Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

The gastrointestinal tract hosts a complex ecosystem of microorganisms, with rectum playing a critical role in microbial diversity and health. This manuscript provides a comprehensive overview of rectal microbes, their functions, and the latest technological advancements in studying and manipulating these microorganisms for therapeutic purposes. Key microbial phyla in the rectum include Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria, each contributing to essential functions such as digestion, vitamin synthesis, and immune modulation. The growth mechanisms of these microbes are influenced by nutrient availability, anaerobic conditions, pH levels, and microbial interactions. Technological applications like probiotics, fecal microbiota transplantation, microbiome analysis, and prebiotics are explored for their potential to enhance gut health. Novel treatments incorporating nanoparticles offer targeted delivery, enhanced bioavailability, and controlled release of therapeutic agents, paving the way for advanced and personalized interventions in gastrointestinal medicine. Future directions include personalized medicine, microbiome-host interaction studies, disease mechanism investigations, and synthetic biology approaches, aiming to harness the full potential of rectal microbiota for disease prevention and health maintenance.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646355945250107043902
2025-01-08
2025-10-01
Loading full text...

Full text loading...

References

  1. RuanW. EngevikM.A. SpinlerJ.K. VersalovicJ. Healthy human gastrointestinal microbiome: Composition and function after a decade of exploration.Dig. Dis. Sci.202065369570510.1007/s10620‑020‑06118‑432067143
    [Google Scholar]
  2. MontassierE. Valdés-MasR. BatardE. ZmoraN. Dori-BachashM. SuezJ. ElinavE. Probiotics impact the antibiotic resistance gene reservoir along the human GI tract in a person-specific and antibiotic-dependent manner.Nat. Microbiol.2021681043105410.1038/s41564‑021‑00920‑034226711
    [Google Scholar]
  3. MorelliM. KurekD. NgC.P. QueirozK. Gut-on-a-Chip models: Current and future perspectives for host–microbial interactions research.Biomedicines202311261910.3390/biomedicines1102061936831155
    [Google Scholar]
  4. WenX. QiL.M. ZhaoK. Influence of gut bacteria on type 2 diabetes: Mechanisms and therapeutic strategy.World J. Diabetes202516110.4239/wjd.v16.i1.100376
    [Google Scholar]
  5. ZhanQ. WangR. ThakurK. FengJ.Y. ZhuY.Y. ZhangJ.G. WeiZ.J. Unveiling of dietary and gut-microbiota derived B vitamins: Metabolism patterns and their synergistic functions in gut-brain homeostasis.Crit. Rev. Food Sci. Nutr.202464134046405810.1080/10408398.2022.213826336271691
    [Google Scholar]
  6. WangS. MuL. YuC. HeY. HuX. JiaoY. XuZ. YouS. LiuS.L. BaoH. Microbial collaborations and conflicts: Unraveling interactions in the gut ecosystem.Gut Microbes2024161229660310.1080/19490976.2023.229660338149632
    [Google Scholar]
  7. JensenB.A.H. HeyndrickxM. JonkersD. MackieA. MilletS. NaghibiM. PærregaardS.I. PotB. SaulnierD. SinaC. SterkmanL.G.W. Van den AbbeeleP. VenletN.V. ZoetendalE.G. OuwehandA.C. Small intestine vs. colon ecology and physiology: Why it matters in probiotic administration.Cell Rep. Med.20234910119010.1016/j.xcrm.2023.10119037683651
    [Google Scholar]
  8. WangJ. ShanS. LiD. ZhangZ. MaQ. Long-term influence of chloroxylenol on anaerobic microbial community: Performance, microbial interaction, and antibiotic resistance gene behaviors.Sci. Total Environ.202389716533010.1016/j.scitotenv.2023.16533037419339
    [Google Scholar]
  9. JinR. SongJ. LiuC. LinR. LiangD. AweyaJ.J. WengW. ZhuL. ShangJ. YangS. Synthetic microbial communities: Novel strategies to enhance the quality of traditional fermented foods.Compr. Rev. Food Sci. Food Saf.2024234e1338810.1111/1541‑4337.1338838865218
    [Google Scholar]
  10. MaL. LiY. WeiJ. LiZ. LiH. LiY. ZhengF. LiuZ. TanD. The long-term application of controlled-release nitrogen fertilizer maintains a more stable bacterial community and nitrogen cycling functions than common urea in fluvo-aquic soil.Agronomy2023141710.3390/agronomy14010007
    [Google Scholar]
  11. NüseB. HollandT. RauhM. GerlachR.G. MattnerJ. L-arginine metabolism as pivotal interface of mutual host–microbe interactions in the gut.Gut Microbes2023151222296110.1080/19490976.2023.222296137358082
    [Google Scholar]
  12. FofanovaT.Y. KarandikarU.C. AuchtungJ.M. WilsonR.L. ValentinA.J. BrittonR.A. Grande-AllenK.J. EstesM.K. HoffmanK. RamaniS. StewartC.J. PetrosinoJ.F. A novel system to culture human intestinal organoids under physiological oxygen content to study microbial-host interaction.PLoS One2024197e030066610.1371/journal.pone.030066639052651
    [Google Scholar]
  13. WangY. ZhangZ. LinL. XingG. JiangY. CaoW. ZhangY. Interspecies electron transfer and microbial interactions in a novel Fe(II)-mediated anammox coupled mixotrophic denitrification system.Bioresour. Technol.202440313085210.1016/j.biortech.2024.13085238761867
    [Google Scholar]
  14. BerriosL. PeayK.G. Field reduction of ectomycorrhizal fungi has cascading effects on soil microbial communities and reduces the abundance of ectomycorrhizal symbiotic bacteria.Mol. Ecol.2025341e1758510.1111/mec.1758539524010
