Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

is a tropical medicinal herb traditionally used for the treatment of different diseases, such as arthritis, kidney disease, diabetes mellitus, . Diabetes mellitus is emerging as a global health concern, demanding research to provide insights into it.

Objective

The current research study aimed at employing the Network Pharmacology and Molecular Docking approach to unearth and validate the possible molecular mechanism involved in the treatment of diabetic mellitus with herbal constituents from .

Methods

The phytocompounds and targets of were screened from different databases. An herb-core-target-ingredient-diabetes mellitus network was established Cystoscope 3.7.2. Next, Go and KEGG enrichment analysis was performed. Lastly, the interaction between ligands and targets was investigated molecular docking.

Results

According to the results obtained, we identified 49 core targets of diabetes mellitus and 37 active ingredients of . Next, Go and KEGG resulted in a total of 455 biological processes for the treatment of diabetes mellitus. The KEGG enrichment analysis reported that the targets were related to metabolic pathways, insulin signaling pathways, glycolysis/gluconeogenesis, oxidative stress, insulin resistance, . On the basis of KEGG enrichment and protein-protein interaction, we selected Fructose-1-6 bisphosphate1 (FBP1), Glucokinase (GCK), Cytochromes P450 (CYP19A1), fatty acid binding protein 1 (FABP1), Interleukin 2 (IL2) and angiotensin-converting enzyme (ACE), and phytocompounds from for docking. From the docking study, it was concluded that several targets had a stable binding affinity with phytocompounds.

Conclusion

We explored the biological mechanism of phytocompounds involved in the treatment of diabetes mellitus through different biological processes and signaling pathways, and lastly, docking provides us commending results that direct for experiments ahead.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646364860250102115855
2025-01-28
2025-09-02
Loading full text...

Full text loading...

References

  1. LevesqueC. Therapeutic lifestyle changes for diabetes mellitus.Nurs. Clin. North Am.201752467969210.1016/j.cnur.2017.07.01229080584
    [Google Scholar]
  2. ChobotA. Górowska-KowolikK. SokołowskaM. Jarosz-ChobotP. Obesity and diabetes—Not only a simple link between two epidemics.Diabetes Metab. Res. Rev.2018347e304210.1002/dmrr.304229931823
    [Google Scholar]
  3. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  4. SaeediP. PetersohnI. SalpeaP. MalandaB. KarurangaS. UnwinN. ColagiuriS. GuariguataL. MotalaA.A. OgurtsovaK. ShawJ.E. BrightD. WilliamsR. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res. Clin. Pract.2019Nov157107843
    [Google Scholar]
  5. SafiriS. KaramzadN. KaufmanJ.S. BellA.W. NejadghaderiS.A. SullmanM.J.M. Moradi-LakehM. CollinsG. KolahiA.A. Prevalence, deaths and disability-adjusted-life-years (DALYs) due to type 2 diabetes and its attributable risk factors in 204 countries and territories, 1990-2019: Results from the global burden of disease study 2019.Front. Endocrinol. 20221383802710.3389/fendo.2022.83802735282442
    [Google Scholar]
