Skip to content
2000
image of Small Peptides Inhibition of SARS-CoV-2 Mpro via Computational Approaches

Abstract

Background

The application of molecular docking and Machine Learning (ML) calculations in evaluating peptide-based inhibitors allows for the systematic investigation of sequence-activity relationships, guiding the design of potent peptides with optimal binding characteristics.

Objective

This study aimed to screen short peptides using computational simulation to identify promising inhibitors against SARS-CoV-2 Mpro.

Methods

Short peptides were screened using molecular docking to identify promising candidates. The ML model was applied to confirm the docking outcome. The PreADME server was then used to analyze the HIA and toxicity of the peptides.

Results

168,420 short peptides were docked to identify 5 tetrapeptides with promising docking scores against SARS-CoV-2 Mpro including, PYPW, WWPF, WWPY, HYPW, and WYPF. The obtained results were also confirmed ML calculations. The analyses highlighted the importance of residues Thr190 and Asn142 that are crucial in the binding process. All of top-lead peptides adopt low toxicity and can be absorbed the human intestine. They can also cross the blood brain barier.

Conclusion

This work enhances our understanding of Mpro interactions and informs future ligand design, contributing to the development of therapeutic strategies against COVID-19.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646362106250320080525
2025-03-25
2025-04-25
Loading full text...

Full text loading...