    [Google Scholar]
  15. SzajewskaH. ScottK.P. de MeijT. Forslund-StartcevaS.K. KnightR. KorenO. LittleP. JohnstonB.C. ŁukasikJ. SuezJ. TancrediD.J. SandersM.E. Antibiotic-perturbed microbiota and the role of probiotics.Nat. Rev. Gastroenterol. Hepatol.202411810.1038/s41575‑024‑01023‑x39663462
    [Google Scholar]
  16. KelliherJ.M. JohnsonL.Y.D. RobinsonA.J. LongleyR. HansonB.T. CailleauG. BindschedlerS. JunierP. ChainP.S.G. Fabricated devices for performing bacterial-fungal interaction experiments across scales.Front. Microbiol.202415138019910.3389/fmicb.2024.138019939171270
    [Google Scholar]
  17. VigneshA. AmalT.C. SelvakumarS. VasanthK. Unraveling the role of medicinal plants and Gut microbiota in colon cancer: Towards microbiota- based strategies for prevention and treatment.Health Sci. Rep.2023910011510.1016/j.hsr.2023.100115
    [Google Scholar]
  18. KhanM. ShahS. ShahW. KhanI. AliH. AliI. UllahR. WangX. MehmoodA. WangY. Gut microbiome as a treatment in colorectal cancer.Int. Rev. Immunol.202443422924710.1080/08830185.2024.231229438343353
    [Google Scholar]
  19. ZhangH. ShiY. LinC. HeC. WangS. LiQ. SunY. LiM. Overcoming cancer risk in inflammatory bowel disease: New insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota.Front. Immunol.202414133891810.3389/fimmu.2023.133891838288125
    [Google Scholar]
  20. López-EspinosaJ. ParkP. HolcombM. GodinB. VillapolS. Nanotechnology-driven therapies for neurodegenerative diseases: A comprehensive review.Ther. Deliv.20241512997102410.1080/20415990.2024.240130739297726
    [Google Scholar]
  21. QiL. ChenZ. WangD. WangL. SolimanM.M. El-BahyS.M. GuoZ. El-BahyZ.M. ZhangM. HuP. ZhaoK. Structural characterization of red yeast rice-derived polysaccharide and its promotion of lipid metabolism and gut function in high-fat diet-induced mice.Int. J. Biol. Macromol.2024282Pt 113674410.1016/j.ijbiomac.2024.13674439433195
    [Google Scholar]
  22. ZhangJ. LiuM. GuoH. GaoS. HuY. ZengG. YangD. Nanotechnology‐driven strategies to enhance the treatment of drug‐resistant bacterial infections.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2024163e196810.1002/wnan.196838772565
    [Google Scholar]
  23. JayashreeP KalpitaM JudithT Bio-engineered gut microbiota for drug delivery: Novel propitious realm.ProbioticsCRC PressBoca Raton2024251281
    [Google Scholar]
  24. XieL-W LuH-Y TangL-F Probiotic consortia protect the intestine against radiation injury by improving intestinal epithelial homeostasis.Int. J. Radiat. Oncol. Biol. Phys.2024Sep1120118920410.1016/j.ijrobp.2024.03.003
    [Google Scholar]
  25. LiuT. GuJ. FuC. SuL. Three-dimensional scaffolds for intestinal cell culture: Fabrication, utilization, and prospects.Tissue Eng. Part B Rev.202430215817510.1089/ten.teb.2023.012437646409
    [Google Scholar]
  26. DattaN. JohnsonC. KaoD. GurnaniP. AlexanderC. PolytarchouC. MonaghanT.M. MicroRNA-based therapeutics for inflammatory disorders of the microbiota-gut-brain axis.Pharmacol. Res.202319410687010.1016/j.phrs.2023.10687037499702
    [Google Scholar]
  27. NazirA. HussainF.H.N. RazaA. Advancing microbiota therapeutics: The role of synthetic biology in engineering microbial communities for precision medicine.Front. Bioeng. Biotechnol.202412151114910.3389/fbioe.2024.151114939698189
    [Google Scholar]
  28. MehrabadiS. Assessment of microbiome signature for predicting prognosis of gastrointestinal cancers.Curr. Cancer Ther. Rev.20242110.2174/0115733947333326240925092332
    [Google Scholar]
  29. HeT. ChengX. XingC. The gut microbial diversity of colon cancer patients and the clinical significance.Bioengineered20211217046706010.1080/21655979.2021.197207734551683
    [Google Scholar]
  30. JiaoL. KourkoumpetisT. HutchinsonD. AjamiN.J. HoffmanK. WhiteD.L. GrahamD.Y. HairC. ShahR. KanwalF. Jarbrink-SehgalM. HusainN. HernaezR. HouJ. ColeR. VelezM. KetwarooG. KramerJ. El-SeragH.B. PetrosinoJ.F. Spatial characteristics of colonic mucosa-associated gut microbiota in humans.Microb. Ecol.202283381182110.1007/s00248‑021‑01789‑634223947
    [Google Scholar]
  31. RolinecM. MedoJ. GáborM. MiluchováM. BíroD. ŠimkoM. JuráčekM. HanušovskýO. SchubertováZ. GálikB. The effect of coconut oil addition to feed of pigs on rectal microbial diversity and bacterial abundance.Animals20201010176410.3390/ani1010176433003372
    [Google Scholar]
  32. MukhopadhyaI. MartinJ.C. ShawS. McKinleyA.J. GratzS.W. ScottK.P. Comparison of microbial signatures between paired faecal and rectal biopsy samples from healthy volunteers using next-generation sequencing and culturomics.Microbiome202210117110.1186/s40168‑022‑01354‑436242064
    [Google Scholar]
  33. MitraA BiegertGWG DelgadoAY Microbial diversity and composition is associated with patient-reported toxicity during chemoradiation therapy for cervical cancer.Int. J. Radiat. Oncol. Biol. Phys.2020107116317110.1016/j.ijrobp.2019.12.040
    [Google Scholar]
  34. YinX.F. YeT. ChenH.L. LiuJ. MuX.F. LiH. WangJ. HuY.J. CaoH. KangW.Q. The microbiome compositional and functional differences between rectal mucosa and feces.Microbiol. Spectr.2024128e03549-2310.1128/spectrum.03549‑2338916335
    [Google Scholar]
  35. WangY. LiH. Gut microbiota modulation: A tool for the management of colorectal cancer.J. Transl. Med.202220117810.1186/s12967‑022‑03378‑835449107