  6. OngK.L. StaffordL.K. McLaughlinS.A. BoykoE.J. VollsetS.E. SmithA.E. DaltonB.E. DupreyJ. CruzJ.A. HaginsH. LindstedtP.A. AaliA. AbateY.H. AbateM.D. AbbasianM. Abbasi-KangevariZ. Abbasi-KangevariM. Abd ElHafeezS. Abd-RabuR. AbdulahD.M. AbdullahA.Y.M. AbediV. AbidiH. AboagyeR.G. AbolhassaniH. Abu-GharbiehE. Abu-ZaidA. AdaneT.D. AdaneD.E. AddoI.Y. AdegboyeO.A. AdekanmbiV. AdepojuA.V. AdnaniQ.E.S. AfolabiR.F. AgarwalG. AghdamZ.B. Agudelo-BoteroM. Aguilera ArriagadaC.E. Agyemang-DuahW. AhinkorahB.O. AhmadD. AhmadR. AhmadS. AhmadA. AhmadiA. AhmadiK. AhmedA. AhmedA. AhmedL.A. AhmedS.A. AjamiM. AkinyemiR.O. Al HamadH. Al HasanS.M. AL-AhdalT.M.A. AlalwanT.A. Al-AlyZ. AlBatainehM.T. Alcalde-RabanalJ.E. AlemiS. AliH. AliniaT. AljunidS.M. AlmustanyirS. Al-RaddadiR.M. Alvis-GuzmanN. AmareF. AmeyawE.K. AmiriS. AmusaG.A. AndreiC.L. AnjanaR.M. AnsarA. AnsariG. Ansari-MoghaddamA. AnyasodorA.E. ArablooJ. AravkinA.Y. AredaD. ArifinH. ArkewM. ArmocidaB. ÄrnlövJ. ArtamonovA.A. ArulappanJ. ArulebaR.T. ArumugamA. AryanZ. AsemuM.T. Asghari-JafarabadiM. AskariE. AsmelashD. Astell-BurtT. AtharM. AthariS.S. AtoutM.M.W. Avila-BurgosL. AwaisuA. AzadnajafabadS. BD.B. BabamohamadiH. BadarM. BadawiA. BadiyeA.D. BaghcheghiN. BagheriN. BagheriehS. BahS. BahadoryS. BaiR. BaigA.A. BaltatuO.C. BaradaranH.R. BarchittaM. BardhanM. BarengoN.C. BärnighausenT.W. BaroneM.T.U. Barone-AdesiF. BarrowA. BashiriH. BasiruA. BasuS. BasuS. BatihaA-M.M. BatraK. BayihM.T. BayileyegnN.S. BehnoushA.H. BekeleA.B. BeleteM.A. BelgaumiU.I. BeloL. BennettD.A. BensenorI.M. BerheK. BerhieA.Y. BhaskarS. BhatA.N. BhattiJ.S. BikbovB. BilalF. BintoroB.S. BitarafS. BitraV.R. Bjegovic-MikanovicV. BodolicaV. BoloorA. BrauerM. Brazo-SayaveraJ. BrennerH. ButtZ.A. CalinaD. CamposL.A. Campos-NonatoI.R. CaoY. CaoC. CarJ. CarvalhoM. Castañeda-OrjuelaC.A. Catalá-LópezF. CerinE. ChadwickJ. ChandrasekarE.K. ChanieG.S. CharanJ. ChattuV.K. ChauhanK. CheemaH.A. Chekol AbebeE. ChenS. CherbuinN. ChichagiF. ChidambaramS.B. ChoW.C.S. ChoudhariS.G. ChowdhuryR. ChowdhuryE.K. ChuD-T. ChukwuI.S. ChungS-C. CoberlyK. ColumbusA. ContrerasD. CousinE. CriquiM.H. Cruz-MartinsN. CuschieriS. DaboB. DadrasO. DaiX. DamascenoA.A.M. DandonaR. DandonaL. DasS. DascaluA.M. DashN.R. DashtiM. Dávila-CervantesC.A. De la Cruz-GóngoraV. DebeleG.R. DelpasandK. DemisseF.W. DemissieG.D. DengX. Denova-GutiérrezE. DeoS.V. DerviševićE. DesaiH.D. DesaleA.T. DessieA.M. DestaF. DewanS.M.R. DeyS. DhamaK. DhimalM. DiaoN. DiazD. DinuM. DiressM. DjalaliniaS. DoanL.P. DongarwarD. dos Santos FigueiredoF.W. DuncanB.B. DuttaS. DziedzicA.M. EdinurH.A. EkholuenetaleM. EkundayoT.C. ElgendyI.Y. ElhadiM. El-HuneidiW. ElmeligyO.A.A. ElmonemM.A. EndeshawD. EsayasH.L. EshetuH.B. EtaeeF. FadhilI. FagbamigbeA.F. FahimA. FalahiS. FarisM.A.I.E.M. FarrokhpourH. FarzadfarF. FatehizadehA. FazliG. FengX. FeredeT.Y. FischerF. FloodD. ForouhariA. ForoumadiR. Foroutan KoudehiM. GaidhaneA.M. GaihreS. GaipovA. GalaliY. GanesanB. Garcia-GordilloM.A. GautamR.K. GebrehiwotM. GebrekidanK.G. GebremeskelT.G. GetacherL. GhadirianF. GhamariS-H. Ghasemi NourM. GhassemiF. GolechhaM. GoleijP. GolinelliD. GopalaniS.V. GuadieH.A. GuanS-Y. GudayuT.W. GuimarãesR.A. GuledR.A. GuptaR. GuptaK. GuptaV.B. GuptaV.K. GyawaliB. HaddadiR. HadiN.R. HaileT.G. HajibeygiR. Haj-MirzaianA. HalwaniR. HamidiS. HankeyG.J. HannanM.A. HaqueS. HarandiH. HarliantoN.I. HasanS.M.M. HasanS.S. HasaniH. HassanipourS. HassenM.B. HauboldJ. HayatK. HeidariG. HeidariM. HessamiK. HiraikeY. HollaR. HossainS. HossainM.S. HosseiniM-S. HosseinzadehM. HosseinzadehH. HuangJ. HudaM.N. HussainS. HuynhH-H. HwangB-F. IbitoyeS.E. IkedaN. IlicI.M. IlicM.D. InbarajL.R. IqbalA. IslamS.M.S. IslamR.M. IsmailN.E. IsoH. IsolaG. ItumallaR. IwagamiM. IwuC.C.D. IyamuI.O. IyasuA.N. JacobL. JafarzadehA. JahramiH. JainR. JajaC. JamalpoorZ. JamshidiE. JanakiramanB. JayannaK. JayapalS.K. JayaramS. JayawardenaR. JebaiR. JeongW. JinY. JokarM. JonasJ.B. JosephN. JosephA. JoshuaC.E. JoukarF. JozwiakJ.J. KaambwaB. KabirA. KabthymerR.H. KadashettiV. KaheF. KalhorR. KandelH. KaranthS.D. KarayeI.M. KarkhahS. KatotoP.D.M.C. KaurN. KazemianS. KebedeS.A. KhaderY.S. KhajuriaH. KhalajiA. KhanM.A.B. KhanM. KhanA. KhanalS. KhatatbehM.M. KhaterA.M. KhateriS. khorashadizadehF. KhubchandaniJ. KibretB.G. KimM.S. KimokotiR.W. KisaA. KivimäkiM. KolahiA-A. KomakiS. KompaniF. KoohestaniH.R. KorzhO. KostevK. KothariN. KoyanagiA. KrishanK. KrishnamoorthyY. Kuate DefoB. KuddusM. KuddusM.A. KumarR. KumarH. KunduS. KurniasariM.D. KuttikkattuA. La VecchiaC. LallukkaT. LarijaniB. LarssonA.O. LatiefK. LawalB.K. LeT.T.T. LeT.T.B. LeeS.W.H. LeeM. LeeW-C. LeeP.H. LeeS. LeeS.W. LegesseS.M. LenziJ. LiY. LiM-C. LimS.S. LimL-L. LiuX. LiuC. LoC-H. LopesG. LorkowskiS. LozanoR. LucchettiG. MaghazachiA.A. MahashaP.W. MahjoubS. MahmoudM.A. MahmoudiR. MahmoudimaneshM. MaiA.T. MajeedA. Majma SanayeP. MakrisK.C. MalhotraK. MalikA.A. MalikI. MallhiT.H. MaltaD.C. MamunA.A. MansouriB. MaratebH.R. MardiP. MartiniS. MartorellM. MarzoR.R. MasoudiR. MasoudiS. MathewsE. MaugeriA. MazzagliaG. MekonnenT. MeshkatM. MestrovicT. Miao JonassonJ. MiazgowskiT. MichalekI.M. MinhL.H.N. MiniG.K. MirandaJ.J. MirfakhraieR. MirrakhimovE.M. Mirza-Aghazadeh-AttariM. MisganawA. MisginaK.H. MishraM. MoazenB. MohamedN.S. MohammadiE. MohammadiM. Mohammadian-HafshejaniA. MohammadshahiM. MohseniA. Mojiri-forushaniH. MokdadA.H. MomtazmaneshS. MonastaL. MoniruzzamanM. MonsU. MontazeriF. Moodi GhalibafA.A. MoradiY. MoradiM. Moradi SarabiM. MorovatdarN. MorrisonS.D. MorzeJ. MossialosE. MostafaviE. MuellerU.O. MulitaF. MulitaA. Murillo-ZamoraE. MusaK.I. MwitaJ.C. NagarajuS.P. NaghaviM. NainuF. NairT.S. NajmuldeenH.H.R. NangiaV. NargusS. NaserA.Y. NassereldineH. NattoZ.S. NaumanJ. NayakB.P. NdejjoR. NegashH. NegoiR.I. NguyenH.T.H. NguyenD.H. NguyenP.T. NguyenV.T. NguyenH.Q. NiaziR.K. NigatuY.T. NingrumD.N.A. NizamM.A. NnyanziL.A. NoreenM. NoubiapJ.J. NzoputamO.J. NzoputamC.I. OanceaB. OdogwuN.M. OdukoyaO.O. OjhaV.A. Okati-AliabadH. OkekunleA.P. OkonjiO.C. OkwuteP.G. OlufadewaI.I. OnwujekweO.E. OrdakM. OrtizA. OsuagwuU.L. OulhajA. OwolabiM.O. Padron-MonederoA. PadubidriJ.R. PalladinoR. PanagiotakosD. Panda-JonasS. PandeyA. PandeyA. Pandi-PerumalS.R. Pantea StoianA.M. PardhanS. ParekhT. ParekhU. PasovicM. PatelJ. PatelJ.R. PaudelU. PepitoV.C.F. PereiraM. PericoN. PernaS. PetcuI-R. Petermann-RochaF.E. PodderV. PostmaM.J. PouraliG. PourtaheriN. PratesE.J.S. QadirM.M.F. QatteaI. RaeeP. RafiqueI. RahimiM. RahimifardM. Rahimi-MovagharV. RahmanM.O. RahmanM.A. RahmanM.H.U. RahmanM. RahmanM.M. RahmaniM. RahmaniS. RahmanianV. RahmawatyS. RahnavardN. RajbhandariB. RamP. RamazanuS. RanaJ. RancicN. RanjhaM.M.A.N. RaoC.R. RapakaD. RasaliD.P. RashediS. RashediV. RashidA.M. RashidiM-M. RatanZ.A. RawafS. RawalL. RedwanE.M.M. RemuzziG. RengasamyK.R.R. RenzahoA.M.N. ReyesL.F. RezaeiN. RezaeiN. RezaeianM. RezazadehH. RiahiS.M. RiasY.A. RiazM. RibeiroD. RodriguesM. RodriguezJ.A.B. RoeverL. RohloffP. RoshandelG. RoustazadehA. RwegereraG.M. SaadA.M.A. Saber-AyadM.M. SabourS. SabzmakanL. SaddikB. SadeghiE. SaeedU. Saeedi MoghaddamS. SafiS. SafiS.Z. SaghazadehA. Saheb Sharif-AskariN. Saheb Sharif-AskariF. SahebkarA. SahooS.S. SahooH. Saif-Ur-RahmanK.M. SajidM.R. SalahiS. SalahiS. SalehM.A. SalehiM.A. SalomonJ.A. SanabriaJ. SanjeevR.K. SanmarchiF. Santric-MilicevicM.M. SarasmitaM.A. SargaziS. SathianB. SathishT. SawhneyM. SchlaichM.P. SchmidtM.I. SchuermansA. SeiduA-A. Senthil