Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

FUS (fused in sarcoma protein), beta-amyloid, tau, alpha-synuclein, and TDP-43, which are involved in neurodegenerative diseases (NDDs) pathogenesis, are characterized by antiviral properties. These proteins are inhibitors of retroelements, being activated in response to retroelement expression products. This is due to the evolutionary relationship between retroelements and exogenous viruses. During aging, proteinopathy of the listed antiviral proteins with their predisposition to aggregation and dysfunction, as well as pathological activation of retroelements, is observed in the normal brain. However, these processes are significantly aggravated in NDDs due to the influence of the many polymorphisms associated with them, located in the intergenic and intronic regions where the retroelement genes are localized. These polymorphisms may be associated with NDDs due to pathological activation of specific retroelements and the ability of their expression products to abnormally interact with antiviral proteins. As a result, a “vicious circle” is formed in which transcripts and proteins of retroelements stimulate the expression of antiviral proteins, which form abnormal aggregates that are unable to inhibit retroelements. This, in turn, causes the activation of retroelements and the progression of the pathology. The initiating factors of the described mechanisms may be viral infections. Epigenetic processes in NDDs are accompanied by changes in the expression of specific microRNAs, some of which evolved from retroelements. An analysis of scientific literature has revealed 41 retroelement-derived microRNAs characterized by low expression in NDDs. To confirm the above theory, information was searched in the Scopus, WoS, and NCBI databases.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646349195250327051422
2025-04-07
2025-09-03
Loading full text...

Full text loading...

References

  1. LeblancP. VorbergI.M. Viruses in neurodegenerative diseases: More than just suspects in crimes.PLoS Pathog2022188e101067010.1371/journal.ppat.101067035925897
    [Google Scholar]
  2. NiuH. Álvarez-ÁlvarezI. Guillén-GrimaF. Aguinaga-OntosoI. Prevalence and incidence of Alzheimer’s disease in Europe: A meta-analysis.Neurología201732852353210.1016/j.nrl.2016.02.01627130306
    [Google Scholar]
  3. AndoK. NagarajS. KucukaliF. de FisenneM.A. KosaA.C. DoeraeneE. PICALM and Alzheimer’s disease: An update and perspectives.Nutrients20221453910.3390/nu1403053935276898
    [Google Scholar]
  4. DingC. WuY. ChenX. ChenY. WuZ. LinZ. KangD. FangW. ChenF. Global, regional, and national burden and attributable risk factors of neurological disorders: The global burden of disease study 1990–2019.Front Public. Health.20221095216110.3389/fpubh.2022.95216136523572
    [Google Scholar]
  5. KlokkarisA. Migdalska-RichardsA. An overview of epigenetic changes in the parkinson’s disease brain.Int. J. Mol. Sci.20242511616810.3390/ijms2511616838892355
    [Google Scholar]
  6. WolfsonC GauvinDE IsholaF OskouiM Global prevalence and incidence of amyotrophic lateral sclerosis: A systematic review.Neurology20231016e613e623
    [Google Scholar]
  7. XuL. LiuT. LiuL. YaoX. ChenL. FanD. ZhanS. WangS. Global variation in prevalence and incidence of amyotrophic lateral sclerosis: A systematic review and meta-analysis.J. Neurol.2020267494495331797084
    [Google Scholar]
  8. BennettS.A. TanazR. CobosS.N. TorrenteM.P. Epigenetics in amyotrophic lateral sclerosis: A role for histone post-translational modifications in neurodegenerative disease.Transl. Res.2019204193030391475
    [Google Scholar]
  9. ShelkovnikovaT.A. AnH. SkeltL. TregoningJ.S. HumphreysI.R. BuchmanV.L. Antiviral immune response as a trigger of FUS proteinopathy in amyotrophic lateral sclerosis.Cell. Rep2019291344964508.e431875556
    [Google Scholar]
  10. RahmaniB. GhashghayiE. ZendehdelM. BaghbanzadehA. KhodadadiM. Molecular mechanisms highlighting the potential role of COVID-19 in the development of neurodegenerative diseases.Physiol. Int.2022109213516235895572
    [Google Scholar]
  11. HoganD.B. JettéN. FiestK.M. RobertsJ.I. PearsonD. SmithE.E. RoachP. KirkA. PringsheimT. MaxwellC.J. The prevalence and incidence of frontotemporal dementia: A systematic review.Can J. Neurol. Sci.201643S1S96S109(Suppl. 1)10.1017/cjn.2016.2527307130
    [Google Scholar]
  12. LogroscinoG. PiccininniM. GraffC. HardimanO. LudolphA.C. MorenoF. OttoM. RemesA.M. RoweJ.B. SeelaarH. SoljeE. StefanovaE. TraykovL. JelicV. RydellM.T. PenderN. Anderl-StraubS. BarandiaranM. GabilondoA. KrügerJ. MurleyA.G. RittmanT. van der EndeE.L. van SwietenJ.C. HartikainenP. StojmenovicG.M. MehrabianS. BenussiL. AlbericiA. Dell’AbateM.T. ZeccaC. BorroniB. FRONTIERS group Incidence of syndromes associated with frontotemporal lobar degeneration in 9 european countries.JAMA Neurol.202380327928636716024
    [Google Scholar]
  13. YongS.Y. RabenT.G. LelloL. HsuS.D.H. Genetic architecture of complex traits and disease risk predictors.Sci. Rep.20201011205532694572
    [Google Scholar]
  14. NurkS. KorenS. RhieA. RautiainenM. BzikadzeA.V. MikheenkoA. VollgerM.R. AltemoseN. UralskyL. GershmanA. AganezovS. HoytS.J. DiekhansM. LogsdonG.A. AlongeM. AntonarakisS.E. BorchersM. BouffardG.G. BrooksS.Y. CaldasG.V. ChenN.C. ChengH. ChinC.S. ChowW. de LimaL.G. DishuckP.C. DurbinR. DvorkinaT. FiddesI.T. FormentiG. FultonR.S. FungtammasanA. GarrisonE. GradyP.G.S. Graves-LindsayT.A. HallI.M. HansenN.F. HartleyG.A. HauknessM. HoweK. HunkapillerM.W. JainC. JainM. JarvisE.D. KerpedjievP. KirscheM. KolmogorovM. KorlachJ. KremitzkiM. LiH. MaduroV.V. MarschallT. McCartneyA.M. McDanielJ. MillerD.E. MullikinJ.C. MyersE.W. OlsonN.D. PatenB. PelusoP. PevznerP.A. PorubskyD. PotapovaT. RogaevE.I. RosenfeldJ.A. SalzbergS.L. SchneiderV.A. SedlazeckF.J. ShafinK. ShewC.J. ShumateA. SimsY. SmitA.F.A. SotoD.C. SovićI. StorerJ.M. StreetsA. SullivanB.A. Thibaud-NissenF. TorranceJ. WagnerJ. WalenzB.P. WengerA. WoodJ.M.D. XiaoC. YanS.M. YoungA.C. ZarateS. SurtiU. McCoyR.C. DennisM.Y. AlexandrovI.A. GertonJ.L. O’NeillR.J. TimpW. ZookJ.M. SchatzM.C. EichlerE.E. MigaK.H. PhillippyA.M. The complete sequence of a human genome.Science20223766588445335357919
    [Google Scholar]
  15. GuerreiroR. WojtasA. BrasJ. CarrasquilloM. RogaevaE. MajounieE. CruchagaC. SassiC. KauweJ.S. YounkinS. HazratiL. CollingeJ. PocockJ. LashleyT. WilliamsJ. LambertJ.C. AmouyelP. GoateA. RademakersR. MorganK. PowellJ. St George-HyslopP. SingletonA. HardyJ. Alzheimer Genetic Analysis Group TREM2 variants in Alzheimer’s disease.N. Engl. J. Med.2013368211712710.1056/NEJMoa121185123150934
    [Google Scholar]
  16. MarioniR.E. HarrisS.E. ZhangQ. McRaeA.F. HagenaarsS.P. HillW.D. DaviesG. RitchieC.W. GaleC.R. StarrJ.M. GoateA.M. PorteousD.J. YangJ. EvansK.L. DearyI.J. WrayN.R. VisscherP.M. GWAS on family history of Alzheimer’s disease.Transl. Psychiatry2018819929777097
    [Google Scholar]
  17. G N SH.S. MariseV.L.P. SatishK.S. YergolkarA.V. KrishnamurthyM. Ganesan RajalekshmiS. RadhikaK. BurriR.R. Untangling huge literature to disinter genetic underpinnings of Alzheimer’s Disease: A systematic review and meta-analysis.Ageing Res. Rev.20217110142110.1016/j.arr.2021.10142134371203
    [Google Scholar]
  18. BlauwendraatC. HeilbronK. VallergaC.L. Bandres-CigaS. von CoellnR. PihlstrømL. Simón-SánchezJ. SchulteC. SharmaM. KrohnL. SiitonenA. IwakiH. LeonardH. NoyceA.J. TanM. GibbsJ.R. HernandezD.G. ScholzS.W. JankovicJ. ShulmanL.M. LesageS. CorvolJ.C. BriceA. van HiltenJ.J. MarinusJ. Eerola-RautioJ. TienariP. MajamaaK. ToftM. GrossetD.G. GasserT. HeutinkP. ShulmanJ.M. WoodN. HardyJ. MorrisH.R. HindsD.A. GrattenJ. VisscherP.M. Gan-OrZ. NallsM.A. SingletonA.B. 23andMe Research Team International Parkinson’s Disease Genomics Consortium (IPDGC) Parkinson’s disease age at onset genome-wide association study: Defining heritability, genetic loci, and α-synuclein mechanisms.Mov. Disord.201934686687530957308
    [Google Scholar]