References

  1. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. 2020 Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
  2. Jin Z. Du X. Xu Y. Deng Y. Liu M. Zhao Y. Zhang B. Li X. Zhang L. Peng C. Duan Y. Yu J. Wang L. Yang K. Liu F. Jiang R. Yang X. You T. Liu X. Yang X. Bai F. Liu H. Liu X. Guddat L.W. Xu W. Xiao G. Qin C. Shi Z. Jiang H. Rao Z. Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020 582 7811 289 293 10.1038/s41586‑020‑2223‑y 32272481
    [Google Scholar]
  3. Lv Z. Cano K.E. Jia L. Drag M. Huang T.T. Olsen S.K. Targeting SARS-CoV-2 proteases for COVID-19 antiviral development. Front Chem. 2022 9 819165 10.3389/fchem.2021.819165 35186898
    [Google Scholar]
  4. Jeong G.U. Song H. Yoon G.Y. Kim D. Kwon Y.C. Therapeutic strategies against COVID-19 and structural characterization of SARS-CoV-2: a review. Front. Microbiol. 2020 11 1723 10.3389/fmicb.2020.01723 32765482
    [Google Scholar]
  5. Ullrich S. Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett. 2020 30 17 127377 10.1016/j.bmcl.2020.127377 32738988
    [Google Scholar]
  6. Abu-Saleh A.A.A.A. Awad I.E. Yadav A. Poirier R.A. Discovery of potent inhibitors for SARS-CoV-2's main protease by ligand-based/structure-based virtual screening, MD simulations, and binding energy calculations. Phys. Chem. Chem. Phys. 2020 22 40 23099 23106 10.1039/D0CP04326E 33025993
    [Google Scholar]
  7. Coelho C. Gallo G. Campos C.B. Hardy L. Würtele M. Biochemical screening for SARS-CoV-2 main protease inhibitors. PLoS One 2020 15 10 e0240079 10.1371/journal.pone.0240079 33022015
    [Google Scholar]
  8. Nguyen D.D. Gao K. Chen J. Wang R. Wei G.W. Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning. Chem. Sci. (Camb.) 2020 11 44 12036 12046 10.1039/D0SC04641H 34123218
    [Google Scholar]
  9. Frecer V. Miertus S. Antiviral agents against COVID-19: structure-based design of specific peptidomimetic inhibitors of SARS-CoV-2 main protease. RSC Advances 2020 10 66 40244 40263 10.1039/D0RA08304F 35520818
    [Google Scholar]
  10. Zhang L. Lin D. Sun X. Curth U. Drosten C. Sauerhering L. Becker S. Rox K. Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020 368 6489 409 412 10.1126/science.abb3405 32198291
    [Google Scholar]
  11. Dai W. Zhang B. Jiang X.M. Su H. Li J. Zhao Y. Xie X. Jin Z. Peng J. Liu F. Li C. Li Y. Bai F. Wang H. Cheng X. Cen X. Hu S. Yang X. Wang J. Liu X. Xiao G. Jiang H. Rao Z. Zhang L.K. Xu Y. Yang H. Liu H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 2020 368 6497 1331 1335 10.1126/science.abb4489 32321856
    [Google Scholar]
  12. Tam N.M. Pham M.Q. Ha N.X. Nam P.C. Phung H.T.T. Computational estimation of potential inhibitors from known drugs against the main protease of SARS-CoV-2. RSC Advances 2021 11 28 17478 17486 10.1039/D1RA02529E 35479689
    [Google Scholar]
  13. Fu L. Ye F. Feng Y. Yu F. Wang Q. Wu Y. Zhao C. Sun H. Huang B. Niu P. Song H. Shi Y. Li X. Tan W. Qi J. Gao G.F. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat. Commun. 2020 11 1 4417 10.1038/s41467‑020‑18233‑x 32887884
    [Google Scholar]
  14. Katre S.G. Asnani A.J. Pratyush K. Sakharkar N.G. Bhope A.G. Sawarkar K.T. Nimbekar V.S. Review on development of potential inhibitors of SARS-CoV-2 main protease (MPro). Future Journal of Pharmaceutical Sciences 2022 8 1 36 10.1186/s43094‑022‑00423‑7 35756354
    [Google Scholar]
  15. Agost-Beltrán L. de la Hoz-Rodríguez S. Bou-Iserte L. Rodríguez S. Fernández-de-la-Pradilla A. González F.V. Advances in the development of SARS-CoV-2 Mpro inhibitors. Molecules 2022 27 8 2523 10.3390/molecules27082523 35458721
    [Google Scholar]
  16. Tam N.M. Nguyen T.H. Pham M.Q. Hong N.D. Tung N.T. Vu V.V. Quang D.T. Ngo S.T. Upgrading nirmatrelvir to inhibit SARS-CoV-2 Mpro via DeepFrag and free energy calculations. J. Mol. Graph. Model. 2023 124 108535 10.1016/j.jmgm.2023.108535 37295158
    [Google Scholar]
  17. Ngo S.T. Nguyen T.H. Tung N.T. Vu V.V. Pham M.Q. Mai B.K. Characterizing the ligand-binding affinity toward SARS-CoV-2 Mpro via physics- and knowledge-based approaches. Phys. Chem. Chem. Phys. 2022 24 48 29266 29278 10.1039/D2CP04476E 36449268
    [Google Scholar]
  18. Ngo S.T. Nguyen T.H. Tung N.T. Mai B.K. Insights into the binding and covalent inhibition mechanism of PF-07321332 to SARS-CoV-2 M pro. RSC Advances 2022 12 6 3729 3737 10.1039/D1RA08752E 35425393
    [Google Scholar]
  19. Zhao Y. Fang C. Zhang Q. Zhang R. Zhao X. Duan Y. Wang H. Zhu Y. Feng L. Zhao J. Shao M. Yang X. Zhang L. Peng C. Yang K. Ma D. Rao Z. Yang H. Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Protein Cell 2022 13 9 689 693 10.1007/s13238‑021‑00883‑2 34687004