KumarN. SepanlouS.G. SethiY. SeylaniA. ShabanyM. ShafaghatT. ShafeghatM. ShafieM. ShahN.S. ShahidS. ShaikhM.A. ShanawazM. ShannawazM. SharfaeiS. ShashamoB.B. ShiriR. ShittuA. ShivakumarK.M. ShivalliS. ShobeiriP. ShokriF. ShuvalK. SibhatM.M. SilvaL.M.L.R. SimpsonC.R. SinghJ.A. SinghP. SinghS. SirajM.S. SkryabinaA.A. SohagA.A.M. SoleimaniH. SolikhahS. Soltani-ZangbarM.S. SomayajiR. SorensenR.J.D. StarodubovaA.V. SujataS. SulemanM. SunJ. SundströmJ. Tabarés-SeisdedosR. TabatabaeiS.M. TabatabaeizadehS-A. TabishM. TaheriM. TaheriE. TakiE. TamuziJ.J.L.L. TanK-K. TatN.Y. TayeB.T. TemesgenW.A. TemsahM-H. TeslerR. ThangarajuP. ThankappanK.R. ThapaR. TharwatS. ThomasN. TicoaluJ.H.V. TiyuriA. TonelliM. Tovani-PaloneM.R. TricoD. TrihandiniI. TripathyJ.P. TromansS.J. TsegayG.M. TualekaA.R. TufaD.G. TyrovolasS. UllahS. UpadhyayE. VahabiS.M. VaithinathanA.G. ValizadehR. van DaalenK.R. VartP. VarthyaS.B. VasankariT.J. VaziriS. VermaM. VerrasG-I. VoD.C. WagayeB. WaheedY. WangZ. WangY. WangC. WangF. WassieG.T. WeiM.Y.W. WeldemariamA.H. WestermanR. WickramasingheN.D. WuY.F. WulandariR.D.W.I. XiaJ. XiaoH. XuS. XuX. YadaD.Y. YangL. YatsuyaH. YesiltepeM. YiS. YohannisH.K. YonemotoN. YouY. ZamanS.B. ZamoraN. ZareI. ZareaK. ZarrintanA. ZastrozhinM.S. ZeruN.G. ZhangZ-J. ZhongC. ZhouJ. ZielińskaM. ZikargY.T. ZodpeyS. ZoladlM. ZouZ. ZumlaA. ZunigaY.M.H. MaglianoD.J. MurrayC.J.L. HayS.I. VosT. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the global burden of disease study 2021.Lancet20234021039720323410.1016/S0140‑6736(23)01301‑637356446
    [Google Scholar]
  7. TanS.Y. Mei WongJ.L. SimY.J. WongS.S. Mohamed ElhassanS.A. TanS.H. Ling LimG.P. Rong TayN.W. AnnanN.C. BhattamisraS.K. CandasamyM. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention.Diabetes Metab. Syndr.201913136437210.1016/j.dsx.2018.10.00830641727
    [Google Scholar]
  8. MoreiraM.W.L. RodriguesJ.J.P.C. KumarN. Al-MuhtadiJ. KorotaevV. Evolutionary radial basis function network for gestational diabetes data analytics.J. Comput. Sci.20182741041710.1016/j.jocs.2017.07.015
    [Google Scholar]
  9. TranN. PhamB. LeL. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery.Biology20209925210.3390/biology909025232872226
    [Google Scholar]
  10. TorbatiF.A. RamezaniM. DehghanR. AmiriM.S. MoghadamA.T. ShakourN. ElyasiS. SahebkarA. EmamiS.A. Ethnobotany, phytochemistry and pharmacological features of centella asiatica: A comprehensive review.Adv. Exp. Med. Biol.2021130845149910.1007/978‑3‑030‑64872‑5_2533861456
    [Google Scholar]
  11. JamesJ.T. DuberyI.A. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban.Molecules200914103922394110.3390/molecules1410392219924039
    [Google Scholar]
  12. ViswanathanG. DanV.M. RadhakrishnanN. NairA.S. Rajendran NairA.P. BabyS. Protection of mouse brain from paracetamol-induced stress by Centella asiatica methanol extract.J. Ethnopharmacol.201923647448310.1016/j.jep.2019.03.01730872170
    [Google Scholar]
  13. KabirA.U. SamadM.B. D’CostaN.M. AkhterF. AhmedA. HannanJ.M.A. Anti-hyperglycemic activity of Centella asiatica is partly mediated by carbohydrase inhibition and glucose-fiber binding.BMC Complement. Altern. Med.20141413110.1186/1472‑6882‑14‑3124438380
    [Google Scholar]
  14. RahmanS. JamalM.A.H.M. ParvinA. Mahfuz-Al-MamunM. IslamM.R. Antidiabetic activity of Centella asiatica (L.) urbana in alloxan induced Type 1 diabetic model rats.J. Biosci.201219232710.3329/jbs.v19i0.12996
