Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

Glycogen synthase kinase 3-beta (GSK3-β) is a protein that is linked to the formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles, both of which are characteristic of Alzheimer's disease. The enzyme's hyperactivity phosphorylates tau proteins, forming neurofibrillary tangles that impair material transport between axons and dendrites and disrupt neuronal function. GSK3-β impacts amyloid precursor protein production, causing Aβ accumulation and neurodegeneration.

Aim/Objective

This study aimed to investigate the inhibitory mechanism of natural compounds from against GSK3-β.

Methods

Computational approach, extra precision glide docking, and the Maestro molecular interface of Schrodinger suites were utilized to determine the binding free energy of the compounds against the prepared GSK3-β. The compounds' ADME parameters and Lipinski's rule of five were also evaluated. Using AutoQSAR, predictive models were constructed for both protein targets.

Results

Three hit compounds (kaempferol, quercetin, and 5,7,4'-trihydroxy-3,8-dimethoxyflavone) were found in this study. These compounds met the recommended range for the specified ADME parameters and passed the rule of five. Additionally, the hit compounds' predicted pIC values were promising.

Conclusion

Our study suggests that the investigated compounds can be used to design GSK3-β inhibitors.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646361973250130092523
2025-02-06
2025-10-01
Loading full text...

Full text loading...