  19. NallsM.A. BlauwendraatC. VallergaC.L. HeilbronK. Bandres-CigaS. ChangD. TanM. KiaD.A. NoyceA.J. XueA. BrasJ. YoungE. von CoellnR. Simón-SánchezJ. SchulteC. SharmaM. KrohnL. PihlstrømL. SiitonenA. IwakiH. LeonardH. FaghriF. GibbsJ.R. HernandezD.G. ScholzS.W. BotiaJ.A. MartinezM. CorvolJ.C. LesageS. JankovicJ. ShulmanL.M. SutherlandM. TienariP. MajamaaK. ToftM. AndreassenO.A. BangaleT. BriceA. YangJ. Gan-OrZ. GasserT. HeutinkP. ShulmanJ.M. WoodN.W. HindsD.A. HardyJ.A. MorrisH.R. GrattenJ. VisscherP.M. GrahamR.R. SingletonA.B. Adarmes-GómezA.D. AguilarM. AitkulovaA. AkhmetzhanovV. AlcalayR.N. AlvarezI. AlvarezV. Bandres-CigaS. BarreroF.J. Bergareche YarzaJ.A. Bernal-BernalI. BillingsleyK. BlauwendraatC. BlazquezM. Bonilla-ToribioM. BotíaJ.A. BoungiornoM.T. BrasJ. BriceA. BrockmannK. BubbV. Buiza-RuedaD. CámaraA. CarrilloF. Carrión-ClaroM. CerdanD. ChelbanV. ClarimónJ. ClarkeC. ComptaY. CooksonM.R. CorvolJ-C. CraigD.W. DanjouF. Diez-FairenM. Dols-IcardoO. DuarteJ. DuranR. Escamilla-SevillaF. Escott-PriceV. EzquerraM. FaghriF. FelizC. FernándezM. Fernández-SantiagoR. FinkbeinerS. FoltynieT. Gan-OrZ. GarciaC. García-RuizP. GasserT. GibbsJ.R. Gomez HerediaM.J. Gómez-GarreP. GonzálezM.M. Gonzalez-AramburuI. GuelfiS. GuerreiroR. HardyJ. Hassin-BaerS. HernandezD.G. HeutinkP. HoenickaJ. HolmansP. HouldenH. InfanteJ. IwakiH. JesúsS. Jimenez-EscrigA. KaishybayevaG. KaiyrzhanovR. KarimovaA. KiaD.A. KinghornK.J. KoksS. KrohnL. KulisevskyJ. Labrador-EspinosaM.A. LeonardH.L. LesageS. LewisP. Lopez-SendonJ.L. LoveringR. LubbeS. LunguC. MaciasD. MajamaaK. ManzoniC. MarínJ. MarinusJ. MartiM.J. MartinezM. Martínez TorresI. Martínez-CastrilloJ.C. MataM. MencacciN.E. Méndez-del-BarrioC. MiddlehurstB. MínguezA. MirP. MokK.Y. MorrisH.R. MuñozE. NallsM.A. NarendraD. NoyceA.J. OjoO.O. OkubadejoN.U. PagolaA.G. PastorP. Perez ErrazquinF. Periñán-TocinoT. PihlstromL. Plun-FavreauH. QuinnJ. R’BiboL. ReedX. RezolaE.M. RizigM. RizzuP. RobakL. RodriguezA.S. RouleauG.A. Ruiz-MartínezJ. RuzC. RytenM. SadykovaD. ScholzS.W. SchreglmannS. SchulteC. SharmaM. ShashkinC. ShulmanJ.M. SierraM. SiitonenA. Simón-SánchezJ. SingletonA.B. Suarez-SanmartinE. TabaP. TaberneroC. TanM.X. TartariJ.P. Tejera-ParradoC. ToftM. TolosaE. TrabzuniD. ValldeoriolaF. van HiltenJ.J. Van Keuren-JensenK. Vargas-GonzálezL. VelaL. VivesF. WilliamsN. WoodN.W. ZharkinbekovaN. ZharmukhanovZ. ZholdybayevaE. ZimprichA. YlikotilaP. ShulmanL.M. von CoellnR. ReichS. SavittJ. AgeeM. AlipanahiB. AutonA. BellR.K. BrycK. ElsonS.L. FontanillasP. FurlotteN.A. HuberK.E. HicksB. JewettE.M. JiangY. KleinmanA. LinK-H. LittermanN.K. McCreightJ.C. McIntyreM.H. McManusK.F. MountainJ.L. NoblinE.S. NorthoverC.A.M. PittsS.J. PoznikG.D. SathirapongsasutiJ.F. SheltonJ.F. ShringarpureS. TianC. TungJ. VacicV. WangX. WilsonC.H. AndersonT. BentleyS. Dalrymple-AlfordJ. FowdarJ. GrattenJ. HallidayG. HendersA.K. HickieI. KassamI. KennedyM. KwokJ. LewisS. MellickG. MontgomeryG. PearsonJ. PitcherT. SidorenkoJ. SilburnP.A. VallergaC.L. VisscherP.M. WallaceL. WrayN.R. XueA. YangJ. ZhangF. 23andMe Research Team System Genomics of Parkinson’s Disease Consortium International Parkinson’s Disease Genomics Consortium Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies.Lancet Neurol.201918121091110210.1016/S1474‑4422(19)30320‑531701892
    [Google Scholar]
  20. KimJ.J. VitaleD. OtaniD.V. LianM.M. HeilbronK. AslibekyanS. AutonA. BabalolaE. BellR.K. BielenbergJ. BrycK. BullisE. CannonP. CokerD. PartidaG.C. DhamijaD. DasS. ElsonS.L. ErikssonN. FilshteinT. FitchA. Fletez-BrantK. FontanillasP. FreymanW. GrankaJ.M. HernandezA. HicksB. HindsD.A. JewettE.M. JiangY. KukarK. KwongA. LinK-H. LlamasB.A. LoweM. McCreightJ.C. McIntyreM.H. MichelettiS.J. MorenoM.E. NandakumarP. NguyenD.T. NoblinE.S. O’ConnellJ. PetrakovitzA.A. PoznikG.D. ReynosoA. SchloetterM. SchumacherM. ShastriA.J. SheltonJ.F. ShiJ. ShringarpureS. SuQ.J. TatS.A. TchakoutéC.T. TranV. TungJ.Y. WangX. WangW. WeldonC.H. WiltonP. WongC.D. IwakiH. LakeJ. SolsbergC.W. LeonardH. MakariousM.B. TanE-K. SingletonA.B. Bandres-CigaS. NoyceA.J. GattoE.M. KauffmanM. KhachatryanS. TavadyanZ. ShepherdC.E. HunterJ. KumarK. EllisM. RenteríaM.E. KoksS. ZimprichA. Schumacher-SchuhA.F. RiederC. AwadP.S. TumasV. CamargosS. FonE.A. MonchiO. FonT. GalleguillosB.P. MirandaM. BustamanteM.L. OlguinP. ChanaP. TangB. ShangH. GuoJ. ChanP. LuoW. ArboledaG. OrozcJ. del RioM.J. HernandezA. SalamaM. KamelW.A. ZewdeY.Z. BriceA. CorvolJ-C. WestenbergerA. IllarionovaA. MollenhauerB. KleinC. VollstedtE-J. HopfnerF. HöglingerG. MadoevH. TrinhJ. JunkerJ. LohmannK. LangeL.M. SharmaM. GroppaS. GasserT. FangZ-H. AkpaluA. XiromerisiouG. HadjigorgiouG. DagklisI. TarnanasI. StefanisL. StamelouM. DadiotisE. MedinaA. ChanG.H-F. IpN. CheungN.Y-F. ChanP. ZhouX. KishoreA. DivyaK.P. PalP. KukkleP.L. RajanR. BorgohainR. SalariM. QuattroneA. ValenteE.M. ParnettiL. AvenaliM. SchirinziT. FunayamaM. HattoriN. ShiraishiT. KarimovaA. KaishibayevaG. ShambetovaC. KrügerR. TanA.H. Ahmad-AnnuarA. NorlinahM.I. MuradN.A.A. AzminS. LimS-Y. MohamedW. TayY.W. Martinez-RamirezD. Rodriguez-ViolanteM. Reyes-PérezP. TserensodnomB. OjhaR. AndersonT.J. PitcherT.L. SanyaoluA. OkubadejoN. OjoO. AaslyJ.O. PihlstrømL. TanM. Ur-RehmanS. Veliz-OtaniD. Cornejo-OlivasM. DoqueniaM.L. RosalesR. VinuelaA. IakovenkoE. MubarakB.A. UmairM. AmodF. CarrJ. BardienS. JeonB. KimY.J. CuboE. AlvarezI. HoenickaJ. BeyerK. PeriñanM.T. PastorP. El-SadigS. BrolinK. ZweierC. TinkhauserG. KrackP. LinC-H. WuH-C. KungP-J. WuR-M. WuY. AmouriR. SassiS.B. BaşakA.N. GencG. ÇakmakÖ.Ö. ErtanS. Martínez-CarrascoA. SchragA. SchapiraA. CarrollC. BaleC. GrossetD. StaffordE.J. HouldenH. MorrisH.R. HardyJ. MokK.Y. RizigM. WoodN. WilliamsN. OkunoyeO. LewisP.A. KaiyrzhanovR. WeilR. LoveS. StottS. JasaityteS. DeyS. ObeseV. EspayA. O’GradyA. SoberingA.K. SiddiqiB. CaseyB. FiskeB. JonasC. CruchagaC. PantazisC.B. ComartC. WegelC. HallD. HernandezD. ShiamimE. RileyE. FaghriF. SerranoG.E. ChenH. MataI.F. SarmientoI.J.K. WilliamsonJ. JankovicJ. ShulmanJ. SolleJ.C. MurphyK. NuytemansK. KieburtzK. MarkopoulouK. MarekK. LevineK.S. ChahineL.M. IbanezL. ScrevenL. RuffrageL. ShulmanL. MarsiliL. KuhlM. DeanM. KoretskyM. PuckelwartzM.J. Inca-MartinezM. LouieN. MencacciN.E. AlbinR. AlcalayR. WalkerR. ChowdhuryS. DumanisS. LubbeS. XieT. ForoudT. BeachT. ShererT. SongY. NguyenD. NguyenT. AtadzhanovM. BlauwendraatC. NallsM.A. FooJ.N. MataI. 23andMe Research Team Global Parkinson’s Genetics Program (GP2) Multi-ancestry genome-wide association meta-analysis of Parkinson’s disease.Nat. Genet.2024561273610.1038/s41588‑023‑01584‑838155330
    [Google Scholar]
  21. van RheenenW. van der SpekR.A.A. BakkerM.K. van VugtJ.J.F.A. HopP.J. ZwambornR.A.J. de KleinN. WestraH.J. BakkerO.B. DeelenP. ShirebyG. HannonE. MoisseM. BairdD. RestuadiR. DolzhenkoE. DekkerA.M. GaworK. WestenengH.J. TazelaarG.H.P. van EijkK.R. KooymanM. ByrneR.P. DohertyM. HeverinM. Al KhleifatA. IacoangeliA. ShatunovA. TicozziN. Cooper-KnockJ. SmithB.N. GromichoM. ChandranS. PalS. MorrisonK.E. ShawP.J. HardyJ. OrrellR.W. SendtnerM. MeyerT. BaşakN. van der KooiA.J. RattiA. FoghI. GelleraC. LauriaG. CortiS. CeredaC. SprovieroD. D’AlfonsoS. SorarùG. SicilianoG. FilostoM. PadovaniA. ChiòA. CalvoA. MogliaC. BrunettiM. CanosaA. GrassanoM. BeghiE. PupilloE. LogroscinoG. NefussyB. OsmanovicA. NordinA. LernerY. ZabariM. GotkineM. BalohR.H. BellS. Vourc’hP. CorciaP. CouratierP. MillecampsS. MeiningerV. SalachasF. Mora PardinaJ.S. AssialiouiA. Rojas-GarcíaR. DionP.A. RossJ.P. LudolphA.C. WeishauptJ.H. BrennerD. FreischmidtA. BensimonG. BriceA. DurrA. PayanC.A.M. Saker-DelyeS. WoodN.W. ToppS. RademakersR. TittmannL. LiebW. FrankeA. RipkeS. BraunA. KraftJ. WhitemanD.C. OlsenC.M. UitterlindenA.G. HofmanA. RietschelM. CichonS. NöthenM.M. AmouyelP. TraynorB.J. SingletonA.B. Mitne NetoM. CauchiR.J. OphoffR.A. Wiedau-PazosM. Lomen-HoerthC. van DeerlinV.M. GrosskreutzJ. RoedigerA. GaurN. JörkA. BarthelT. TheeleE. IlseB. StubendorffB. WitteO.W. SteinbachR. HübnerC.A. GraffC. BrylevL. FominykhV. DemeshonokV. AtaulinaA. RogeljB. KoritnikB. ZidarJ. Ravnik-GlavačM. GlavačD. StevićZ. DroryV. PovedanoM. BlairI.P. KiernanM.C. BenyaminB. HendersonR.D. FurlongS. MathersS. McCombeP.A. NeedhamM. NgoS.T. NicholsonG.A. PamphlettR. RoweD.B. SteynF.J. WilliamsK.L. MatherK.A. SachdevP.S. HendersA.K. WallaceL. de CarvalhoM. PintoS. PetriS. WeberM. RouleauG.A. SilaniV. CurtisC.J. BreenG. GlassJ.D. BrownR.H. LandersJ.E. ShawC.E. AndersenP.M. GroenE.J.N. van EsM.A. PasterkampR.J. FanD. GartonF.C. McRaeA.F. Davey SmithG. GauntT.R. EberleM.A. MillJ. McLaughlinR.L. HardimanO. KennaK.P. WrayN.R. TsaiE. RunzH. FrankeL. Al-ChalabiA. Van DammeP. van den BergL.H. VeldinkJ.H. SLALOM Consortium PARALS Consortium SLAGEN Consortium SLAP Consortium Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology.Nat. Genet.202153121636164834873335