    [Google Scholar]
  15. OyenihiA.B. AhianteB.O. OyenihiO.R. MasolaB. Centella asiatica: Its potential for the treatment of diabetes.Diabetes2020213222
    [Google Scholar]
  16. LeeD.S. BurdH. LiuJ. AlmaasE. WiestO. BarabásiA.L. OltvaiZ.N. KapatralV. Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple Staphylococcus aureus genomes identify novel antimicrobial drug targets.J. Bacteriol.2009191124015402410.1128/JB.01743‑0819376871
    [Google Scholar]
  17. LiL. YangL. YangL. HeC. HeY. ChenL. DongQ. ZhangH. ChenS. LiP. Network pharmacology: A bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine.Chin. Med.202318114610.1186/s13020‑023‑00853‑237941061
    [Google Scholar]
  18. NoorF. Tahir ul QamarM. AshfaqU.A. AlbuttiA. AlwashmiA.S.S. AljasirM.A. Network pharmacology approach for medicinal plants: Review and assessment.Pharmaceuticals202215557210.3390/ph1505057235631398
    [Google Scholar]
  19. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑620401516
    [Google Scholar]
  20. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/15734091179567760221534921
    [Google Scholar]
  21. FanJ. FuA. ZhangL. Progress in molecular docking.Quant. Biol.201972838910.1007/s40484‑019‑0172‑y
    [Google Scholar]
  22. WangY. HuB. FengS. WangJ. ZhangF. Target recognition and network pharmacology for revealing anti-diabetes mechanisms of natural product.J. Comput. Sci.20204510118610.1016/j.jocs.2020.101186
    [Google Scholar]
  23. WaltersW.P. Going further than Lipinski’s rule in drug design.Expert Opin. Drug Discov.2012729910710.1517/17460441.2012.64861222468912
    [Google Scholar]
  24. ZhangM.Q. WilkinsonB. Drug discovery beyond the ‘rule-of-five’.Curr. Opin. Biotechnol.200718647848810.1016/j.copbio.2007.10.00518035532
    [Google Scholar]
  25. SeidelT. WiederO. GaronA. LangerT. Applications of the pharmacophore concept in natural product inspired drug design.Mol. Inform.20203911e200005910.1002/minf.202000059
    [Google Scholar]
  26. JiaC.Y. LiJ.Y. HaoG.F. YangG.F. A drug-likeness toolbox facilitates ADMET study in drug discovery.Drug Discov. Today202025124825810.1016/j.drudis.2019.10.01431705979
    [Google Scholar]
  27. SinghH. BharadvajaN. Treasuring the computational approach in medicinal plant research.Prog. Biophys. Mol. Biol.2021164193210.1016/j.pbiomolbio.2021.05.00434004233
    [Google Scholar]
  28. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.00434895945
    [Google Scholar]
  29. LeeD.S. Interconnectivity of human cellular metabolism and disease prevalence.J. Stat. Mech.2010201012P1201510.1088/1742‑5468/2010/12/P12015
    [Google Scholar]
  30. ChenL. ZhangY.H. WangS. ZhangY. HuangT. CaiY.D. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways.PLoS One2017129e018412910.1371/journal.pone.018412928873455
    [Google Scholar]
  31. DennisG.Jr ShermanB.T. HosackD.A. YangJ. GaoW. LaneH.C. LempickiR.A. DAVID: Database for annotation, visualization, and integrated discovery.Genome Biol.200345P310.1186/gb‑2003‑4‑5‑p312734009
    [Google Scholar]
  32. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  33. BatistaT.M. HaiderN. KahnC.R. Defining the underlying defect in insulin action in type 2 diabetes.Diabetologia2021645994100610.1007/s00125‑021‑05415‑533730188
    [Google Scholar]
  34. GerichJ.E. Contributions of insulin-resistance and insulin-secretory defects to the pathogenesis of type 2 diabetes mellitus.Mayo Clin. Proc.200378444745610.4065/78.4.44712683697