    [Google Scholar]
  36. HanusM. Parada-VenegasD. LandskronG. WielandtA.M. HurtadoC. AlvarezK. HermosoM.A. López-KöstnerF. De la FuenteM. Immune system, microbiota, and microbial metabolites: The unresolved triad in colorectal cancer microenvironment.Front. Immunol.20211261282610.3389/fimmu.2021.61282633841394
    [Google Scholar]
  37. BlythG.A.D. ConnorsL. FodorC. CoboE.R. The network of colonic host defense peptides as an innate immune defense against enteropathogenic bacteria.Front. Immunol.20201196510.3389/fimmu.2020.0096532508838
    [Google Scholar]
  38. SantangeloB.E. ApgarM. ColoradoA.S.B. MartinC.G. SterrettJ. WallE. JoachimiakM.P. HunterL.E. LozuponeC.A. Integrating biological knowledge for mechanistic inference in the host-associated microbiome.Front. Microbiol.202415135167810.3389/fmicb.2024.135167838638909
    [Google Scholar]
  39. ZhangY. ThomasJ.P. KorcsmarosT. GulL. Integrating multi-omics to unravel host-microbiome interactions in inflammatory bowel disease.Cell Rep. Med.20245910173810.1016/j.xcrm.2024.10173839293401
    [Google Scholar]
  40. GerasimovaY. AliH. NadeemU. Challenges for pathologists in implementing clinical microbiome diagnostic testing.J. Pathol. Clin. Res.2024105e7000210.1002/2056‑4538.7000239289163
    [Google Scholar]
  41. SinghV RastogiM. Future and challenges of microbiome engineering.Microbiome Engineering1st edCRC Press202426328010.1201/9781003394662‑17
    [Google Scholar]
  42. PatelN. DineshS. SharmaS. From gut to glucose: A comprehensive review on functional foods and dietary interventions for diabetes management.Curr. Diabetes Rev.2024205e11102322208110.2174/011573399826665323100507245037861021
    [Google Scholar]
  43. KhanI. BaiY. ZhaL. UllahN. UllahH. ShahS.R.H. SunH. ZhangC. Mechanism of the gut microbiota colonization resistance and enteric pathogen infection.Front. Cell. Infect. Microbiol.20211171629910.3389/fcimb.2021.71629935004340
    [Google Scholar]
  44. MaynardC. WeinkoveD. Bacteria increase host micronutrient availability: Mechanisms revealed by studies in C. elegans.Genes Nutr.2020151410.1186/s12263‑020‑00662‑432138646
    [Google Scholar]
  45. BajinkaO. TanY. AbdelhalimK.A. ÖzdemirG. QiuX. Extrinsic factors influencing gut microbes, the immediate consequences and restoring eubiosis.AMB Express202010113010.1186/s13568‑020‑01066‑832710186
    [Google Scholar]
  46. MohammadiM. MirzaeiH. MotallebiM. The role of anaerobic bacteria in the development and prevention of colorectal cancer: A review study.Anaerobe20227310250110.1016/j.anaerobe.2021.10250134906686
    [Google Scholar]
  47. KasperS.H. Morell-PerezC. WycheT.P. SanaT.R. LiebermanL.A. HettE.C. Colorectal cancer-associated anaerobic bacteria proliferate in tumor spheroids and alter the microenvironment.Sci. Rep.2020101532110.1038/s41598‑020‑62139‑z32210258
    [Google Scholar]
  48. DalalN. JalandraR. BayalN. YadavA.K. Harshulika SharmaM. MakhariaG.K. KumarP. SinghR. SolankiP.R. KumarA. Gut microbiota-derived metabolites in CRC progression and causation.J. Cancer Res. Clin. Oncol.2021147113141315510.1007/s00432‑021‑03729‑w34273006
    [Google Scholar]
  49. BellHN RebernickRJ GoyertJ Reuterin in the healthy gut microbiome suppresses colorectal cancer growth through altering redox balance.Cancer Cell202240218520010.1016/j.ccell.2021.12.001
    [Google Scholar]
  50. ColquhounC. DuncanM. GrantG. Inflammatory bowel diseases: Host-microbial-environmental interactions in dysbiosis.Diseases2020821310.3390/diseases802001332397606
    [Google Scholar]
  51. XingJ. FangY. ZhangW. ZhangH. TangD. WangD. Bacterial driver–passenger model in biofilms: A new mechanism in the development of colorectal cancer.Clin. Transl. Oncol.202224578479510.1007/s12094‑021‑02738‑y35000132
    [Google Scholar]
  52. MirzaeiR. MirzaeiH. AlikhaniM.Y. SholehM. ArabestaniM.R. SaidijamM. KarampoorS. AhmadyousefiY. MoghadamM.S. IrajianG.R. HasanvandH. YousefimashoufR. Bacterial biofilm in colorectal cancer: What is the real mechanism of action?Microb. Pathog.202014210405210.1016/j.micpath.2020.10405232045645
    [Google Scholar]
  53. VestbyL.K. GrønsethT. SimmR. NesseL.L. Bacterial biofilm and its role in the pathogenesis of disease.Antibiotics2020925910.3390/antibiotics902005932028684
    [Google Scholar]
  54. SinghV. ShirbhateE. KoreR. VishwakarmaS. ParveenS. VeerasamyR. TiwariA.K. RajakH. Microbial metabolites-induced epigenetic modifications for inhibition of colorectal cancer: Current status and future perspectives.Mini Rev. Med. Chem.2025251769310.2174/011389557532034424062508055538982701
    [Google Scholar]
  55. JainP. MohapatraS. FarooqU. HassanN. MirzaM.A. IqbalZ. An overview of the dichotomous role of microbiota in cancer progression and management.Curr. Cancer Drug Targets2025251384810.2174/011568009628250324012410402938409691
    [Google Scholar]
  56. SongQ. GaoY. LiuK. TangY. ManY. WuH. Gut microbial and metabolomics profiles reveal the potential mechanism of fecal microbiota transplantation in modulating the progression of colitis-associated colorectal cancer in mice.J. Transl. Med.2024221102810.1186/s12967‑024‑05786‑439548468
    [Google Scholar]
  57. CiernikovaS SevcikovaA DrgonaL Modulating the gut microbiota by probiotics, prebiotics, postbiotics, and fecal microbiota transplantation: An emerging trend in cancer patient care.Biochim. Biophys. Acta BBA - Rev. Cancer20232023188990