    [Google Scholar]
  20. Owen D.R. Allerton C.M.N. Anderson A.S. Aschenbrenner L. Avery M. Berritt S. Boras B. Cardin R.D. Carlo A. Coffman K.J. Dantonio A. Di L. Eng H. Ferre R. Gajiwala K.S. Gibson S.A. Greasley S.E. Hurst B.L. Kadar E.P. Kalgutkar A.S. Lee J.C. Lee J. Liu W. Mason S.W. Noell S. Novak J.J. Obach R.S. Ogilvie K. Patel N.C. Pettersson M. Rai D.K. Reese M.R. Sammons M.F. Sathish J.G. Singh R.S.P. Steppan C.M. Stewart A.E. Tuttle J.B. Updyke L. Verhoest P.R. Wei L. Yang Q. Zhu Y. An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19. Science 2021 374 6575 1586 1593 10.1126/science.abl4784 34726479
    [Google Scholar]
  21. Drożdżal S. Rosik J. Lechowicz K. Machaj F. Szostak B. Przybyciński J. Lorzadeh S. Kotfis K. Ghavami S. Łos M.J. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist. Updat. 2021 59 100794 10.1016/j.drup.2021.100794 34991982
    [Google Scholar]
  22. Wójcik P. Berlicki Ł. Peptide-based inhibitors of protein–protein interactions. Bioorg. Med. Chem. Lett. 2016 26 3 707 713 10.1016/j.bmcl.2015.12.084 26764190
    [Google Scholar]
  23. Du Q.S. Xie N.Z. Huang R.B. Recent development of peptide drugs and advance on theory and methodology of peptide inhibitor design. Med. Chem. 2015 11 3 235 247 10.2174/1573406411666141229163355 25548931
    [Google Scholar]
  24. Citarella A. Scala A. Piperno A. Micale N. SARS-CoV-2 Mpro: a potential target for peptidomimetics and small-molecule inhibitors. Biomolecules 2021 11 4 607 10.3390/biom11040607 33921886
    [Google Scholar]
  25. Banerjee R. Perera L. Tillekeratne L.M.V. Potential SARS-CoV-2 main protease inhibitors. Drug Discov. Today 2021 26 3 804 816 10.1016/j.drudis.2020.12.005 33309533
    [Google Scholar]
  26. Johansen-Leete J. Ullrich S. Fry S.E. Frkic R. Bedding M.J. Aggarwal A. Ashhurst A.S. Ekanayake K.B. Mahawaththa M.C. Sasi V.M. Luedtke S. Ford D.J. O’Donoghue A.J. Passioura T. Larance M. Otting G. Turville S. Jackson C.J. Nitsche C. Payne R.J. Antiviral cyclic peptides targeting the main protease of SARS-CoV-2. Chem. Sci. (Camb.) 2022 13 13 3826 3836 10.1039/D1SC06750H 35432913
    [Google Scholar]
  27. Lee D. Jung H.G. Park D. Bang J. Cheong D.Y. Jang J.W. Kim Y. Lee S. Lee S.W. Lee G. Kim Y.H. Hong J.H. Hwang K.S. Lee J.H. Yoon D.S. Bioengineered amyloid peptide for rapid screening of inhibitors against main protease of SARS-CoV-2. Nat. Commun. 2024 15 1 2108 10.1038/s41467‑024‑46296‑7 38453923
    [Google Scholar]
  28. Chan H.T.H. Moesser M.A. Walters R.K. Malla T.R. Twidale R.M. John T. Deeks H.M. Johnston-Wood T. Mikhailov V. Sessions R.B. Dawson W. Salah E. Lukacik P. Strain-Damerell C. Owen C.D. Nakajima T. Świderek K. Lodola A. Moliner V. Glowacki D.R. Spencer J. Walsh M.A. Schofield C.J. Genovese L. Shoemark D.K. Mulholland A.J. Duarte F. Morris G.M. Discovery of SARS-CoV-2 M pro peptide inhibitors from modelling substrate and ligand binding. Chem. Sci. (Camb.) 2021 12 41 13686 13703 10.1039/D1SC03628A 34760153
    [Google Scholar]
  29. Kreutzer A.G. Krumberger M. Diessner E.M. Parrocha C.M.T. Morris M.A. Guaglianone G. Butts C.T. Nowick J.S. A cyclic peptide inhibitor of the SARS-CoV-2 main protease. Eur. J. Med. Chem. 2021 221 113530 10.1016/j.ejmech.2021.113530 34023738
    [Google Scholar]
  30. Ngo S.T. Tam N.M. Pham M.Q. Nguyen T.H. Benchmark of Popular Free Energy Approaches Revealing the Inhibitors Binding to SARS-CoV-2 Mpro. J. Chem. Inf. Model. 2021 61 5 2302 2312 10.1021/acs.jcim.1c00159 33829781
    [Google Scholar]
  31. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  32. Audie J. Boyd C. The synergistic use of computation, chemistry and biology to discover novel peptide-based drugs: the time is right. Curr. Pharm. Des. 2010 16 5 567 582 10.2174/138161210790361425 19929848
    [Google Scholar]
  33. Kilburg D. Gallicchio E. Recent advances in computational models for the study of protein–peptide interactions. Adv. Protein Chem. Struct. Biol. 2016 105 27 57 10.1016/bs.apcsb.2016.06.002 27567483
    [Google Scholar]
  34. Maurya N.S. Kushwaha S. Mani A. Recent advances and computational approaches in peptide drug discovery. Curr. Pharm. Des. 2019 25 31 3358 3366 10.2174/1381612825666190911161106 31544714
    [Google Scholar]
  35. Wang H. Dawber R.S. Zhang P. Walko M. Wilson A.J. Wang X. Peptide-based inhibitors of protein–protein interactions: Biophysical, structural and cellular consequences of introducing a constraint. Chem. Sci. (Camb.) 2021 12 17 5977 5993 10.1039/D1SC00165E 33995995
    [Google Scholar]
  36. Delaunay M. Ha-Duong T. Computational Tools and Strategies to Develop Peptide-Based Inhibitors of Protein-Protein Interactions. Computational Peptide Science: Methods and Protocols. Simonson T. New York, NY Springer US 2022 205 230 10.1007/978‑1‑0716‑1855‑4_11