    [Google Scholar]
  22. NakamuraR. MisawaK. TohnaiG. NakatochiM. FuruhashiS. AtsutaN. HayashiN. YokoiD. WatanabeH. WatanabeH. KatsunoM. IzumiY. KanaiK. HattoriN. MoritaM. TaniguchiA. KanoO. OdaM. ShibuyaK. KuwabaraS. SuzukiN. AokiM. OhtaY. YamashitaT. AbeK. HashimotoR. AibaI. OkamotoK. MizoguchiK. HasegawaK. OkadaY. IshiharaT. OnoderaO. NakashimaK. KajiR. KamataniY. IkegawaS. MomozawaY. KuboM. IshidaN. MinegishiN. NagasakiM. SobueG. A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis.Commun. Biol.20203152610.1038/s42003‑020‑01251‑232968195
    [Google Scholar]
  23. FerrariR. HernandezD.G. NallsM.A. RohrerJ.D. RamasamyA. KwokJ.B. Dobson-StoneC. BrooksW.S. SchofieldP.R. HallidayG.M. HodgesJ.R. PiguetO. BartleyL. ThompsonE. HaanE. HernándezI. RuizA. BoadaM. BorroniB. PadovaniA. CruchagaC. CairnsN.J. BenussiL. BinettiG. GhidoniR. ForloniG. GalimbertiD. FenoglioC. SerpenteM. ScarpiniE. ClarimónJ. LleóA. BlesaR. WaldöM.L. NilssonK. NilssonC. MackenzieI.R. HsiungG.Y. MannD.M. GrafmanJ. MorrisC.M. AttemsJ. GriffithsT.D. McKeithI.G. ThomasA.J. PietriniP. HueyE.D. WassermannE.M. BaborieA. JarosE. TierneyM.C. PastorP. RazquinC. Ortega-CuberoS. AlonsoE. PerneczkyR. Diehl-SchmidJ. AlexopoulosP. KurzA. RaineroI. RubinoE. PinessiL. RogaevaE. St George-HyslopP. RossiG. TagliaviniF. GiacconeG. RoweJ.B. SchlachetzkiJ.C. UphillJ. CollingeJ. MeadS. DanekA. Van DeerlinV.M. GrossmanM. TrojanowskiJ.Q. van der ZeeJ. DeschampsW. Van LangenhoveT. CrutsM. Van BroeckhovenC. CappaS.F. Le BerI. HannequinD. GolfierV. VercellettoM. BriceA. NacmiasB. SorbiS. BagnoliS. PiaceriI. NielsenJ.E. HjermindL.E. RiemenschneiderM. MayhausM. IbachB. GasparoniG. PichlerS. GuW. RossorM.N. FoxN.C. WarrenJ.D. SpillantiniM.G. MorrisH.R. RizzuP. HeutinkP. SnowdenJ.S. RollinsonS. RichardsonA. GerhardA. BruniA.C. MalettaR. FrangipaneF. CupidiC. BernardiL. AnfossiM. GalloM. ConidiM.E. SmirneN. RademakersR. BakerM. DicksonD.W. Graff-RadfordN.R. PetersenR.C. KnopmanD. JosephsK.A. BoeveB.F. ParisiJ.E. SeeleyW.W. MillerB.L. KarydasA.M. RosenH. van SwietenJ.C. DopperE.G. SeelaarH. PijnenburgY.A. ScheltensP. LogroscinoG. CapozzoR. NovelliV. PucaA.A. FranceschiM. PostiglioneA. MilanG. SorrentinoP. KristiansenM. ChiangH.H. GraffC. PasquierF. RollinA. DeramecourtV. LebertF. KapogiannisD. FerrucciL. Pickering-BrownS. SingletonA.B. HardyJ. MomeniP. Frontotemporal dementia and its subtypes: A genome-wide association study.Lancet Neurol.201413768669924943344
    [Google Scholar]
  24. McMillanC.T. ToledoJ.B. AvantsB.B. CookP.A. WoodE.M. SuhE. IrwinD.J. PowersJ. OlmC. ElmanL. McCluskeyL. SchellenbergG.D. LeeV.M. TrojanowskiJ.Q. Van DeerlinV.M. GrossmanM. Genetic and neuroanatomic associations in sporadic frontotemporal lobar degeneration.Neurobiol. Aging20143561473148224373676
    [Google Scholar]
  25. PottierC. KüçükaliF. BakerM. BatzlerA. JenkinsG.D. van BlitterswijkM. Deciphering distinct genetic risk factors for FTLD-TDP pathological subtypes via whole-genome sequencing.medRxiv2024
    [Google Scholar]
  26. FerrariR. WangY. VandrovcovaJ. GuelfiS. WiteolarA. KarchC.M. SchorkA.J. FanC.C. BrewerJ.B. MomeniP. SchellenbergG.D. DillonW.P. SugrueL.P. HessC.P. YokoyamaJ.S. BonhamL.W. RabinoviciG.D. MillerB.L. AndreassenO.A. DaleA.M. HardyJ. DesikanR.S. International FTD-Genomics Consortium (IFGC) International Parkinson’s Disease Genomics Consortium (IPDGC) International Genomics of Alzheimer’s Project (IGAP) Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer’s and Parkinson’s diseases.J. Neurol. Neurosurg. Psychiatry201788215216427899424
    [Google Scholar]
  27. GorbunovaV. SeluanovA. MitaP. McKerrowW. FenyöD. BoekeJ.D. LinkerS.B. GageF.H. KreilingJ.A. PetrashenA.P. WoodhamT.A. TaylorJ.R. HelfandS.L. SedivyJ.M. The role of retrotransposable elements in ageing and age-associated diseases.Nature20215967870435334349292
    [Google Scholar]
  28. HughesL.S. FröhlichA. PfaffA.L. BubbV.J. QuinnJ.P. KõksS. Exploring SVA insertion polymorphisms in shaping differential gene expressions in the central nervous system.Biomolecules202414335838540776
    [Google Scholar]
  29. MustafinR.N. The hypothesis of the origin of viruses from transposons.Mol. Gen. Microbiol. Virol.201836182190
    [Google Scholar]
  30. De CeccoM. ItoT. PetrashenA.P. EliasA.E. SkvirN.J. CriscioneS.W. CaligianaA. BrocculiG. AdneyE.M. BoekeJ.D. LeO. BeauséjourC. AmbatiJ. AmbatiK. SimonM. SeluanovA. GorbunovaV. SlagboomP.E. HelfandS.L. NerettiN. SedivyJ.M. L1 drives IFN in senescent cells and promotes age-associated inflammation.Nature20195667742737830728521
    [Google Scholar]
  31. ZhangK. MizumaH. ZhangX. TakahashiK. JinC. SongF. GaoY. KanayamaY. WuY. LiY. MaL. TianM. ZhangH. WatanabeY. PET imaging of neural activity, β-amyloid, and tau in normal brain aging.Eur. J. Nucl. Med. Mol. Imaging202148123859387133674892
    [Google Scholar]
  32. MikolaenkoI. PletnikovaO. KawasC.H. O’BrienR. ResnickS.M. CrainB. TroncosoJ.C. Alpha-synuclein lesions in normal aging, Parkinson disease, and Alzheimer disease: Evidence from the baltimore longitudinal study of aging (blsa).J. Neuropathol. Exp. Neurol.200564215616215751230
    [Google Scholar]
  33. NascimentoC. SuemotoC.K. RodriguezR.D. AlhoA.T. LeiteR.P. FarfelJ.M. PasqualucciC.A. Jacob-FilhoW. GrinbergL.T. Higher prevalence of TDP-43 proteinopathy in cognitively normal asians: A clinicopathological study on a multiethnic sample.Brain Pathol.201626217718526260327
    [Google Scholar]
  34. McCormackA.L. MakS.K. Di MonteD.A. Increased α-synuclein phosphorylation and nitration in the aging primate substantia nigra.Cell Death Dis.201235e31522647852
    [Google Scholar]
  35. SunW. SamimiH. GamezM. ZareH. FrostB. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies.Nat. Neurosci.20182181038104810.1038/s41593‑018‑0194‑130038280
    [Google Scholar]
  36. DembnyP. NewmanA.G. SinghM. HinzM. SzczepekM. KrügerC. AdalbertR. DzayeO. TrimbuchT. WallachT. KleinauG. DerkowK. RichardB.C. SchipkeC. ScheidereitC. StachelscheidH. GolenbockD. PetersO. ColemanM. HeppnerF.L. ScheererP. TarabykinV. RuprechtK. IzsvákZ. MayerJ. LehnardtS. Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors.JCI Insight202057e13109310.1172/jci.insight.13109332271161
    [Google Scholar]
  37. TamO.H. RozhkovN.V. ShawR. KimD. HubbardI. FennesseyS. ProppN. FagegaltierD. HarrisB.T. OstrowL.W. PhatnaniH. RavitsJ. DubnauJ. Gale HammellM. PhatnaniH. KwanJ. SareenD. BroachJ.R. SimmonsZ. Arcila-LondonoX. LeeE.B. Van DeerlinV.M. ShneiderN.A. FraenkelE. OstrowL.W. BaasF. ZaitlenN. BerryJ.D. MalaspinaA. FrattaP. CoxG.A. ThompsonL.M. FinkbeinerS. DardiotisE. MillerT.M. ChandranS. PalS. HornsteinE. MacGowanD.J. Heiman-PattersonT. HammellM.G. PatsopoulosN.A. ButovskyO. DubnauJ. NathA. BowserR. HarmsM. AronicaE. PossM. Phillips-CreminsJ. CraryJ. AtassiN. LangeD.J. AdamsD.J. StefanisL. GotkineM. BalohR. BabuS. RajT. PaganoniS. ShalemO. SmithC. ZhangB. HarrisB.T. NYGC ALS Consortium Postmortem cortex samples identify distinct molecular subtypes of ALS: Retrotransposon activation, oxidative stress, and activated glia.Cell Rep.201929511641177.e510.1016/j.celrep.2019.09.06631665631
    [Google Scholar]
  38. PhanK. HeY. FuY. DzamkoN. BhatiaS. GoldJ. RoweD. KeY.D. IttnerL.M. HodgesJ.R. PiguetO. KiernanM.C. HallidayG.M. KimW.S. Pathological manifestation of human endogenous retrovirus K in frontotemporal dementia.Commun. Med.2021116010.1038/s43856‑021‑00060‑w35083468
    [Google Scholar]
  39. EimerW.A. Vijaya KumarD.K. Navalpur ShanmugamN.K. RodriguezA.S. MitchellT. WashicoskyK.J. GyörgyB. BreakefieldX.O. TanziR.E. MoirR.D. Alzheimer’s disease-associated β-amyloid is rapidly seeded by herpesviridae to protect against brain infection.Neuron20189915663.e310.1016/j.neuron.2018.06.03030001512
    [Google Scholar]
  40. WhiteM.R. KandelR. TripathiS. CondonD. QiL. TaubenbergerJ. HartshornK.L. Alzheimer’s associated β-amyloid protein inhibits influenza A virus and modulates viral interactions with phagocytes.PLoS One201497e10136410.1371/journal.pone.010136424988208
    [Google Scholar]
