12016
    [Google Scholar]
  149. PerezJ.M. ChungL. ZhangY. BlackK.L. Targeted nanoparticles for diagnosing, detecting, and treating cancer.U.S. Patent 20210113715A12019
    [Google Scholar]
  150. Poly(alkyl cyanoacrylate) nanoparticles as promising tools in cancer therapeutics.Polyme. Nanopart. Prom. Tool. rAnti-cancer. Therap.20195979
    [Google Scholar]
  151. Lipid based nanocarrier compositions loaded with metal nanoparticles and therapeutic agent.WO2016170010A12016
/content/journals/cpb/10.2174/0113892010279483240417050548
Loading
/content/journals/cpb/10.2174/0113892010279483240417050548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test