    [Google Scholar]
  58. LangT. ZhuR. ZhuX. YanW. LiY. ZhaiY. WuT. HuangX. YinQ. LiY. Combining gut microbiota modulation and chemotherapy by capecitabine-loaded prebiotic nanoparticle improves colorectal cancer therapy.Nat. Commun.2023141474610.1038/s41467‑023‑40439‑y37550297
    [Google Scholar]
  59. YooS. JungS.C. KwakK. KimJ.S. The role of prebiotics in modulating gut microbiota: Implications for human health.Int. J. Mol. Sci.2024259483410.3390/ijms2509483438732060
    [Google Scholar]
  60. ZhongY. LiuZ. WangY. CaiS. QiaoZ. HuX. WangT. YiJ. Preventive methods for colorectal cancer through dietary interventions: A focus on gut microbiota modulation.Food Rev. Int.202412910.1080/87559129.2024.2414908
    [Google Scholar]
  61. GaoJ. LiJ. LuoZ. WangH. MaZ. Nanoparticle-based drug delivery systems for inflammatory bowel disease treatment.Drug Des. Devel. Ther.2024182921294910.2147/DDDT.S46197739055164
    [Google Scholar]
  62. AbavisaniM. FarajiN. FarajiS. EbadpourN. KesharwaniP. SahebkarA. A comprehensive review on utilizing CRISPR/Cas system for microbiome modification.Biochem. Eng. J.202421110944310.1016/j.bej.2024.109443
    [Google Scholar]
  63. WolfeW. XiangZ. YuX. LiP. ChenH. YaoM. FeiY. HuangY. YinY. XiaoH. The challenge of applications of probiotics in gastrointestinal diseases.Adv. Gut Microbiome Res.20232023111010.1155/2023/1984200
    [Google Scholar]
  64. BaralK.C. BajracharyaR. LeeS.H. HanH.K. Advancements in the pharmaceutical applications of probiotics: Dosage forms and formulation technology.Int. J. Nanomedicine2021167535755610.2147/IJN.S33742734795482
    [Google Scholar]
  65. AlmeidaC. OliveiraR. BaylinaP. FernandesR. TeixeiraF.G. BarataP. Current trends and challenges of fecal microbiota transplantation—an easy method that works for all?Biomedicines20221011274210.3390/biomedicines1011274236359265
    [Google Scholar]
  66. ChenC-C ChiuC-H Current and future applications of fecal microbiota transplantation for children.Biomed. J.20224511118
    [Google Scholar]
  67. YiY ShenL ShiW Gut microbiome components predict response to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: A prospective, longitudinal study.Clin. Cancer Res.202127513291340
    [Google Scholar]
  68. WeiL.Q. CheongI.H. YangG.H. LiX.G. KozlakidisZ. DingL. LiuN.N. WangH. The application of high-throughput technologies for the study of microbiome and cancer.Front. Genet.20211269979310.3389/fgene.2021.69979334394190
    [Google Scholar]
  69. CunninghamM. Azcarate-PerilM.A. BarnardA. BenoitV. GrimaldiR. GuyonnetD. HolscherH.D. HunterK. ManurungS. ObisD. PetrovaM.I. SteinertR.E. SwansonK.S. van SinderenD. VulevicJ. GibsonG.R. Shaping the future of probiotics and prebiotics.Trends Microbiol.202129866768510.1016/j.tim.2021.01.00333551269
    [Google Scholar]
  70. YamamotoY. KanayamaN. NakayamaY. MatsushimaN. Current status, issues and future prospects of personalized medicine for each disease.J. Pers. Med.202212344410.3390/jpm1203044435330444
    [Google Scholar]
  71. Precision medicine in non-small cell lung cancer: Current applications and future directions. In: Yang, S-R.; Schultheis, A.M.; Yu, H., Eds.;Seminars in cancer biology.Elsevier2022
    [Google Scholar]
  72. ElementoO. The future of precision medicine: Towards a more predictive personalized medicine.Emerg. Top. Life Sci.20204217517710.1042/ETLS2019019732856697
    [Google Scholar]
  73. HuangG. KhanR. ZhengY. LeeP.C. LiQ. KhanI. Exploring the role of gut microbiota in advancing personalized medicine.Front. Microbiol.202314127492510.3389/fmicb.2023.127492538098666
    [Google Scholar]
  74. BashaO.M. HafezR.A. SalemS.M. AnisR.H. HanafyA.S. Impact of gut microbiome alteration in ulcerative colitis patients on disease severity and outcome.Clin. Exp. Med.20222351763177210.1007/s10238‑022‑00917‑x36344781
    [Google Scholar]
  75. NapolitanoM. FasuloE. UngaroF. MassiminoL. SinagraE. DaneseS. MandarinoF.V. Gut dysbiosis in irritable bowel syndrome: A narrative review on correlation with disease subtypes and novel therapeutic implications.Microorganisms20231110236910.3390/microorganisms1110236937894027
    [Google Scholar]
  76. KwonH. NamE.H. KimH. JoH. BangW.Y. LeeM. ShinH. KimD. KimJ. KimH. LeeJ. JungY.H. YangJ. WonD.D. ShinM. Effect of Lacticaseibacillus rhamnosus IDCC 3201 on irritable bowel syndrome with constipation: A randomized, double-blind, and placebo-controlled trial.Sci. Rep.20241412238410.1038/s41598‑024‑72887‑x39333245
    [Google Scholar]
  77. MaT. ShenX. ShiX. SakandarH.A. QuanK. LiY. JinH. KwokL-Y. ZhangH. SunZ. Targeting gut microbiota and metabolism as the major probiotic mechanism - An evidence-based review.Trends Food Sci. Technol.202313817819810.1016/j.tifs.2023.06.013
    [Google Scholar]
  78. LopesS.A. Roque-BordaC.A. DuarteJ.L. Di FilippoL.D. Borges CardosoV.M. PavanF.R. ChorilliM. MeneguinA.B. Delivery strategies of probiotics from nano- and microparticles: Trends in the treatment of inflammatory bowel disease—an overview.Pharmaceutics20231511260010.3390/pharmaceutics1511260038004578
    [Google Scholar]
  79. KokC.R. RoseD. HutkinsR. Predicting personalized responses to dietary fiber interventions: Opportunities for modulation of the gut microbiome to improve health.Annu. Rev. Food Sci. Technol.202314115718210.1146/annurev‑food‑060721‑01551636446139