    [Google Scholar]
  35. FurnhamN. LaskowskiR.A. ThorntonJ.M. Abstracting knowledge from the protein data bank.Biopolymers201399318318810.1002/bip.2210723023892
    [Google Scholar]
  36. NdisangJ.F. VannacciA. RastogiS. Insulin resistance, Type 1 and type 2 diabetes, and related complications 2017.J. Diabetes Res.201720171310.1155/2017/147829429279853
    [Google Scholar]
  37. RöderP.V. WuB. LiuY. HanW. Pancreatic regulation of glucose homeostasis.Exp. Mol. Med.2016483e21910.1038/emm.2016.626964835
    [Google Scholar]
  38. JayaramanS. DevarajanN. RajagopalP. BabuS. GanesanS.K. VeeraraghavanV.P. PalanisamyC.P. CuiB. PeriyasamyV. ChandrasekarK. β-Sitosterol circumvents obesity induced inflammation and insulin resistance by down-regulating IKKβ/NF-κB and JNK signaling pathway in adipocytes of type 2 diabetic rats.Molecules2021267210110.3390/molecules2607210133917607
    [Google Scholar]
  39. ZhangW. HongD. ZhouY. ZhangY. ShenQ. LiJ. HuL. LiJ. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake.Biochim. Biophys. Acta, Gen. Subj.20061760101505151210.1016/j.bbagen.2006.05.00916828971
    [Google Scholar]
  40. WardM.G. LiG. Barbosa-LorenziV.C. HaoM. Stigmasterol prevents glucolipotoxicity induced defects in glucose-stimulated insulin secretion.Sci. Rep.201771953610.1038/s41598‑017‑10209‑028842702
    [Google Scholar]
  41. ShiL. ZhangW. ZhouY.Y. ZhangY.N. LiJ.Y. HuL.H. LiJ. Corosolic acid stimulates glucose uptake via enhancing insulin receptor phosphorylation.Eur. J. Pharmacol.20085841212910.1016/j.ejphar.2008.01.02018348886
    [Google Scholar]
  42. MannaP. SinhaM. SilP.C. Prophylactic role of arjunolic acid in response to streptozotocin mediated diabetic renal injury: Activation of polyol pathway and oxidative stress responsive signaling cascades.Chem. Biol. Interact.2009181329730810.1016/j.cbi.2009.08.00419682444
    [Google Scholar]
  43. MatschinskyF.M. WilsonD.F. The central role of glucokinase in glucose homeostasis: A perspective 50 years after demonstrating the presence of the enzyme in islets of langerhans.Front. Physiol.20191014810.3389/fphys.2019.0014830949058
    [Google Scholar]
  44. OsbakK.K. ColcloughK. Saint-MartinC. BeerN.L. Bellanné-ChantelotC. EllardS. GloynA.L. Update on mutations in glucokinase ( GCK ), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia.Hum. Mutat.200930111512152610.1002/humu.2111019790256
    [Google Scholar]
  45. CatrinaS.B. ZhengX. Hypoxia and hypoxia-inducible factors in diabetes and its complications.Diabetologia202164470971610.1007/s00125‑021‑05380‑z33496820
    [Google Scholar]
  46. PackerM. Mechanisms leading to differential hypoxia-inducible factor signaling in the diabetic kidney: Modulation by SGLT2 inhibitors and hypoxia mimetics.Am. J. Kidney Dis.202177228028610.1053/j.ajkd.2020.04.01632711072
    [Google Scholar]
  47. ChouJ.Y. MansfieldB.C. Mutations in the glucose-6-phosphatase-α (G6PC) gene that cause type Ia glycogen storage disease.Hum. Mutat.200829792193010.1002/humu.2077218449899
    [Google Scholar]
  48. HattingM. TavaresC.D.J. SharabiK. RinesA.K. PuigserverP. Insulin regulation of gluconeogenesis.Ann. N. Y. Acad. Sci.201814111213510.1111/nyas.1343528868790
    [Google Scholar]
  49. GiaccoF. BrownleeM. Oxidative stress and diabetic complications.Circ. Res.201010791058107010.1161/CIRCRESAHA.110.22354521030723
    [Google Scholar]
  50. DarenskayaM.A. KolesnikovaL.I. KolesnikovS.I. Oxidative stress: Pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction.Bull. Exp. Biol. Med.2021171217918910.1007/s10517‑021‑05191‑734173093