References

  1. BreijyehZ. KaramanR. Comprehensive review on Alzheimer’s disease: Causes and treatment.Molecules20202524578910.3390/molecules25245789 33302541
    [Google Scholar]
  2. ZhangH. WeiW. ZhaoM. MaL. JiangX. PeiH. CaoY. LiH. Interaction between Aβ and tau in the pathogenesis of Alzheimer’s disease.Int. J. Biol. Sci.20211792181219210.7150/ijbs.57078 34239348
    [Google Scholar]
  3. AshrafianH. ZadehE.H. KhanR.H. Review on Alzheimer’s disease: Inhibition of amyloid beta and tau tangle formation.Int. J. Biol. Macromol.202116738239410.1016/j.ijbiomac.2020.11.192 33278431
    [Google Scholar]
  4. UddinM.S. AshrafG.M. MamunA.A. MathewB. Toxic tau: Structural origins of tau aggregation in Alzheimer’s disease.Neural Regen. Res.20201581417142010.4103/1673‑5374.274329 31997800
    [Google Scholar]
  5. SharmaS. ChauhanN. PaliwalS. JainS. VermaK. PaliwalS. GSK-3β and its inhibitors in Alzheimer’s disease: A recent update.Mini Rev. Med. Chem.202222222881289510.2174/1389557522666220420094317 35450523
    [Google Scholar]
  6. SrivastavaS. AhmadR. KhareS.K. Alzheimer’s disease and its treatment by different approaches: A review.Eur. J. Med. Chem.202121611332010.1016/j.ejmech.2021.113320 33652356
    [Google Scholar]
  7. MarucciG. BuccioniM. BenD.D. LambertucciC. VolpiniR. AmentaF. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease.Neuropharmacology202119010835210.1016/j.neuropharm.2020.108352 33035532
    [Google Scholar]
  8. Mohd SairaziN.S. SirajudeenK.N.S. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases.Evid. Based Complement. Alternat. Med.202020201656539610.1155/2020/6565396 32148547
    [Google Scholar]
  9. ElufioyeT.O. OyedejiA.O. HabtemariamS. A review of the traditional uses, phytochemistry and pharmacology of Bryophyllum pinnatum (Lam.)(Crassulaceae).J. Biol. Active Prod. Nature202212319022210.1080/22311866.2021.1988706
    [Google Scholar]
  10. BhandariR. GyawaliS. AryalN. GaireD. PaudyalK. PantaA. PanthP. JoshiD.R. RokayaR.K. AryalP. PandeyJ. Evaluation of phytochemical, antioxidant, and memory-enhancing activity of Garuga pinnata Roxb. Bark andBryophyllum pinnatu> (Lam) Oken. Leaves.Scientific World J.,2021202111710.1155/2021/6649574 33994883
    [Google Scholar]
  11. OgidigoJ.O. AnosikeC.A. JoshuaP.E. IbejiC.U. NwangumaB.C. NwodoO.F.C. Neuroprotective effect of Bryophyllum pinnatu flavonoids against aluminum chloride-induced neurotoxicity in rats.Toxicol. Mech. Methods202232424325810.1080/15376516.2021.1995557 34663170
    [Google Scholar]
  12. ShriS.R. ManandharS. NayakY. PaiK.S.R. Role of GSK-3β inhibitors: New promises and opportunities for Alzheimer’s disease.Adv. Pharm. Bull.202313468870010.34172/apb.2023.071 38022801
    [Google Scholar]
  13. OzkatG.Y. YildizI. In silico studies to develop new GSK3β inhibitors effective in the Alzheimer’s Disease.Lett. Drug Des. Discov.202219869170510.2174/1570180819666220210100813
    [Google Scholar]
  14. ZareeiS. PourmandS. EskandarzadehM. MassahiS. In silico anti-alzheimer study of phytochemicals from Lamiaceae family through GSK3-β inhibition.Sci. Rep.202414183410.1038/s41598‑023‑47069‑w 38191548
    [Google Scholar]
  15. ElekofehintiO.O. AjiboroP.A. AkinjiyanM.O. SaliuT.P. AyodejiF.O. OjoF.M. OluwamodupeC. Identification of natural inhibitor from Aframomum melegueta targeting survivin and mammalian rapamycin signaling pathway in Kidney Cancer.Inform. Med. Unlocked20234110132010.1016/j.imu.2023.101320
    [Google Scholar]
  16. HalgrenT.A. MurphyR.B. FriesnerR.A. BeardH.S. FryeL.L. PollardW.T. BanksJ.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening.J. Med. Chem.20044771750175910.1021/jm030644s 15027866
    [Google Scholar]
  17. IwaloyeO. ElekofehintiO.O. BabatomiwaK. FadipeT.M. In silico molecular studies of selected compounds as novel inhibitors for phosphodiesterase-5 (PDE5) in the management of erectile dysfunction.J. Comput. Sci. Syst. Biol.2020133072
    [Google Scholar]
  18. KhanH. Marya; Amin, S.; Kamal, M.A.; Patel, S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects.Biomed. Pharmacother.201810186087010.1016/j.biopha.2018.03.007 29635895
    [Google Scholar]
  19. Al-OtaibiS.S. ArafahM.M. SharmaB. AlhomidaA.S. SiddiqiN.J. Synergistic effect of Quercetin and α -Lipoic acid on Aluminium Chloride induced neurotoxicity in rats.J. Toxicol.2018201811810.1155/2018/2817036 29861723
    [Google Scholar]
  20. OlennikovD.N. KashchenkoN.I. ChirikovaN.K. AkobirshoevaA. ZilfikarovI.N. VennosC. Isorhamnetin and quercetin derivatives as anti-acetylcholinesterase principles of marigold (Calendula officinalis) flowers and preparations.Int. J. Mol. Sci.2017188168510.3390/ijms18081685 28767066
    [Google Scholar]
  21. GongG. GuanY.Y. ZhangZ.L. RahmanK. WangS.J. ZhouS. LuanX. ZhangH. Isorhamnetin: A review of pharmacological effects.Biomed. Pharmacother.202012811030110.1016/j.biopha.2020.110301 32502837
    [Google Scholar]
  22. OgidigoJ.O. AnosikeC.A. JoshuaP.E. IbejiC.U. EkpoD.E. NwangumaB.C. NwodoO.F.C. UPLC-PDA-ESI-QTOF-MS/MS fingerprint of purified flavonoid enriched fraction ofBryophyllum pinnatu; antioxidant properties, anticholinesterase activity and in silico studies.Pharm. Biol.202159144245410.1080/13880209.2021.1913189 33930998
    [Google Scholar]
  23. RaeisiS. Molecular docking approach of monoamine oxidase B inhibitors for identifying new potential drugs: Insights into drugprotein interaction discovery. J. cell mol. res., 2013512433
    [Google Scholar]
  24. BertrandJ.A. ThieffineS. VulpettiA. CristianiC. ValsasinaB. KnappS. KaliszH.M. FloccoM. Structural characterization of the GSK-3β active site using selective and non-selective ATP-mimetic inhibitors.J. Mol. Biol.2003333239340710.1016/j.jmb.2003.08.031 14529625
    [Google Scholar]
  25. WangE. SunH. WangJ. WangZ. LiuH. ZhangJ.Z.H. HouT. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design.Chem. Rev.2019119169478950810.1021/acs.chemrev.9b00055 31244000
    [Google Scholar]
  26. SgobbaM. CaporuscioF. AnighoroA. PortioliC. RastelliG. Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations.Eur. J. Med. Chem.20125843144010.1016/j.ejmech.2012.10.024 23153814
    [Google Scholar]
  27. SunH. LiY. TianS. XuL. HouT. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set.Phys. Chem. Chem. Phys.20141631167191672910.1039/C4CP01388C 24999761
    [Google Scholar]
  28. MaffucciI. HuX. FumagalliV. ContiniA. An efficient implementation of the Nwat-MMGBSA method to rescore docking results in medium-throughput virtual screenings.Front Chem.201864310.3389/fchem.2018.00043 29556494
    [Google Scholar]
  29. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  30. AnY. ShermanW. DixonS.L. Kernel-based partial least squares: Application to fingerprint-based QSAR with model visualization.J. Chem. Inf. Model.20135392312232110.1021/ci400250c 23901898
    [Google Scholar]
/content/journals/cp/10.2174/0115701646361973250130092523
Loading
/content/journals/cp/10.2174/0115701646361973250130092523
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test