    [Google Scholar]
  80. ShinY.C. ThanN. MinS. ShinW. KimH.J. Modelling host–microbiome interactions in organ-on-a-chip platforms.Nature Reviews Bioengineering20232217519110.1038/s44222‑023‑00130‑9
    [Google Scholar]
  81. McKenzieN.D. HongH. AhmadS. HollowayR.W. The gut microbiome and cancer immunotherapeutics: A review of emerging data and implications for future gynecologic cancer research.Crit. Rev. Oncol. Hematol.202115710316510.1016/j.critrevonc.2020.10316533227575
    [Google Scholar]
  82. ManriqueP MonteroI Fernandez-GosendeM Past, present, and future of microbiome-based therapies.Microbiome Res. Rep.20243210.20517/mrr.2023.80
    [Google Scholar]
  83. TsigalouC. KonstantinidisT. AloizouA-M. Future therapeutic prospects in dealing with autoimmune diseases: Treatment based on the microbiome model.Role of Microorganisms in Pathogenesis and Management of Autoimmune Diseases: Volume II: Kidney, Central Nervous System, Eye, Blood, Blood Vessels & BowelSpringer2023489520
    [Google Scholar]
  84. LoganathanT. Priya Doss CG. The influence of machine learning technologies in gut microbiome research and cancer studies - A review.Life Sci.2022311Pt A12111810.1016/j.lfs.2022.12111836404489
    [Google Scholar]
  85. EzzamouriB. ShoaieS. Ledesma-AmaroR. Synergies of systems biology and synthetic biology in human microbiome studies.Front. Microbiol.20211268198210.3389/fmicb.2021.68198234531833
    [Google Scholar]
  86. KimK. KangM. ChoB.K. Systems and synthetic biology-driven engineering of live bacterial therapeutics.Front. Bioeng. Biotechnol.202311126737810.3389/fbioe.2023.126737837929193
    [Google Scholar]
  87. RathiR. Sanshita KumarA. VishvakarmaV. HuanbuttaK. SinghI. SangnimT. Advancements in rectal drug delivery systems: Clinical trials, and patents perspective.Pharmaceutics20221410221010.3390/pharmaceutics1410221036297645
    [Google Scholar]
  88. TerreniM. TaccaniM. PregnolatoM. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives.Molecules2021269267110.3390/molecules2609267134063264
    [Google Scholar]
  89. FongW. LiQ. YuJ. Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer.Oncogene202039264925494310.1038/s41388‑020‑1341‑132514151
    [Google Scholar]
  90. PilmisB. Le MonnierA. ZaharJ.R. Gut microbiota, antibiotic therapy and antimicrobial resistance: A narrative review.Microorganisms20208226910.3390/microorganisms802026932079318
    [Google Scholar]
  91. Chlebicz-WójcikA. ŚliżewskaK. Probiotics, prebiotics, and synbiotics in the irritable bowel syndrome treatment: A review.Biomolecules2021118115410.3390/biom1108115434439821
    [Google Scholar]
  92. AlamZ. ShangX. EffatK. KanwalF. HeX. LiY. XuC. NiuW. WarA.R. ZhangY. The potential role of prebiotics, probiotics, and synbiotics in adjuvant cancer therapy especially colorectal cancer.J. Food Biochem.20224610e1430210.1111/jfbc.1430235816322
    [Google Scholar]
  93. SecombeK.R. Van SebilleY.Z.A. MayoB.J. CollerJ.K. GibsonR.J. BowenJ.M. Diarrhea induced by small molecule tyrosine kinase inhibitors compared with chemotherapy: Potential role of the microbiome.Integr. Cancer Ther.202019153473542092849310.1177/153473542092849332493068
    [Google Scholar]
  94. ShahS.A. BousvarosA. StevensA.C. Immunomodulating agents in gastrointestinal disease.Immune Modulating Agents.CRC Press202026729910.1201/9781003064671‑15
    [Google Scholar]
  95. ReensA.L. CabralD.J. LiangX. NortonJ.E.Jr TherienA.G. HazudaD.J. SwaminathanG. Immunomodulation by the commensal microbiome during immune-targeted interventions: Focus on cancer immune checkpoint inhibitor therapy and vaccination.Front. Immunol.20211264325510.3389/fimmu.2021.64325534054810
    [Google Scholar]
  96. CristoforiF. DargenioV.N. DargenioC. MinielloV.L. BaroneM. FrancavillaR. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body.Front. Immunol.20211257838610.3389/fimmu.2021.57838633717063
    [Google Scholar]
  97. DingX. LiQ. LiP. ChenX. XiangL. BiL. ZhuJ. HuangX. CuiB. ZhangF. Fecal microbiota transplantation: A promising treatment for radiation enteritis?Radiother. Oncol.2020143121810.1016/j.radonc.2020.01.01132044171
    [Google Scholar]
  98. SvenssonC.K. ColdF. RibberholtI. ZangenbergM. Mirsepasi-LauridsenH.C. PetersenA.M. HelmsM. The efficacy of faecal microbiota transplant and rectal bacteriotherapy in patients with recurrent clostridioides difficile infection: A retrospective cohort study.Cells20221120327210.3390/cells1120327236291139
    [Google Scholar]
  99. HegelmaierT. LebbingM. DuschaA. TomaskeL. TöngesL. HolmJ.B. Bjørn NielsenH. GatermannS.G. PrzuntekH. HaghikiaA. Interventional influence of the intestinal microbiome through dietary intervention and bowel cleansing might improve motor symptoms in Parkinson’s disease.Cells20209237610.3390/cells902037632041265
    [Google Scholar]
  100. SassonAN AnanthakrishnanAN RamanM Diet in treatment of inflammatory bowel diseases.Clin. Gastroenterol. Hepatol.202119342543510.1016/j.cgh.2019.11.054
    [Google Scholar]
  101. LimketkaiBN Godoy-BrewerG ParianAM Dietary interventions for the treatment of inflammatory bowel diseases: An updated systematic review and meta-analysis.Clin. Gastroenterol. Hepatol.202321102508252510.1016/j.cgh.2022.11.026
    [Google Scholar]