    [Google Scholar]
  51. OyenihiA.B. ChegouN.N. OguntibejuO.O. MasolaB. Centella asiatica enhances hepatic antioxidant status and regulates hepatic inflammatory cytokines in type 2 diabetic rats.Pharm. Biol.20175511671167810.1080/13880209.2017.131829328447512
    [Google Scholar]
  52. AroraR. KumarR. AgarwalA. ReetaK.H. GuptaY.K. Comparison of three different extracts of Centella asiatica for anti-amnesic, antioxidant and anticholinergic activities: In vitro and in vivo study.Biomed. Pharmacother.20181051344135210.1016/j.biopha.2018.05.15630021372
    [Google Scholar]
  53. SetyaningsihW. A. W. ArfianN. FitriawanA.S. YuniarthaR. SariD. C. R. Ethanolic extract of centella asiatica treatment in the early stage of hyperglycemia condition inhibits glomerular injury and vascular remodeling in diabetic rat model.Evid. Based Complement Alternat. Med.2021Jul620216671130
    [Google Scholar]
  54. TononF. CandidoR. ToffoliB. TommasiE. CortelloT. FabrisB. BernardiS. Type 1 diabetes is associated with significant changes of ACE and ACE2 expression in peripheral blood mononuclear cells.Nutr. Metab. Cardiovasc. Dis.20223251275128210.1016/j.numecd.2022.01.02935260304
    [Google Scholar]
  55. ManeesaiP. BunbuphaS. KukongviriyapanU. SenggunpraiL. KukongviriyapanV. PrachaneyP. PakdeechoteP. Effect of asiatic acid on the Ang II-AT1R-NADPH oxidase-NF-κB pathway in renovascular hypertensive rats.Naunyn Schmiedebergs Arch. Pharmacol.2017390101073108310.1007/s00210‑017‑1408‑x28733880
    [Google Scholar]
  56. IghodaroO.M. Molecular pathways associated with oxidative stress in diabetes mellitus.Biomed. Pharmacother.201810865666210.1016/j.biopha.2018.09.05830245465
    [Google Scholar]
  57. ChoS.J. KangK.A. PiaoM.J. RyuY.S. FernandoP.D.S.M. ZhenA.X. HyunY.J. AhnM.J. KangH.K. HyunJ.W. 7,8-Dihydroxyflavone protects high glucose-damaged neuronal cells against oxidative stress.Biomol. Ther.2019271859110.4062/biomolther.2018.20230481956
    [Google Scholar]
  58. WiniarskaA. KnysakM. NabrdalikK. GumprechtJ. StompórT. Inflammation and oxidative stress in diabetic kidney disease: The targets for SGLT2 inhibitors and GLP-1 receptor agonists.Int. J. Mol. Sci.202122191082210.3390/ijms22191082234639160
    [Google Scholar]
  59. YoonM.S. The emerging role of branched-chain amino acids in insulin resistance and metabolism.Nutrients20168740510.3390/nu807040527376324
    [Google Scholar]
  60. FuruzonoS. KubotaT. TauraJ. KonishiM. NaitoA. TsutsuiM. KarasawaH. KubotaN. KadowakiT. A xanthene derivative, DS20060511, attenuates glucose intolerance by inducing skeletal muscle-specific GLUT4 translocation in mice.Commun. Biol.20214199410.1038/s42003‑021‑02491‑634417555
    [Google Scholar]
  61. Guasch-FerréM. SantosJ.L. Martínez-GonzálezM.A. ClishC.B. RazquinC. WangD. LiangL. LiJ. DennisC. CorellaD. Muñoz-BravoC. RomagueraD. EstruchR. Santos-LozanoJ.M. CastañerO. Alonso-GómezA. Serra-MajemL. RosE. CanudasS. AsensioE.M. FitóM. PierceK. MartínezJ.A. Salas-SalvadóJ. ToledoE. HuF.B. Ruiz-CanelaM. Glycolysis/gluconeogenesis- and tricarboxylic acid cycle–Related metabolites, Mediterranean diet, and type 2 diabetes.Am. J. Clin. Nutr.2020111483584410.1093/ajcn/nqaa01632060497
    [Google Scholar]
  62. SalesD.S. CarmonaF. de AzevedoB.C. Taleb-ContiniS.H. BartolomeuA.C.D. HonoratoF.B. MartinezE.Z. PereiraA.M.S. Eugenia punicifolia (Kunth) DC. as an adjuvant treatment for type-2 diabetes mellitus: A non-controlled, pilot study.Phytother. Res.201428121816182110.1002/ptr.520625132112