  41. LinW.R. WozniakM.A. CooperR.J. WilcockG.K. ItzhakiR.F. Herpesviruses in brain and Alzheimer’s disease.J. Pathol.2002197339540210.1002/path.112712115887
    [Google Scholar]
  42. Powell-DohertyR.D. AbbottA.R.N. NelsonL.A. BertkeA.S. Amyloid-β and p-Tau anti-threat response to herpes simplex virus 1 infection in primary adult murine hippocampal neurons.J. Virol.2020949e01874e1932075924
    [Google Scholar]
  43. BortolottiD. GentiliV. RotolaA. CaselliE. RizzoR. HHV-6A infection induces amyloid-beta expression and activation of microglial cells.Alzheimers Res. Ther.201911110410.1186/s13195‑019‑0552‑631831060
    [Google Scholar]
  44. HateganA. BianchetM.A. SteinerJ. KarnaukhovaE. MasliahE. FieldsA. LeeM.H. DickensA.M. HaugheyN. DimitriadisE.K. NathA. HIV Tat protein and amyloid-β peptide form multifibrillar structures that cause neurotoxicity.Nat. Struct. Mol. Biol.201724437938628218748
    [Google Scholar]
  45. LiH. McLaurinK.A. MactutusC.F. LikinsB. HuangW. ChangS.L. BoozeR.M. Intraneuronal β-amyloid accumulation: Aging HIV-1 human and HIV-1 transgenic rat brain.Viruses2022146126835746739
    [Google Scholar]
  46. JangH. BoltzD.A. WebsterR.G. SmeyneR.J. Viral parkinsonism.Biochim. Biophys. Acta20091792771472118760350
    [Google Scholar]
  47. WangH. LiuX. TanC. ZhouW. JiangJ. PengW. ZhouX. MoL. ChenL. Bacterial, viral, and fungal infection-related risk of Parkinson’s disease: Meta-analysis of cohort and case-control studies.Brain Behav.2020103e0154932017453
    [Google Scholar]
  48. WijarnpreechaK. ChesdachaiS. JaruvongvanichV. UngprasertP. Hepatitis C virus infection and risk of Parkinson’s disease: A systematic review and meta-analysis.Eur. J. Gastroenterol. Hepatol.201830191329049127
    [Google Scholar]
  49. ChoiH.Y. MaiT.H. KimK.A. ChoH. KiM. Association between viral hepatitis infection and Parkinson’s disease: A population-based prospective study.J. Viral Hepat.202027111171117832558154
    [Google Scholar]
  50. RahmatiM. YonD.K. LeeS.W. SoysalP. KoyanagiA. JacobL. LiY. ParkJ.M. KimY.W. ShinJ.I. SmithL. New-onset neurodegenerative diseases as long-term sequelae of SARS-CoV-2 infection: A systematic review and meta-analysis.J. Med. Virol.2023957e2890937394783
    [Google Scholar]
  51. BeatmanE.L. MasseyA. ShivesK.D. BurrackK.S. ChamanianM. MorrisonT.E. BeckhamJ.D. Alpha-synuclein expression restricts RNA viral infections in the brain.J. Virol.20159062767278226719256
    [Google Scholar]
  52. MarreirosR. Müller-SchiffmannA. TrossbachS.V. PrikulisI. HänschS. Weidtkamp-PetersS. MoreiraA.R. SahuS. SolovievI. SelvarajahS. LingappaV.R. KorthC. Disruption of cellular proteostasis by H1N1 influenza A virus causes α-synuclein aggregation.Proc. Natl. Acad. Sci. USA2020117126741675132152117
    [Google Scholar]
  53. ParkE.G. HaH. LeeD.H. KimW.R. LeeY.J. BaeW.H. KimH.S. Genomic analyses of non-coding RNAs overlapping transposable elements and its implication to human diseases.Int. J. Mol. Sci.20222316895036012216
    [Google Scholar]
  54. BantleC.M. RochaS.M. FrenchC.T. PhillipsA.T. TranK. OlsonK.E. BassT.A. AboellailT. SmeyneR.J. TjalkensR.B. Astrocyte inflammatory signaling mediates α-synuclein aggregation and dopaminergic neuronal loss following viral encephalitis.Exp. Neurol.202134611384534454938
    [Google Scholar]
  55. SanterreM. ArjonaS.P. AllenC.N. CallenS. BuchS. SawayaB.E. HIV-1 Vpr protein impairs lysosome clearance causing SNCA/alpha-synuclein accumulation in neurons.Autophagy20211771768178233890542
    [Google Scholar]
  56. VojtechovaI. MachacekT. KristofikovaZ. StuchlikA. PetrasekT. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity.PLoS Pathog.20221811e101092936395147
    [Google Scholar]
  57. AlamM.M. YangD. LiX.Q. LiuJ. BackT.C. TrivettA. KarimB. BarbutD. ZasloffM. OppenheimJ.J. Alpha synuclein, the culprit in Parkinson disease, is required for normal immune function.Cell Rep.202238211009010.1016/j.celrep.2021.11009035021075
    [Google Scholar]
  58. BarbutD. StolzenbergE. ZasloffM. Gastrointestinal immunity and alpha-synuclein.J. Parkinsons Dis.20199s2S313S32210.3233/JPD‑19170231594249
    [Google Scholar]
  59. MonogueB. ChenY. SparksH. BehbehaniR. ChaiA. RajicA.J. MasseyA. Kleinschmidt-DemastersB.K. VermerenM. KunathT. BeckhamJ.D. Alpha-synuclein supports type 1 interferon signalling in neurons and brain tissue.Brain2022145103622363610.1093/brain/awac19235858675
    [Google Scholar]
  60. IravanpourF. FarrokhiM.R. JafariniaM. OliaeeR.T. The effect of SARS-CoV-2 on the development of Parkinson’s disease: The role of α-synuclein.Hum. Cell20233711810.1007/s13577‑023‑00988‑237735344
    [Google Scholar]
  61. RahicZ. BurattiE. CappelliS. Reviewing the potential links between viral infections and TDP-43 proteinopathies.Int. J. Mol. Sci.2023242158136675095
    [Google Scholar]
  62. RomanoG. KlimaR. FeiguinF. TDP-43 prevents retrotransposon activation in the Drosophila motor system through regulation of Dicer-2 activity.BMC Biol.20201818210.1186/s12915‑020‑00816‑132620127
    [Google Scholar]
  63. ShapiroJ.S. SchmidS. AguadoL.C. SabinL.R. YasunagaA. ShimJ.V. SachsD. CherryS. tenOeverB.R. Drosha as an interferon-independent antiviral factor.Proc. Natl. Acad. Sci. USA2014111197108711310.1073/pnas.131963511124778219
    [Google Scholar]
  64. SatoY. KondoH. SuzukiN. Argonaute-independent, Dicer-dependent antiviral defense against RNA viruses.Proc. Natl. Acad. Sci. USA202412125e232276512110.1073/pnas.232276512138865263
    [Google Scholar]
  65. SavanR. Alternative splicing in innate antiviral immunity.J. Interferon Cytokine Res.201838831731810.1089/jir.2018.29010.rsa30130152
    [Google Scholar]
  66. BergerM.M. KoppN. VitalC. RedlB. AymardM. LinaB. Detection and cellular localization of enterovirus RNA sequences in spinal cord of patients with ALS.Neurology2000541202510.1212/WNL.54.1.2010636120
    [Google Scholar]
  67. ZhangL. YangJ. LiH. ZhangZ. JiZ. ZhaoL. WeiW. Enterovirus D68 infection induces TDP-43 cleavage, aggregation, and neurotoxicity.J. Virol.2023974e00425-2310.1128/jvi.00425‑2337039659
    [Google Scholar]
  68. YangJ. LiY. WangS. LiH. ZhangL. ZhangH. WangP.H. ZhengX. YuX.F. WeiW. The SARS-CoV-2 main protease induces neurotoxic TDP-43 cleavage and aggregates.Signal Transduct. Target. Ther.20238110910.1038/s41392‑023‑01386‑836894543
    [Google Scholar]
  69. FungG. ShiJ. DengH. HouJ. WangC. HongA. ZhangJ. JiaW. LuoH. Cytoplasmic translocation, aggregation, and cleavage of TDP-43 by enteroviral proteases modulate viral pathogenesis.Cell Death Differ.201522122087209710.1038/cdd.2015.5825976304
    [Google Scholar]
  70. Cabrera-RodríguezR. Pérez-YanesS. Lorenzo-SánchezI. Estévez-HerreraJ. García-LuisJ. Trujillo-GonzálezR. Valenzuela-FernándezA. TDP-43 controls HIV-1 viral production and virus infectiveness.Int. J. Mol. Sci.2023248765810.3390/ijms2408765837108826
    [Google Scholar]
  71. DupontM. KrischunsT. GianettoQ.G. PaisantS. BonazzaS. BraultJ.B. DouchéT. ArragainB. Florez-PradaA. Perez-PerriJ.I. HentzeM.W. CusackS. MatondoM. IselC. CourtneyD.G. NaffakhN. The RBPome of influenza A virus NP-mRNA reveals a role for TDP-43 in viral replication.Nucleic Acids Res.202452127188721010.1093/nar/gkae29138686810
    [Google Scholar]
  72. Bello-MoralesR. AndreuS. RipaI. López-GuerreroJ.A. HSV-1 and endogenous retroviruses as risk factors in demyelination.Int. J. Mol. Sci.20212211573834072259
    [Google Scholar]
  73. LiuH. BergantV. FrishmanG. RueppA. PichlmairA. VincendeauM. FrishmanD. InfluenzaA. Influenza a virus infection reactivates human endogenous retroviruses associated with modulation of antiviral immunity.Viruses2022147159135891571
    [Google Scholar]
  74. DopkinsN. FeiT. MichaelS. LiottaN. GuoK. MickensK.L. BarrettB.S. BendallM.L. DillonS.M. WilsonC.C. SantiagoM.L. NixonD.F. Endogenous retroelement expression in the gut microenvironment of people living with HIV-1.EBioMedicine202410310513338677181
    [Google Scholar]
  75. GrundmanJ. SpencerB. SarsozaF. RissmanR.A. Transcriptome analyses reveal tau isoform-driven changes in transposable element and gene expression.PLoS One2021169e025161134587152
    [Google Scholar]
  76. MacciardiF. Giulia BacaliniM. MiramontesR. BoattiniA. TaccioliC. ModeniniG. MalhasR. AnderlucciL. GusevY. GrossT.J. PadillaR.M. FiandacaM.S. HeadE. GuffantiG. FederoffH.J. MapstoneM. A retrotransposon storm marks clinical phenoconversion to late-onset Alzheimer’s disease.Geroscience20224431525155035585302