  102. LanghorstJ. SchölsM. CinarZ. EilertR. KofinkK. PaulA. ZempelC. ElsenbruchS. LaucheR. AhmedM. HallerD. CramerH. DobosG. KochA.K. Comprehensive lifestyle-modification in patients with ulcerative colitis–a randomized controlled trial.J. Clin. Med.2020910308710.3390/jcm910308732987894
    [Google Scholar]
  103. PerilloF. AmorosoC. StratiF. GiuffrèM.R. Díaz-BasabeA. LattanziG. FacciottiF. Gut microbiota manipulation as a tool for colorectal cancer management: Recent advances in its use for therapeutic purposes.Int. J. Mol. Sci.20202115538910.3390/ijms2115538932751239
    [Google Scholar]
  104. Microbe-based therapies for colorectal cancer: Advantages and limitations. In: Saeed, M.; Shoaib, A.; Kandimalla, R., Eds.;Seminars in cancer biology.Elsevier2022
    [Google Scholar]
  105. OkaA. SartorR.B. Microbial-based and microbial-targeted therapies for inflammatory bowel diseases.Dig. Dis. Sci.202065375778810.1007/s10620‑020‑06090‑z32006212
    [Google Scholar]
  106. WangZ.H. HuangW. ZhangS. ChuM. YinN. ZhuC. ZhangZ. ShiJ. LiuJ. Self‐thermophoretic nanoparticles enhance intestinal mucus penetration and reduce pathogenic bacteria interception in colorectal cancer.Adv. Funct. Mater.20233317221201310.1002/adfm.202212013
    [Google Scholar]
  107. KoulB. PooniaA.K. YadavD. JinJ.O. Microbe-mediated biosynthesis of nanoparticles: Applications and future prospects.Biomolecules202111688610.3390/biom1106088634203733
    [Google Scholar]
  108. De Anda-FloresY. Carvajal-MillanE. Campa-MadaA. Lizardi-MendozaJ. Rascon-ChuA. Tanori-CordovaJ. Martínez-LópezA.L. Polysaccharide-based nanoparticles for colon-targeted drug delivery systems.Polysaccharides20212362664710.3390/polysaccharides2030038
    [Google Scholar]
  109. GangulyD. ChoudhuryA. MajumdarS. Nanotechnology approaches for colon targeted drug delivery system: A review.J. Young Pharm.202315223323810.5530/jyp.2023.15.32
    [Google Scholar]
  110. XuB. ShaoyongW. WangL. YangC. ChenT. JiangX. YanR. JiangZ. ZhangP. JinM. WangY. Gut-targeted nanoparticles deliver specifically targeted antimicrobial peptides against Clostridium perfringens infections.Sci. Adv.2023939eadf878210.1126/sciadv.adf878237774026
    [Google Scholar]
  111. AlkushiA.G. Abdelfattah-HassanA. EldoumaniH. ElazabS.T. MohamedS.A.M. MetwallyA.S. S El-ShetryE. SalehA.A. ElSawyN.A. IbrahimD. Probiotics-loaded nanoparticles attenuated colon inflammation, oxidative stress, and apoptosis in colitis.Sci. Rep.2022121511610.1038/s41598‑022‑08915‑535332200
    [Google Scholar]
  112. AlkushiA.G. ElazabS.T. Abdelfattah-HassanA. MahfouzH. SalemG.A. SheraibaN.I. MohamedE.A.A. AttiaM.S. El-ShetryE.S. SalehA.A. ElSawyN.A. IbrahimD. Multi-strain-probiotic-loaded nanoparticles reduced Colon inflammation and orchestrated the expressions of tight junction, NLRP3 Inflammasome and Caspase-1 genes in DSS-induced colitis model.Pharmaceutics2022146118310.3390/pharmaceutics1406118335745756
    [Google Scholar]
  113. BhallaP. RengaswamyR. KarunagaranD. SuraishkumarG.K. SahooS. Metabolic modeling of host–microbe interactions for therapeutics in colorectal cancer.NPJ Syst. Biol. Appl.202281110.1038/s41540‑021‑00210‑935046399
    [Google Scholar]
  114. LazarV. HolbanA.M. CurutiuC. DituL.M. Modulation of gut microbiota by essential oils and inorganic nanoparticles: Impact in nutrition and health.Front. Nutr.2022992041310.3389/fnut.2022.92041335873448
    [Google Scholar]
  115. AbedO.A. AttlassyY. XuJ. HanK. MoonJ.J. Emerging nanotechnologies and microbiome engineering for the treatment of inflammatory bowel disease.Mol. Pharm.202219124393441010.1021/acs.molpharmaceut.2c0022235878420
    [Google Scholar]
  116. BaiX. HuangZ. Duraj-ThatteA.M. EbertM.P. ZhangF. BurgermeisterE. LiuX. ScottB.M. LiG. ZuoT. Engineering the gut microbiome.Nature Reviews Bioengineering20231966567910.1038/s44222‑023‑00072‑2
    [Google Scholar]
  117. LiB. ZuM. JiangA. CaoY. WuJ. ShahbaziM.A. ShiX. ReisR.L. KunduS.C. XiaoB. Magnetic natural lipid nanoparticles for oral treatment of colorectal cancer through potentiated antitumor immunity and microbiota metabolite regulation.Biomaterials202430712253010.1016/j.biomaterials.2024.12253038493672
    [Google Scholar]
  118. MaL. MaY. GaoQ. LiuS. ZhuZ. ShiX. DaiF. ReisR.L. KunduS.C. CaiK. XiaoB. Mulberry leaf lipid nanoparticles: A naturally targeted crispr/cas9 oral delivery platform for alleviation of colon diseases.Small20242025230724710.1002/smll.20230724738243871
    [Google Scholar]
  119. KimB. SeoH.W. LeeK. YongD. ParkY.K. LeeY. LeeS. KimD.W. KimD. RyuC.M. Lipid nanoparticle‐mediated CRISPR‐Cas13a delivery for the control of bacterial infection.Adv. Healthc. Mater.2024240328110.1002/adhm.20240328139580667
    [Google Scholar]
  120. Targeted protein delivery based on stimuli‐triggered nanomedicine. In: Liu, J.; Zhou, Y.; Lyu, Q., Eds.;Exploration.Wiley Online Library2024
    [Google Scholar]
  121. ChenH. LiB. ShiS. ZhouT. WangX. WangZ. ZhouX. WangM. ShiW. RenL. Au–Fe3O4 nanozyme coupled with CRISPR-Cas12a for sensitive and visual antibiotic resistance diagnosing.Anal. Chim. Acta2023125134101410.1016/j.aca.2023.34101436925313
    [Google Scholar]
  122. TiwariA. Ika KrisnawatiD. SusilowatiE. MutalikC. KuoT.R. Next-generation probiotics and chronic diseases: A review of current research and future directions.J. Agric. Food Chem.20247250276792770010.1021/acs.jafc.4c0870239588716