    [Google Scholar]
  63. CuiF. WangY.F. GaoY. MengY. CaiZ. ShenC. LiuZ. JiangX. ZhaoW. Effects of BSF on podocyte apoptosis via regulating the ROS-mediated PI3K/AKT pathway in DN.J. Diabetes Res.2019201911010.1155/2019/951240631886291
    [Google Scholar]
  64. MuhlishohA. WasitaB. NuhriawangsaA.M.P. Antidiabetic effect of Centella asiatica extract (whole plant) in streptozotocin nicotinamide-induced diabetic rats.Indonesian J Nutr Dietetics2019611422
    [Google Scholar]
  65. RamachandranV. SaravananR. Glucose uptake through translocation and activation of GLUT4 in PI3K/Akt signaling pathway by asiatic acid in diabetic rats.Hum. Exp. Toxicol.201534988489310.1177/096032711456166326286522
    [Google Scholar]
  66. PramonoS. FitrawanL. AriastutiR. TjandrawinataR.R. NugrohoA.E. Antidiabetic effect of combination of fractionated-extracts of Andrographis paniculata and Centella asiatica: In vitro study.Asian Pac. J. Trop. Biomed.201881152710.4103/2221‑1691.245957
    [Google Scholar]
  67. GiribabuN. SrinivasaraoN. Swapna RekhaS. MuniandyS. SallehN. Centella asiatica attenuates diabetes induced hippocampal changes in experimental diabetic rats.Evid. Based Complement. Alternat. Med.20142014159206210.1155/2014/59206225161691
    [Google Scholar]
  68. ChenY.N. WuC.G. ShiB.M. QianK. DingY. The protective effect of asiatic acid on podocytes in the kidney of diabetic rats.Am. J. Transl. Res.201810113733374130662623
    [Google Scholar]
  69. XuG. SunW. GuoX. Asiatic acid promotes liver fatty acid metabolism in diabetic models.Int. J. Clin. Exp. Med.201811111183745
    [Google Scholar]
  70. LiuJ. HeT. LuQ. ShangJ. SunH. ZhangL. Asiatic acid preserves beta cell mass and mitigates hyperglycemia in streptozocin‐induced diabetic rats.Diabetes Metab. Res. Rev.201026644845410.1002/dmrr.110120809533
    [Google Scholar]
  71. HsuY.M. HungY. HuL. LeeY. YinM. Anti-diabetic effects of madecassic acid and rotundic acid.Nutrients2015712100651007510.3390/nu712551226633490
    [Google Scholar]
  72. SongvutP. ChariyavilaskulP. TantisiraM. KhemawootP. Safety and pharmacokinetics of standardized extract of Centella asiatica (ECa 233) capsules in healthy thai volunteers: A phase 1 clinical study.Planta Med.201985648349010.1055/a‑0835‑667130699457
    [Google Scholar]
  73. JamilA.S. SaputroP.G. Molecular docking and ADME studies of centella asiatica as anti hyperuricemia.Pharmacogn. J.202315238438910.5530/pj.2023.15.59
    [Google Scholar]
  74. MacalaladM.A.B. GonzalesA.A.III In-silico screening and identification of phytochemicals from Centella asiatica as potential inhibitors of sodium-glucose co-transporter 2 for treating diabetes.J. Biomol. Struct. Dyn.20224022122211223810.1080/07391102.2021.196928234455930
    [Google Scholar]
  75. LeeD.S. ParkJ. KayK.A. ChristakisN.A. OltvaiZ.N. BarabásiA.L. The implications of human metabolic network topology for disease comorbidity.Proc. Natl. Acad. Sci. USA2008105299880988510.1073/pnas.080220810518599447
    [Google Scholar]
  76. LiY. LiZ. YeT. HaoF. WangY. LiW. YanQ. ShiH. HanW. Mechanism of Erzhiwan in treating osteoporosis based on molecular docking technology and molecular dynamics simulation.J. Mol. Model.20232912110.1007/s00894‑022‑05418‑y36565386
    [Google Scholar]
/content/journals/cp/10.2174/0115701646364860250102115855
Loading
/content/journals/cp/10.2174/0115701646364860250102115855
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test