    [Google Scholar]
  77. GuoC. JeongH.H. HsiehY.C. KleinH.U. BennettD.A. De JagerP.L. LiuZ. ShulmanJ.M. Tau activates transposable elements in alzheimer’s disease.Cell Rep.201823102874288029874575
    [Google Scholar]
  78. ChengY. SavilleL. GollenB. IsaacC. BelayA. MehlaJ. PatelK. ThakorN. MohajeraniM.H. ZovoilisA. Increased processing of SINE B2 ncRNAs unveils a novel type of transcriptome deregulation in amyloid beta neuropathology.eLife20209e6126533191914
    [Google Scholar]
  79. WangM. WangL. LiuH. ChenJ. LiuD. Transcriptome analyses implicate endogenous retroviruses involved in the host antiviral immune system through the interferon pathway.Virol. Sin.20213661315132634009516
    [Google Scholar]
  80. DechaumesA. BertinA. SaneF. LevetS. VargheseJ. CharvetB. GmyrV. Kerr-ConteJ. PierquinJ. ArunkumarG. PattouF. PerronH. HoberD. Coxsackievirus-B4 infection can induce the expression of human endogenous retrovirus W in primary cells.Microorganisms202089133532883004
    [Google Scholar]
  81. MustafinR.N. KazantsevaA.V. KovasYuV. KhusnutdinovaE.K. Role of retroelements in the development of COVID-19 neurological consequences.Russ. Open Med. J.202211313
    [Google Scholar]
  82. LiuS. HeumüllerS.E. HossingerA. MüllerS.A. BuravlovaO. LichtenthalerS.F. DennerP. VorbergI.M. Reactivated endogenous retroviruses promote protein aggregate spreading.Nat. Commun.2023141503437596282
    [Google Scholar]
  83. LiW. JinY. PrazakL. HammellM. DubnauJ. Transposable elements in TDP-43-mediated neurodegenerative disorders.PLoS One201279e4409922957047
    [Google Scholar]
  84. LiuE.Y. RussJ. CaliC.P. PhanJ.M. Amlie-WolfA. LeeE.B. Loss of nuclear TDP-43 is associated with decondensation of line retrotransposons.Cell Rep.201927514091421.e631042469
    [Google Scholar]
  85. SavageA.L. LopezA.I. IacoangeliA. BubbV.J. SmithB. TroakesC. AlahmadyN. KoksS. SchumannG.G. Al-ChalabiA. QuinnJ.P. Frequency and methylation status of selected retrotransposition competent L1 loci in amyotrophic lateral sclerosis.Mol. Brain202013115433187550
    [Google Scholar]
  86. DunkerW. YeX. ZhaoY. LiuL. RichardsonA. KarijolichJ. TDP-43 prevents endogenous RNAs from triggering a lethal RIG-I-dependent interferon response.Cell Rep.202135210897633852834
    [Google Scholar]
  87. PereiraG.C. SanchezL. SchaughencyP.M. Rubio-RoldánA. ChoiJ.A. PlanetE. BatraR. TurelliP. TronoD. OstrowL.W. RavitsJ. KazazianH.H. WheelanS.J. HerasS.R. MayerJ. García-PérezJ.L. GoodierJ.L. Properties of LINE-1 proteins and repeat element expression in the context of amyotrophic lateral sclerosis.Mob. DNA201893530564290
    [Google Scholar]
  88. LiT.D. MuranoK. KitanoT. GuoY. NegishiL. SiomiH. TDP-43 safeguards the embryo genome from L1 retrotransposition.Sci. Adv.2022847eabq380636417507
    [Google Scholar]
  89. GoldJ. RoweD.B. KiernanM.C. VucicS. MathersS. van EijkR.P.A. NathA. Garcia MontojoM. NoratoG. SantamariaU.A. RogersM.L. MalaspinaA. LombardiV. MehtaP.R. WestenengH.J. van den BergL.H. Al-ChalabiA. Safety and tolerability of Triumeq in amyotrophic lateral sclerosis: The Lighthouse trial.Amyotroph. Lateral Scler. Frontotemporal Degener.2019207-859560431284774
    [Google Scholar]
  90. LiW. PandyaD. PasternackN. Garcia-MontojoM. HendersonL. KozakC.A. NathA. Retroviral elements in pathophysiology and as therapeutic targets for amyotrophic lateral sclerosis.Neurotherapeutics20221941085110135415778
    [Google Scholar]
  91. LoyolaA.C. ZhangL. ShangR. DuttaP. LiJ. LiW.X. Identification of methotrexate as a heterochromatin-promoting drug.Sci. Rep.2019911167331406262
    [Google Scholar]
  92. BalmusG. LarrieuD. BarrosA.C. CollinsC. AbrudanM. DemirM. GeislerN.J. LelliottC.J. WhiteJ.K. KarpN.A. AtkinsonJ. KirtonA. JacobsenM. CliftD. RodriguezR. ShannonC. SandersonM. GatesA. DenchJ. VancollieV. McCarthyC. PearsonS. CambridgeE. IsherwoodC. WilsonH. GrauE. GalliA. HooksY.E. TudorC.L. GreenA.L. KussyF.L. TuckE.J. SiragherE.J. McLarenR.S.B. SwiatkowskaA. CaetanoS.S. MazzeoC.I. DabrowskaM.H. MaguireS.A. LafontD.T. AnthonyL.F.E. SumowskiM.T. BussellJ. SinclairC. BrownE. DoeB. Wardle-JonesH. GriggsN. WoodsM. KundiH. McConnellG. DoranJ. GriffithsM.N.D. KippC. HolroydS.A. GannonD.J. AlcantaraR. Ramirez-SolisR. BottomleyJ. IngleC. RossV. BarrettD. SethiD. GleesonD. BurvillJ. PlatteR. RyderE. SinsE. MiklejewskaE. Von SchillerD. DuddyG. UrbanovaJ. BoroviakK. ImranM. ReddyS.K. AdamsD.J. JacksonS.P. Sanger Mouse Genetics Project Targeting of NAT10 enhances healthspan in a mouse model of human accelerated aging syndrome.Nat. Commun.201891170010.1038/s41467‑018‑03770‑329703891
    [Google Scholar]
  93. SteinerJ.P. BachaniM. MalikN. DeMarinoC. LiW. SampsonK. LeeM.H. KowalakJ. BhaskarM. Doucet-O’HareT. Garcia-MontojoM. CowenM. SmithB. ReomaL.B. MedinaJ. BrunelJ. PierquinJ. CharvetB. PerronH. NathA. Human endogenous retrovirus K envelope in spinal fluid of amyotrophic lateral sclerosis is toxic.Ann. Neurol.202292454556110.1002/ana.2645235801347
    [Google Scholar]
  94. CastroFL BrustoliniOJB GeddesVEV SouzaJPBM Alves-LeonSV AguiarRS Modulation of HERV expression by four different encephalitic arboviruses during infection of human primary astrocytes.Viruses202214112505
    [Google Scholar]
  95. TovoP.A. GarazzinoS. DapràV. AlliaudiC. SilvestroE. CalviC. MontanariP. GallianoI. BergalloM. Chronic HCV infection is associated with overexpression of human endogenous retroviruses that persists after drug-induced viral clearance.Int. J. Mol. Sci.20202111398010.3390/ijms2111398032492928
    [Google Scholar]
  96. HondaT. RahmanM.A. Profiling of line-1-related genes in hepatocellular carcinoma.Int. J. Mol. Sci.201920364510.3390/ijms2003064530717368
    [Google Scholar]
  97. RoyN. HaqI. NgoJ.C. BennettD.A. TeichA.F. De JagerP.L. OlahM. SherF. Elevated expression of the retrotransposon LINE-1 drives Alzheimer’s disease-associated microglial dysfunction.Acta Neuropathol.202414817510.1007/s00401‑024‑02835‑639604588
    [Google Scholar]
  98. FlamierA. El HajjarJ. AdjayeJ. FernandesK.J. AbdouhM. BernierG. Modeling late-onset sporadic alzheimer’s disease through BMI1 deficiency.Cell Rep.20182392653266610.1016/j.celrep.2018.04.09729847796
    [Google Scholar]
  99. El HajjarJ. ChatooW. HannaR. NkanzaP. TétreaultN. TseY.C. WongT.P. AbdouhM. BernierG. Heterochromatic genome instability and neurodegeneration sharing similarities with Alzheimer’s disease in old Bmi1+/− mice.Sci. Rep.20199159410.1038/s41598‑018‑37444‑330679733
    [Google Scholar]
  100. HannaR. FlamierA. BarabinoA. BernierG. G-quadruplexes originating from evolutionary conserved L1 elements interfere with neuronal gene expression in Alzheimer’s disease.Nat. Commun.2021121182810.1038/s41467‑021‑22129‑933758195
    [Google Scholar]
  101. RamirezP. ZunigaG. SunW. BeckmannA. OchoaE. DeVosS.L. HymanB. ChiuG. RoyE.R. CaoW. OrrM. Buggia-PrevotV. RayW.J. FrostB. Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system.Prog. Neurobiol.202220810218110.1016/j.pneurobio.2021.10218134670118
    [Google Scholar]
  102. ThomasR. ConnollyK.J. BrekkO.R. HinrichA.J. HastingsM.L. IsacsonO. HallettP.J. Viral-like TLR3 induction of cytokine networks and α-synuclein are reduced by complement C3 blockade in mouse brain.Sci. Rep.20231311516437704739
    [Google Scholar]
  103. MustafinR.N. KhusnutdinovaE.K. Involvement of transposable elements in neurogenesis.Vavilovskii Zhurnal Genet. Selektsii202024220921833659801
    [Google Scholar]
  104. MustafinR.N. The relationship of retroelements with microRNAs in memory formation.Opera Med. Physiol.202310487102
    [Google Scholar]
  105. ParkS.J. JinU. ParkS.M. Interaction between coxsackievirus B3 infection and α-synuclein in models of Parkinson’s disease.PLoS Pathog.20211710e101001834695168
    [Google Scholar]
  106. WallaceA.D. WendtG.A. BarcellosL.F. de SmithA.J. WalshK.M. MetayerC. CostelloJ.F. WiemelsJ.L. FrancisS.S. To ERV is human: A phenotype-wide scan linking polymorphic human endogenous retrovirus-K insertions to complex phenotypes.Front. Genet.2018929830154825
    [Google Scholar]
  107. PfaffA.L. BubbV.J. QuinnJ.P. KoksS. An increased burden of highly active retrotransposition competent L1s is associated with parkinson’s disease risk and progression in the PPMI cohort.Int. J. Mol. Sci.20202118656232911699