    [Google Scholar]
  123. PandeyA. MishraA.K. Immunomodulation, toxicity, and therapeutic potential of nanoparticles.BioTech20221134210.3390/biotech1103004236134916
    [Google Scholar]
  124. SilveiraM.J. CastroF. OliveiraM.J. SarmentoB. Immunomodulatory nanomedicine for colorectal cancer treatment: A landscape to be explored?Biomater. Sci.2021993228324310.1039/D1BM00137J33949441
    [Google Scholar]
  125. ZhuangY.P. ZhouH.L. ChenH.B. ZhengM.Y. LiangY.W. GuY.T. LiW.T. QiuW.L. ZhouH.G. Gut microbiota interactions with antitumor immunity in colorectal cancer: From understanding to application.Biomed. Pharmacother.202316511504010.1016/j.biopha.2023.11504037364479
    [Google Scholar]
  126. LiuH WangJ HeT Butyrate: A double-edged sword for health?Adv. Nutr.201891212910.1093/advances/nmx009
    [Google Scholar]
  127. RollandA. DouardV. LapaqueN. Role of pattern recognition receptors and microbiota-derived ligands in obesity.Front. Microbiomes.20243132447610.3389/frmbi.2024.1324476
    [Google Scholar]
  128. AnsaldoE. FarleyT.K. BelkaidY. Control of immunity by the microbiota.Annu. Rev. Immunol.202139144947910.1146/annurev‑immunol‑093019‑11234833902310
    [Google Scholar]
  129. WangX. ZhangP. ZhangX. Probiotics regulate gut microbiota: An effective method to improve immunity.Molecules20212619607610.3390/molecules2619607634641619
    [Google Scholar]
  130. MarJ.S. OtaN. PokorzynskiN.D. PengY. JaochicoA. SangarajuD. SkippingtonE. LekkerkerkerA.N. RothenbergM.E. TanM.W. YiT. KeirM.E. IL-22 alters gut microbiota composition and function to increase aryl hydrocarbon receptor activity in mice and humans.Microbiome20231114710.1186/s40168‑023‑01486‑136894983
    [Google Scholar]
  131. ZhangP. LiY. TangW. ZhaoJ. JingL. McHughK.J. Theranostic nanoparticles with disease-specific administration strategies.Nano Today20224210133510.1016/j.nantod.2021.101335
    [Google Scholar]
  132. DebasmitaD. GhoshS.S. ChattopadhyayA. Living gut bacteria functionalized with gold nanoclusters and drug for facile cancer theranostics.ACS Appl. Bio Mater.20236262863910.1021/acsabm.2c0091136651899
    [Google Scholar]
  133. MittalR. PatelA.P. JhaveriV.M. KayS.I.S. DebsL.H. ParrishJ.M. PanD.R. NguyenD. MittalJ. JayantR.D. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders.Expert Opin. Drug Deliv.201815330131810.1080/17425247.2018.142005529272976
    [Google Scholar]
  134. NarayanaS. GowdaB.H.J. HaniU. ShimuS.S. PaulK. DasA. AshiqueS. AhmedM.G. TarighatM.A. AbdiG. Inorganic nanoparticle-based treatment approaches for colorectal cancer: Recent advancements and challenges.J. Nanobiotechnology202422142710.1186/s12951‑024‑02701‑339030546
    [Google Scholar]
  135. LuL. ChenG. QiuY. LiM. LiuD. HuD. GuX. XiaoZ. Nanoparticle-based oral delivery systems for colon targeting: Principles and design strategies.Sci. Bull.201661967068110.1007/s11434‑016‑1056‑4
    [Google Scholar]
  136. DudhatK.R. PatelH.V. MoriD.D. Design, development, and in vitro characterization of pirfenidone-loaded biodegradable nanoparticles for idiopathic pulmonary fibrosis.J. Pharm. Innov.20231841908192510.1007/s12247‑023‑09763‑0
    [Google Scholar]
  137. DudhatK. Harnessing metal nanoparticles: Revolutionizing cancer therapy through targeted drug delivery and tumor microenvironment modulation.Nano20241910243000810.1142/S1793292024300081
    [Google Scholar]
  138. El-GendyA.O. NawafK.T. AhmedE. SamirA. HamblinM.R. HassanM. MohamedT. Preparation of zinc oxide nanoparticles using laser-ablation technique: Retinal epithelial cell (ARPE-19) biocompatibility and antimicrobial activity when activated with femtosecond laser.J. Photochem. Photobiol. B202223411254010.1016/j.jphotobiol.2022.11254035973287
    [Google Scholar]
  139. Zorraquín-PeñaI. CuevaC. BartoloméB. Moreno-ArribasM.V. Silver nanoparticles against foodborne bacteria. Effects at intestinal level and health limitations.Microorganisms20208113210.3390/microorganisms801013231963508
    [Google Scholar]
  140. AnikM.I. MahmudN. Al MasudA. HasanM. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review.Nano Select20223479282810.1002/nano.202100255
    [Google Scholar]
  141. NaserS.S. GhoshB. SimnaniF.Z. SinghD. ChoudhuryA. NandiA. SinhaA. JhaE. PandaP.K. SuarM. VermaS.K. Emerging trends in the application of green synthesized biocompatible ZnO nanoparticles for translational paradigm in cancer therapy.Journal of Nanotheranostics20234324827910.3390/jnt4030012
    [Google Scholar]
  142. Soltau Missio PinheiroL.D. SentenaN.Z. SangoiG.G. VizzottoB.S. de Oliveira PintoE. PavoskiG. Romano EspinosaD.C. MachadoA.K. Leonardo da SilvaW. Copper nanoparticles from acid ascorbic: Biosynthesis, characterization, in vitro safety profile and antimicrobial activity.Mater. Chem. Phys.202330712811010.1016/j.matchemphys.2023.128110
    [Google Scholar]
  143. PillaiR.R. SreelekshmiP.B. MeeraA.P. ThomasS. Biosynthesized iron oxide nanoparticles: Cytotoxic evaluation against human colorectal cancer cell lines.Mater. Today Proc.20225018719510.1016/j.matpr.2022.01.151
    [Google Scholar]
  144. ChoukaifeH. SeyamS. AlallamB. DoolaaneaA.A. AlfatamaM. Current advances in chitosan nanoparticles based oral drug delivery for colorectal cancer treatment.Int. J. Nanomedicine2022173933396610.2147/IJN.S37522936105620