    [Google Scholar]
  37. Singh E. Khan R.J. Jha R.K. Amera G.M. Jain M. Singh R.P. Muthukumaran J. Singh A.K. A comprehensive review on promising anti-viral therapeutic candidates identified against main protease from SARS-CoV-2 through various computational methods. J. Genet. Eng. Biotechnol. 2020 18 1 69 10.1186/s43141‑020‑00085‑z 33141358
    [Google Scholar]
  38. Al-Khafaji K. Al-Duhaidahawi D. Taskin Tok T. Using integrated computational approaches to identify safe and rapid treatment for SARS-CoV-2. J. Biomol. Struct. Dyn. 2021 39 9 3387 3395 32364041
    [Google Scholar]
  39. Ngo S.T. Quynh Anh Pham N. Thi Le L. Pham D.H. Vu V.V. Computational Determination of Potential Inhibitors of SARS-CoV-2 Main Protease. J. Chem. Inf. Model. 2020 60 12 5771 5780 10.1021/acs.jcim.0c00491 32530282
    [Google Scholar]
  40. Pham T.T.D. Thai Q.M. Tuyen P.N.K. Phung H.T.T. Ngo S.T. Computational discovery of tripeptide inhibitors targeting monkeypox virus A42R profilin-like protein. J. Mol. Graph. Model. 2024 132 108837 10.1016/j.jmgm.2024.108837 39098150
    [Google Scholar]
  41. Andi B. Kumaran D. Kreitler D.F. Soares A.S. Keereetaweep J. Jakoncic J. Lazo E.O. Shi W. Fuchs M.R. Sweet R.M. Shanklin J. Adams P.D. Schmidt J.G. Head M.S. McSweeney S. Hepatitis C virus NS3/4A inhibitors and other drug-like compounds as covalent binders of SARS-CoV-2 main protease. Sci. Rep. 2022 12 1 12197 10.1038/s41598‑022‑15930‑z 35842458
    [Google Scholar]
  42. Maier J.A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K.E. Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015 11 8 3696 3713 10.1021/acs.jctc.5b00255 26574453
    [Google Scholar]
  43. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  44. Forli S. Huey R. Pique M.E. Sanner M.F. Goodsell D.S. Olson A.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 2016 11 5 905 919 10.1038/nprot.2016.051 27077332
    [Google Scholar]
  45. Gasteiger J. Marsili M. A new model for calculating atomic charges in molecules. Tetrahedron Lett. 1978 19 34 3181 3184 10.1016/S0040‑4039(01)94977‑9
    [Google Scholar]
  46. Gasteiger J. Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 1980 36 22 3219 3228 10.1016/0040‑4020(80)80168‑2
    [Google Scholar]
  47. Tanchuk V.Y. Tanin V.O. Vovk A.I. Poda G. A New, Improved Hybrid Scoring Function for Molecular Docking and Scoring Based on AutoDock and AutoDock Vina. Chem. Biol. Drug Des. 2016 87 4 618 625 10.1111/cbdd.12697 26643167
    [Google Scholar]
  48. Nguyen N.T. Nguyen T.H. Pham T.N.H. Huy N.T. Bay M.V. Pham M.Q. Nam P.C. Vu V.V. Ngo S.T. Autodock Vina Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity. J. Chem. Inf. Model. 2020 60 1 204 211 10.1021/acs.jcim.9b00778 31887035
    [Google Scholar]
  49. Nguyen T.H. Tam N.M. Tuan M.V. Zhan P. Vu V.V. Quang D.T. Ngo S.T. Searching for potential inhibitors of SARS-COV-2 main protease using supervised learning and perturbation calculations. Chem. Phys. 2023 564 111709 10.1016/j.chemphys.2022.111709 36188488
    [Google Scholar]
  50. Chen T. Guestrin C. XGBoost: A Scalable Tree Boosting System. KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2016 785 94 10.1145/2939672.2939785
    [Google Scholar]
  51. Bergstra J. Yamins D. Cox D. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. Proceedings of the 30th International Conference on Machine Learning 2013 115 23
    [Google Scholar]
  52. Schrödinger LLC P The PyMOL molecular graphics system. 2010 Available from: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1571978
  53. Lee S.K. Lee I.H. Kim H.J. Chang G.S. Chung J.E. No K.T. The PreADME approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties. EuroQSAR 2002 Designing Drugs and Crop Protectants: Processes, Problems and Solutions. Blackwell Publishing Maldenh, MA 2003 418 420
    [Google Scholar]
  54. Hu Q. Xiong Y. Zhu G.H. Zhang Y.N. Zhang Y.W. Huang P. Ge G.B. The SARS‐CoV‐2 main protease (M pro ): Structure, function, and emerging therapies for COVID‐19. MedComm 2022 3 3 e151 10.1002/mco2.151 35845352
    [Google Scholar]
  55. Backman T.W.H. Cao Y. Girke T. ChemMine tools: An online service for analyzing and clustering small molecules. Nucleic Acids Res. 2011 39 Web Server issue W486 W491 10.1093/nar/gkr320 21576229
    [Google Scholar]
/content/journals/cp/10.2174/0115701646362106250320080525
Loading
/content/journals/cp/10.2174/0115701646362106250320080525
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: ADME ; inhibitors ; COVID-19 ; tetrapeptides ; Mpro ; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test