    [Google Scholar]
  108. KõksS. PfaffA.L. SingletonL.M. BubbV.J. QuinnJ.P. Non-reference genome transposable elements (TEs) have a significant impact on the progression of the Parkinson’s disease.Exp. Biol. Med.2022247181680169036000172
    [Google Scholar]
  109. PfaffA.L. BubbV.J. QuinnJ.P. KoksS. Reference SVA insertion polymorphisms are associated with Parkinson’s disease progression and differential gene expression.NPJ Parkinsons Dis.2021714434035310
    [Google Scholar]
  110. JohnsonR. GuigóR. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs.RNA201420795997624850885
    [Google Scholar]
  111. LiK. WangZ. lncRNA NEAT1: Key player in neurodegenerative diseases.Ageing Res. Rev.20238610187810.1016/j.arr.2023.10187836738893
    [Google Scholar]
  112. SunQ. ZhangY. WangS. YangF. CaiH. XingY. ZhouL. ChenS. WangY. LncRNA HOTAIR promotes α-synuclein aggregation and apoptosis of SH-SY5Y cells by regulating miR-221-3p in Parkinson’s disease.Exp. Cell Res.2022417111313210.1016/j.yexcr.2022.11313235398161
    [Google Scholar]
  113. ChenY. LianY. MaY. WuC. ZhengY. XieN. LncRNA SNHG1 promotes α-synuclein aggregation and toxicity by targeting miR-15b-5p to activate SIAH1 in human neuroblastoma SH-SY5Y cells.Neurotoxicology20186821222110.1016/j.neuro.2017.12.00129217406
    [Google Scholar]
  114. NishimotoY. NakagawaS. OkanoH. NEAT1 lncRNA and amyotrophic lateral sclerosis.Neurochem. Int.202115010517510.1016/j.neuint.2021.10517534481908
    [Google Scholar]
  115. LimanaqiF. ZecchiniS. SaulleI. StrizziS. VanettiC. GarzianoM. CappellettiG. ParolinD. CacciaS. TrabattoniD. FeniziaC. ClericiM. BiasinM. Alpha-synuclein dynamics bridge Type-I Interferon response and SARS-CoV-2 replication in peripheral cells.Biol. Res.2024571210.1186/s40659‑023‑00482‑x38191441
    [Google Scholar]
  116. HeidenD.L. MonogueB. AliM.D.H. BeckhamJ.D. A functional role for alpha-synuclein in neuroimmune responses.J. Neuroimmunol.202337657804710.1016/j.jneuroim.2023.57804736791583
    [Google Scholar]
  117. Peze-HeidsieckE. BonnifetT. ZnaidiR. Ravel-GodreuilC. Massiani-BeaudoinO. JoshiR.L. FuchsJ. Retrotransposons as a source of DNA damage in neurodegeneration.Front. Aging Neurosci.20221378689710.3389/fnagi.2021.78689735058771
    [Google Scholar]
  118. Blaudin de ThéF.X. RekaikH. Peze-HeidsieckE. Massiani-BeaudoinO. JoshiR.L. FuchsJ. ProchiantzA. Engrailed homeoprotein blocks degeneration in adult dopaminergic neurons through LINE‐1 repression.EMBO J.20183715e9737410.15252/embj.20179737429941661
    [Google Scholar]
  119. Ravel-GodreuilC. Massiani-BeaudoinO. MaillyP. ProchiantzA. JoshiR.L. FuchsJ. Perturbed DNA methylation by Gadd45b induces chromatin disorganization, DNA strand breaks and dopaminergic neuron death.iScience202124710275610.1016/j.isci.2021.10275634278264
    [Google Scholar]
  120. BaekenM.W. MoosmannB. HajievaP. Retrotransposon activation by distressed mitochondria in neurons.Biochem. Biophys. Res. Commun.2020525357057510.1016/j.bbrc.2020.02.10632115149
    [Google Scholar]
  121. GordevičiusJ. GoralskiT. BergsmaA. ParhamA. KuhnE. MeyerdirkL. Human endogenous retrovirus expression is dynamically regulated in Parkinson’s disease.bioRxiv2023
    [Google Scholar]
  122. SavageA.L. IacoangeliA. SchumannG.G. Rubio-RoldanA. Garcia-PerezJ.L. Al KhleifatA. KoksS. BubbV.J. Al-ChalabiA. QuinnJ.P. Characterisation of retrotransposon insertion polymorphisms in whole genome sequencing data from individuals with amyotrophic lateral sclerosis.Gene202284314679910.1016/j.gene.2022.14679935963498
    [Google Scholar]
  123. HadlockK. MillerR. JinX. YuS. ReisJ. MassJ. Elevated rates of antibody reactivity to HML-2/Herv-K but not other endogenous retroviruses in ALS.Neurology.20045263
    [Google Scholar]
  124. SimulaE.R. ArruG. ZarboI.R. SollaP. SechiL.A. TDP-43 and HERV-K envelope-specific immunogenic epitopes are recognized in ALS patients.Viruses20211311230110.3390/v1311230134835107
    [Google Scholar]
  125. LiW. LeeM.H. HendersonL. TyagiR. BachaniM. SteinerJ. CampanacE. HoffmanD.A. von GeldernG. JohnsonK. MaricD. MorrisH.D. LentzM. PakK. MammenA. OstrowL. RothsteinJ. NathA. Human endogenous retrovirus-K contributes to motor neuron disease.Sci. Transl. Med.20157307307ra15310.1126/scitranslmed.aac820126424568
    [Google Scholar]
  126. Moreno-MartinezL. Macías-RedondoS. StrunkM. Guillén-AntoniniM.I. LunettaC. TarlariniC. PencoS. CalvoA.C. OstaR. SchoorlemmerJ. New insights into endogenous retrovirus-K transcripts in amyotrophic lateral sclerosis.Int. J. Mol. Sci.2024253154910.3390/ijms2503154938338823
    [Google Scholar]
  127. ChangY.H. DubnauJ. The gypsy endogenous retrovirus drives non-cell-autonomous propagation in a drosophila TDP-43 model of neurodegeneration.Curr. Biol.2019291931353152.e410.1016/j.cub.2019.07.07131495585
    [Google Scholar]
  128. ChangY.H. DubnauJ. Endogenous retroviruses and TDP-43 proteinopathy form a sustaining feedback driving intercellular spread of Drosophila neurodegeneration.Nat. Commun.202314196610.1038/s41467‑023‑36649‑z36810738
    [Google Scholar]
  129. HonsonD.D. MacfarlanT.S. A lncRNA-like role for LINE1s in development.Dev. Cell201846213213410.1016/j.devcel.2018.06.02230016617
    [Google Scholar]
  130. LuX. SachsF. RamsayL. JacquesP.É. GökeJ. BourqueG. NgH.H. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity.Nat. Struct. Mol. Biol.201421442342510.1038/nsmb.279924681886
    [Google Scholar]
  131. CornecA. PoirierE.Z. Interplay between RNA interference and transposable elements in mammals.Front. Immunol.202314121208610.3389/fimmu.2023.121208637475864
    [Google Scholar]
  132. Gázquez-GutiérrezA. WitteveldtJ. HerasS.R. MaciasS. Sensing of transposable elements by the antiviral innate immune system.RNA202127773575210.1261/rna.078721.12133888553
    [Google Scholar]
  133. ElbarbaryR.A. MaquatL.E. Distinct mechanisms obviate the potentially toxic effects of inverted-repeat Alu elements on cellular RNA metabolism.Nat. Struct. Mol. Biol.201724649649828586325
    [Google Scholar]
  134. GhoshA. TysonT. GeorgeS. HildebrandtE.N. SteinerJ.A. MadajZ. SchulzE. MachielaE. McDonaldW.G. Escobar GalvisM.L. KordowerJ.H. Van RaamsdonkJ.M. ColcaJ.R. BrundinP. Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson’s disease.Sci. Transl. Med.20168368368ra17427928028
    [Google Scholar]
  135. AbrusánG. Somatic transposition in the brain has the potential to influence the biosynthesis of metabolites involved in Parkinson’s disease and schizophrenia.Biol. Direct201274123176288
    [Google Scholar]
  136. LarsenP.A. LutzM.W. HunnicuttK.E. MihovilovicM. SaundersA.M. YoderA.D. RosesA.D. The Alu neurodegeneration hypothesis: A primate-specific mechanism for neuronal transcription noise, mitochondrial dysfunction, and manifestation of neurodegenerative disease.Alzheimers Dement.201713782883828242298
    [Google Scholar]
  137. KulskiJ.K. SuzukiS. ShiinaT. PfaffA.L. KõksS. Regulatory SVA retrotransposons and classical HLA genotyped-transcripts associated with Parkinson’s disease.Front. Immunol.202415134903038590523
    [Google Scholar]
  138. PascarellaG. HonC.C. HashimotoK. BuschA. LuginbühlJ. ParrC. Hin YipW. AbeK. KratzA. BonettiA. AgostiniF. SeverinJ. MurayamaS. SuzukiY. GustincichS. FrithM. CarninciP. Recombination of repeat elements generates somatic complexity in human genomes.Cell20221851630253040.e635882231
    [Google Scholar]
  139. GruchotJ. HerreroF. Weber-StadlbauerU. MeyerU. KüryP. Interplay between activation of endogenous retroviruses and inflammation as common pathogenic mechanism in neurological and psychiatric disorders.Brain Behav. Immun.202310724225236270439
    [Google Scholar]
  140. MangheraM. Ferguson-ParryJ. DouvilleR.N. TDP-43 regulates endogenous retrovirus-K viral protein accumulation.Neurobiol. Dis.20169422623627370226
    [Google Scholar]
  141. CurzioD.D. GurmM. TurnbullM. NadeauM.J. MeekB. RempelJ.D. FineblitS. JonassonM. HebertS. Ferguson-ParryJ. DouvilleR.N. Pro-inflammatory signaling upregulates a neurotoxic conotoxin-like protein encrypted within human endogenous retrovirus-K.Cells202097158432629888
    [Google Scholar]
  142. ProukakisC. Somatic mutations in neurodegeneration: An update.Neurobiol. Dis.202014410502132712267
    [Google Scholar]
  143. Pérez-PérezS. Domínguez-MozoM.I. García-MartínezM.Á. Ballester-GonzálezR. Nieto-GañánI. ArroyoR. Alvarez-LafuenteR. Epstein-barr virus load correlates with multiple sclerosis-associated retrovirus envelope expression.Biomedicines202210238735203596
    [Google Scholar]
  144. HartungH.P. DerfussT. CreeB.A. SormaniM.P. SelmajK. StuttersJ. PradosF. MacManusD. SchnebleH.M. LambertE. PorchetH. GlanzmanR. WarneD. CurtinF. KornmannG. BuffetB. KremerD. KüryP. LeppertD. RückleT. BarkhofF. Efficacy and safety of temelimab in multiple sclerosis: Results of a randomized phase 2b and extension study.Mult. Scler.202228342944034240656
    [Google Scholar]
  145. ChalertpetK. Pin-OnP. AporntewanC. PatchsungM. IngrungruanglertP. IsrasenaN. MutiranguraA. Argonaute 4 as an effector protein in RNA-directed DNA methylation in human cells.Front. Genet.20191064531333722
    [Google Scholar]
  146. SaucierD. WajnbergG. RoyJ. BeauregardA.P. ChackoS. CrapouletN. FournierS. GhoshA. LewisS.M. MarreroA. O’ConnellC. OuelletteR.J. MorinP.J. Identification of a circulating miRNA signature in extracellular vesicles collected from amyotrophic lateral sclerosis patients.Brain Res.2019170810010830552897
    [Google Scholar]
  147. MartinezB. PeplowP.V. MicroRNA biomarkers in frontotemporal dementia and to distinguish from Alzheimer’s disease and amyotrophic lateral sclerosis.Neural Regen. Res.20221771412142234916411
    [Google Scholar]
  148. MatamalaJ.M. Arias-CarrascoR. SanchezC. UhrigM. BargstedL. MatusS. Maracaja-CoutinhoV. AbarzuaS. van ZundertB. VerdugoR. ManqueP. HetzC. Genome-wide circulating microRNA expression profiling reveals potential biomarkers for amyotrophic lateral sclerosis.Neurobiol. Aging20186412313829458840
    [Google Scholar]
  149. MajumderP. ChandaK. DasD. SinghB.K. ChakrabartiP. JanaN.R. MukhopadhyayD. A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer’s Disease and Type 2 Diabetes.Biochem. J.2021478173297331710.1042/BCJ2021017534409981
    [Google Scholar]
  150. MaY.M. ZhaoL. Mechanism and therapeutic prospect of miRNAs in neurodegenerative diseases.Behav. Neurol.2023202312410.1155/2023/853729638058356
    [Google Scholar]
  151. LiguoriM. NuzzielloN. IntronaA. ConsiglioA. LicciulliF. D’ErricoE. ScarafinoA. DistasoE. SimoneI.L. Dysregulation of MicroRNAs and target genes networks in peripheral blood of patients with sporadic amyotrophic lateral sclerosis.Front. Mol. Neurosci.20181128810.3389/fnmol.2018.0028830210287
    [Google Scholar]
  152. MartinsM. RosaA. GuedesL.C. FonsecaB.V. GotovacK. ViolanteS. MestreT. CoelhoM. RosaM.M. MartinE.R. VanceJ.M. OuteiroT.F. WangL. BoroveckiF. FerreiraJ.J. OliveiraS.A. Convergence of miRNA expression profiling, α-synuclein interacton and GWAS in Parkinson’s disease.PLoS One2011610e2544310.1371/journal.pone.002544322003392
    [Google Scholar]
  153. PoundersJ. HillE.J. HooperD. ZhangX. BiesiadaJ. KuhnellD. GreenlandH.L. EsfandiariL. TimmermanE. FosterF. WangC. WalshK.B. ShatzR. WooD. MedvedovicM. LangevinS. SawyerR.P. MicroRNA expression within neuronal-derived small extracellular vesicles in frontotemporal degeneration.Medicine202210140e3085410.1097/MD.000000000003085436221381
    [Google Scholar]
  154. HelferichA.M. BrockmannS.J. ReindersJ. DeshpandeD. HolzmannK. BrennerD. AndersenP.M. PetriS. ThalD.R. MichaelisJ. OttoM. JustS. LudolphA.C. DanzerK.M. FreischmidtA. WeishauptJ.H. Dysregulation of a novel miR-1825/TBCB/TUBA4A pathway in sporadic and familial ALS.Cell. Mol. Life Sci.201875234301431910.1007/s00018‑018‑2873‑130030593
    [Google Scholar]
  155. HawleyZ.C.E. Campos-MeloD. StrongM.J. Evidence of a negative feedback network between TDP-43 and miRNAs dependent on TDP-43 nuclear localization.J. Mol. Biol.20204322416669510.1016/j.jmb.2020.10.02933137311
    [Google Scholar]
  156. QinZ. HanX. RanJ. GuoS. LvL. Exercise-mediated alteration of miR-192-5p is associated with cognitive improvement in alzheimer’s disease.Neuroimmunomodulation2022291364310.1159/00051692834256371
    [Google Scholar]
  157. TangC.Z. YangJ.T. LiuQ.H. WangY.R. WangW.S. Up‐regulated miR‐192‐5p expression rescues cognitive impairment and restores neural function in mice with depression via the Fbln2 ‐mediated TGF‐β1 signaling pathway.FASEB J.201933160661810.1096/fj.201800210RR30118321
    [Google Scholar]
  158. DongH. LiJ. HuangL. ChenX. LiD. WangT. HuC. XuJ. ZhangC. ZenK. XiaoS. YanQ. WangC. ZhangC.Y. Serum MicroRNA profiles serve as novel biomarkers for the diagnosis of alzheimer’s disease.Dis. Markers2015201511110.1155/2015/62565926078483
    [Google Scholar]
  159. ParsonsM.J. GrimmC. Paya-CanoJ.L. FernandesC. LiuL. PhilipV.M. CheslerE.J. NietfeldW. LehrachH. SchalkwykL.C. Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD) recombinant inbred mouse strains.BMC Genomics201213147610.1186/1471‑2164‑13‑47622974136
    [Google Scholar]
  160. SoreqL. SalomonisN. BronsteinM. GreenbergD.S. IsraelZ. BergmanH. SoreqH. Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes.Front. Mol. Neurosci.201361010.3389/fnmol.2013.0001023717260
    [Google Scholar]
  161. JingyangZ. JinhuiC. LuX. WeizhongY. YunjiuL. HaihongW. WuyuanZ. Mir-320b inhibits pancreatic cancer cell proliferation by targeting FOXM1.Curr. Pharm. Biotechnol.20212281106111310.2174/18734316MTEwsMDIDy32942974
    [Google Scholar]
  162. ChatterjeeP. RoyD. Comparative analysis of RNA-Seq data from brain and blood samples of Parkinson’s disease.Biochem. Biophys. Res. Commun.2017484355756410.1016/j.bbrc.2017.01.12128131841
    [Google Scholar]
  163. YufengZ. MingQ. DandanW. MiR-320d inhibits progression of EGFR-positive colorectal cancer by targeting TUSC3.Front. Genet.20211273855910.3389/fgene.2021.73855934733314
    [Google Scholar]
  164. SatohJ. KinoY. NiidaS. MicroRNA-Seq data analysis pipeline to identify blood biomarkers for alzheimer’s disease from public data.Biomark. Insights201510BMI.S2513210.4137/BMI.S2513225922570
    [Google Scholar]
  165. SalemiM. MarcheseG. LanzaG. CosentinoF.I.I. SalluzzoM.G. SchillaciF.A. VentolaG.M. CordellaA. RavoM. FerriR. Role and dysregulation of miRNA in patients with Parkinson’s disease.Int. J. Mol. Sci.202224171210.3390/ijms2401071236614153
    [Google Scholar]
  166. SunZ. ChenJ. ZhangJ. JiR. XuW. ZhangX. QianH. The role and mechanism of miR-374 regulating the malignant transformation of mesenchymal stem cells.Am. J. Transl. Res.201810103224323230416663
    [Google Scholar]
  167. WallerR. GoodallE.F. MiloM. Cooper-KnockJ. Da CostaM. HobsonE. KazokaM. WollffH. HeathP.R. ShawP.J. KirbyJ. Serum miRNAs miR-206, 143-3p and 374b-5p as potential biomarkers for amyotrophic lateral sclerosis (ALS).Neurobiol. Aging20175512313110.1016/j.neurobiolaging.2017.03.02728454844
    [Google Scholar]
  168. ChengJ. HoW.K. WuB.T. LiuH.P. LinW.Y. miRNA profiling as a complementary diagnostic tool for amyotrophic lateral sclerosis.Sci. Rep.20231311380510.1038/s41598‑023‑40879‑y37612427
    [Google Scholar]
  169. HenriquesA.D. Machado-SilvaW. LeiteR.E.P. SuemotoC.K. LeiteK.R.M. SrougiM. PereiraA.C. Jacob-FilhoW. NóbregaO.T. Brazilian Aging Brain Study Group Genome-wide profiling and predicted significance of post-mortem brain microRNA in Alzheimer’s disease.Mech. Ageing Dev.202019111135210.1016/j.mad.2020.11135232920076
    [Google Scholar]
  170. BarboM. Ravnik-GlavačM. Extracellular vesicles as potential biomarkers in amyotrophic lateral sclerosis.Genes202314232510.3390/genes1402032536833252
    [Google Scholar]
  171. Casado GamaH. AmorósM.A. Andrade de AraújoM. ShaC.M. VieiraM.P.S. TorresR.G.D. SouzaG.F. JunkesJ.A. DokholyanN.V. Leite Góes GitaíD. DuzzioniM. Systematic review and meta-analysis of dysregulated microRNAs derived from liquid biopsies as biomarkers for amyotrophic lateral sclerosis.Noncoding RNA Res.20249252353510.1016/j.ncrna.2024.02.00638511059
    [Google Scholar]
  172. PatelR.B. BajpaiA.K. ThirumuruganK. Differential expression of MicroRNAs and predicted drug target in amyotrophic lateral sclerosis.J. Mol. Neurosci.202373637539010.1007/s12031‑023‑02124‑z37249795
    [Google Scholar]
  173. HuL. ZhangR. YuanQ. GaoY. YangM.Q. ZhangC. HuangJ. SunY. YangW. YangJ.Y. MinZ. ChengJ. DengY. HuX. The emerging role of microRNA-4487/6845-3p in Alzheimer’s disease pathologies is induced by Aβ25–35 triggered in SH-SY5Y cell.BMC Syst. Biol.201812S7119(Suppl. 7)10.1186/s12918‑018‑0633‑330547775
    [Google Scholar]
  174. LugliG. CohenA.M. BennettD.A. ShahR.C. FieldsC.J. HernandezA.G. SmalheiserN.R. Plasma exosomal miRNAs in persons with and without alzheimer disease: Altered expression and prospects for biomarkers.PLoS One20151010e013923310.1371/journal.pone.013923326426747
    [Google Scholar]
  175. KernF. FehlmannT. ViolichI. AlsopE. HutchinsE. KahramanM. GrammesN.L. GuimarãesP. BackesC. PostonK.L. CaseyB. BallingR. GeffersL. KrügerR. GalaskoD. MollenhauerB. MeeseE. Wyss-CorayT. CraigD.W. Van Keuren-JensenK. KellerA. Deep sequencing of sncRNAs reveals hallmarks and regulatory modules of the transcriptome during Parkinson’s disease progression.Nat. Aging20211330932210.1038/s43587‑021‑00042‑637118411
    [Google Scholar]
  176. BianW. LiY. ZhuH. GaoS. NiuR. WangC. ZhangH. QinX. LiS. miR‐493 by regulating of c‐Jun targets Wnt5a/PD‐L1‐inducing esophageal cancer cell development.Thorac. Cancer202112101579158810.1111/1759‑7714.1395033793074
    [Google Scholar]
  177. WangT. ZhaoW. LiuY. YangD. HeG. WangZ. MicroRNA-511-3p regulates Aβ1–40 induced decreased cell viability and serves as a candidate biomarker in Alzheimer’s disease.Exp. Gerontol.202317811219510.1016/j.exger.2023.11219537121335
    [Google Scholar]
  178. Cosín-TomásM. AntonellA. LladóA. AlcoleaD. ForteaJ. EzquerraM. LleóA. MartíM.J. PallàsM. Sanchez-ValleR. MolinuevoJ.L. SanfeliuC. KalimanP. Plasma miR-34a-5p and miR-545-3p as early biomarkers of alzheimer’s disease: Potential and limitations.Mol. Neurobiol.20175475550556210.1007/s12035‑016‑0088‑827631879
    [Google Scholar]
  179. FreischmidtA. MüllerK. LudolphA.C. WeishauptJ.H. Systemic dysregulation of TDP-43 binding microRNAs in amyotrophic lateral sclerosis.Acta Neuropathol. Commun.2013114210.1186/2051‑5960‑1‑4224252274
    [Google Scholar]
  180. XuX. GuD. XuB. YangC. WangL. Circular RNA circ_0005835 promotes promoted neural stem cells proliferation and differentiate to neuron and inhibits inflammatory cytokines levels through miR-576-3p in Alzheimer’s disease.Environ. Sci. Pollut. Res. Int.20222924359343594310.1007/s11356‑021‑17478‑335060046
    [Google Scholar]
  181. Campos-MeloD. DroppelmannC.A. HeZ. VolkeningK. StrongM.J. Altered microRNA expression profile in amyotrophic lateral sclerosis: A role in the regulation of NFL mRNA levels.Mol. Brain2013612610.1186/1756‑6606‑6‑2623705811
    [Google Scholar]
  182. JiaoJ. HerlL.D. FareseR.V. GaoF.B. MicroRNA-29b regulates the expression level of human progranulin, a secreted glycoprotein implicated in frontotemporal dementia.PLoS One201055e1055110.1371/journal.pone.001055120479936
    [Google Scholar]
  183. WallerR. BuryJ.J. Appleby-MallinderC. WylesM. LoxleyG. BabelA. ShekariS. KazokaM. WollffH. Al-ChalabiA. HeathP.R. ShawP.J. KirbyJ. Establishing mRNA and microRNA interactions driving disease heterogeneity in amyotrophic lateral sclerosis patient survival.Brain Commun.202361fcad33110.1093/braincomms/fcad33138162899
    [Google Scholar]
  184. CaiM. ChaiS. XiongT. WeiJ. MaoW. ZhuY. LiX. WeiW. DaiX. YangB. LiuW. ShuB. WangM. LuT. CaiY. ZhengZ. MeiZ. ZhouY. YangJ. ZhaoJ. ShenL. HoJ.W.K. ChenJ. XiongN. Aberrant expression of circulating MicroRNA leads to the dysregulation of alpha-synuclein and other pathogenic genes in Parkinson’s disease.Front. Cell Dev. Biol.2021969500710.3389/fcell.2021.69500734497805
    [Google Scholar]
  185. KamenovaS. AralbayevaA. KondybayevaA. AkimniyazovaA. PyrkovaA. IvashchenkoA. Evolutionary changes in the interactions of miRNA with mRNA of candidate genes for Parkinson’s disease.Front. Genet.20211264728810.3389/fgene.2021.64728833859673
    [Google Scholar]
  186. ZhongC. ZhangQ. BaoH. LiY. NieC. Hsa_circ_0054220 upregulates HMGA1 by the competitive RNA pattern to promote neural impairment in MPTP model of parkinson’s disease.Appl. Biochem. Biotechnol.202347404237815624
    [Google Scholar]
  187. RizzutiM. MelziV. GagliardiD. ResnatiD. MeneriM. DioniL. MasroriP. HersmusN. PoesenK. LocatelliM. BiellaF. SilipigniR. BollatiV. BresolinN. ComiG.P. Van DammeP. NizzardoM. CortiS. Insights into the identification of a molecular signature for amyotrophic lateral sclerosis exploiting integrated microRNA profiling of iPSC-derived motor neurons and exosomes.Cell. Mol. Life Sci.202279318910.1007/s00018‑022‑04217‑135286466
    [Google Scholar]
  188. QinL.X. TanJ.Q. ZhangH.N. TangJ.G. JiangB. ShenX.M. GuoJ.F. TanL.M. TangB. WangC.Y. Preliminary study of hsa-mir-626 change in the cerebrospinal fluid in Parkinson’s disease.Neurol. India202169111511810.4103/0028‑3886.31010233642281
    [Google Scholar]
  189. PiscopoP. AlbaniD. CastellanoA.E. ForloniG. ConfaloniA. Frontotemporal lobar degeneration and MicroRNAs.Front. Aging Neurosci.201681710.3389/fnagi.2016.0001726903860
    [Google Scholar]
  190. BurgosK. MalenicaI. MetpallyR. CourtrightA. RakelaB. BeachT. ShillH. AdlerC. SabbaghM. VillaS. TembeW. CraigD. Van Keuren-JensenK. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology.PLoS One201495e9483910.1371/journal.pone.009483924797360
    [Google Scholar]
  191. HanC. SongY. LianC. MiR-769 inhibits colorectal cancer cell proliferation and invasion by targeting HEY1.Med. Sci. Monit.2018249232923910.12659/MSM.91166330565566
    [Google Scholar]
  192. AfonsoG.J.M. CavaleiroC. ValeroJ. MotaS.I. FerreiroE. Recent advances in extracellular vesicles in amyotrophic lateral sclerosis and emergent perspectives.Cells20231213176310.3390/cells1213176337443797
    [Google Scholar]
  193. KocerhaJ. KouriN. BakerM. FinchN. DeJesus-HernandezM. GonzalezJ. ChidamparamK. JosephsK.A. BoeveB.F. Graff-RadfordN.R. CrookJ. DicksonD.W. RademakersR. Altered microRNA expression in frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations.BMC Genomics201112152710.1186/1471‑2164‑12‑52722032330
    [Google Scholar]
  194. BriggsC.E. WangY. KongB. WooT.U. IyerL.K. SonntagK.C. Midbrain dopamine neurons in Parkinson’s disease exhibit a dysregulated miRNA and target-gene network.Brain Res.2015161811112126047984
    [Google Scholar]
  195. FanB. JiaoB.H. FanF.S. LuS.K. SongJ. GuoC.Y. YangJ.K. YangL. Downregulation of miR-95-3p inhibits proliferation, and invasion promoting apoptosis of glioma cells by targeting CELF2.Int. J. Oncol.20154731025103326165303
    [Google Scholar]
  196. Barros-ViegasA.T. CarmonaV. FerreiroE. GuedesJ. CardosoA.M. CunhaP. Pereira de AlmeidaL. Resende de OliveiraC. Pedro de MagalhãesJ. PeçaJ. CardosoA.L. miRNA-31 improves cognition and abolishes amyloid-β pathology by targeting APP and BACE1 in an animal model of Alzheimer’s disease.Mol. Ther. Nucleic Acids2020191219123632069773
    [Google Scholar]
  197. WangD. FeiZ. LuoS. WangH. MiR-335-5p inhibits β-amyloid (Aβ) accumulation to attenuate cognitive deficits through targeting c-jun-N-terminal kinase 3 in Alzheimer’s disease.Curr. Neurovasc. Res.20201719310132003672
    [Google Scholar]
  198. EstevesM. AbreuR. FernandesH. Serra-AlmeidaC. MartinsP.A.T. BarãoM. CristóvãoA.C. SaraivaC. FerreiraR. FerreiraL. BernardinoL. MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson’s disease.Mol. Ther.202230103176319235689381
    [Google Scholar]
  199. HeS. WangQ. ChenL. HeY.J. WangX. QuS. miR-100a-5p-enriched exosomes derived from mesenchymal stem cells enhance the anti-oxidant effect in a Parkinson’s disease model via regulation of Nox4/ROS/Nrf2 signaling.J. Transl. Med.202321174737875930
    [Google Scholar]
  200. WuM. WangG. TianW. DengY. XuY. MiRNA-based therapeutics for lung cancer.Curr. Pharm. Des.201823395989599628714413
    [Google Scholar]
  201. GurbuzN. OzpolatB. MicroRNA-based targeted therapeutics in pancreatic cancer.Anticancer Res.201939252953230711926
    [Google Scholar]
  202. MustafinR.N. Relationship of retroelements with antiviral proteins and epigenetic factors in Alzheimer’s disease.OBM Neurobiol.20248411610.21926/obm.neurobiol.2404252
    [Google Scholar]
  203. MustafinR.N. The role of transposable elements in the association of polymorphic variants with multifactorial diseases.Opera Med. Physiol.2024114607010.24412/2500‑2295‑2024‑4‑60‑70
    [Google Scholar]
/content/journals/cp/10.2174/0115701646349195250327051422
Loading
/content/journals/cp/10.2174/0115701646349195250327051422
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test