    [Google Scholar]
  145. YangC. MerlinD. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy.Nanomaterials2020107142410.3390/nano1007142432708193
    [Google Scholar]
  146. SpirescuV.A. ChircovC. GrumezescuA.M. AndronescuE. Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview.Polymers202113572410.3390/polym1305072433673451
    [Google Scholar]
  147. JanjuaT.I. CaoY. KleitzF. LindenM. YuC. PopatA. Silica nanoparticles: A review of their safety and current strategies to overcome biological barriers.Adv. Drug Deliv. Rev.202320311511510.1016/j.addr.2023.11511537844843
    [Google Scholar]
  148. JingW. ZhuM. WangF. ZhaoX. DongS. XuY. WangS. YangJ. WangK. LiuW. Hyaluronic acid-melatonin nanoparticles improve the dysregulated intestinal barrier, microbiome and immune response in mice with dextran sodium sulfate-induced colitis.J. Biomed. Nanotechnol.202218117518410.1166/jbn.2022.323235180910
    [Google Scholar]
  149. DudhatK. Emerging trends in transdermal drug delivery: Nanoparticle formulations and technologies for enhanced skin penetration and drug efficiency.Pharm. Nanotechnol.20241310.2174/012211738533139324111107391139660524
    [Google Scholar]
  150. ParkJ.C. LeeG.T. SeoJ.H. Mannose-functionalized core@shell nanoparticles and their interactions with bacteria.J. Mater. Sci.20175231534154510.1007/s10853‑016‑0448‑9
    [Google Scholar]
  151. DudhatK.R. v PatelH. Novel nanoparticulate systems for idiopathic pulmonary fibrosis: A review.Asian J. Pharm. Clin. Res.2020131131110.22159/ajpcr.2020.v13i11.39035
    [Google Scholar]
  152. HuangM. MaY. QianJ. SokolovaI.M. ZhangC. WaihoK. FangJ.K.H. MaX. WangY. HuM. Combined effects of norfloxacin and polystyrene nanoparticles on the oxidative stress and gut health of the juvenile horseshoe crab Tachypleus tridentatus.J. Hazard. Mater.202446813380110.1016/j.jhazmat.2024.13380138377908
    [Google Scholar]
  153. ChenC. BeloquiA. XuY. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease.Adv. Drug Deliv. Rev.202320311511710.1016/j.addr.2023.11511737898337
    [Google Scholar]
  154. DudhatK. PatelH. Preparation and evaluation of pirfenidone loaded chitosan nanoparticles pulmonary delivery for idiopathic pulmonary fibrosis.Fut. J. Pharm. Sci.2022812910.1186/s43094‑022‑00419‑3
    [Google Scholar]
  155. PirojiyaH. DudhatK. Niosomes: A revolution in sustainable and targeted drug delivery-green synthesis, precision medicine, and beyond.Regen. Eng. Transl. Med.202413710.1007/s40883‑024‑00373‑x
    [Google Scholar]
  156. DholakiyaA. DudhatK. PatelJ. MoriD. An integrated QbD based approach of SMEDDS and liquisolid compacts to simultaneously improve the solubility and processability of hydrochlorthiazide.J. Drug Deliv. Sci. Technol.20216110216210.1016/j.jddst.2020.102162
    [Google Scholar]
  157. EjaziS.A. LouisthelmyR. MaiselK. Mechanisms of nanoparticle transport across intestinal tissue: An oral delivery perspective.ACS Nano20231714130441306110.1021/acsnano.3c0240337410891
    [Google Scholar]
  158. PerumalK. AhmadS. Mohd-ZahidM.H. Nanoparticles and gut microbiota in colorectal cancer.Front. Nanotechnol.2021368176010.3389/fnano.2021.681760
    [Google Scholar]
  159. NiuX. MengY. CuiJ. LiR. DingX. NiuB. ChangG. XuN. LiG. WangY. WangL. Hepatic stellate cell- and liver microbiome-specific delivery system for dihydrotanshinone i to ameliorate liver fibrosis.ACS Nano20231723236082362510.1021/acsnano.3c0662637995097
    [Google Scholar]
  160. DangiP. ChaudharyN. ChaudharyV. VirdiA.S. KajlaP. KhannaP. JhaS.K. JhaN.K. AlkhananiM.F. SinghV. HaqueS. Nanotechnology impacting probiotics and prebiotics: A paradigm shift in nutraceuticals technology.Int. J. Food Microbiol.202338811008310.1016/j.ijfoodmicro.2022.11008336708610
    [Google Scholar]
  161. Ul AinN. NaveedM. AzizT. ShabbirM.A. Al AsmariF. AbdiG. SameehM.Y. AlhhazmiA.A. Mix-match synthesis of nanosynbiotics from probiotics and prebiotics to counter gut dysbiosis via AI integrated formulation profiling.Sci. Rep.20241411839710.1038/s41598‑024‑69515‑z39117977
    [Google Scholar]
  162. AshaoluT.J. Emerging applications of nanotechnologies to probiotics and prebiotics.Int. J. Food Sci. Technol.20215683719372510.1111/ijfs.15020
    [Google Scholar]
  163. VijayaramS. RazafindralamboH. SunY.Z. PiccioneG. MultisantiC.R. FaggioC. Synergistic interaction of nanoparticles and probiotic delivery: A review.J. Fish Dis.2024475e1391610.1111/jfd.1391638226408
    [Google Scholar]
  164. DhavalM. VaghelaP. PatelK. SojitraK. PatelM. PatelS. DudhatK. ShahS. ManekR. ParmarR. Lipid-based emulsion drug delivery systems — A comprehensive review.Drug Deliv. Transl. Res.20221271616163910.1007/s13346‑021‑01071‑934609731
    [Google Scholar]
  165. ZhaoY. JiangQ. Roles of the polyphenol–gut microbiota interaction in alleviating colitis and preventing colitis-associated colorectal cancer.Adv. Nutr.202112254656510.1093/advances/nmaa10432905583
    [Google Scholar]
  166. DahiyaD. Singh NIGAMP. Inclusion of dietary-fibers in nutrition provides prebiotic substrates to probiotics for the synthesis of beneficial metabolites SCFA to sustain gut health minimizing risk of IBS, IBD, CRC.Recent Progress in Nutrition20233311510.21926/rpn.2303017
    [Google Scholar]
  167. MalikR. PatilS. Nanotechnology: Regulatory outlook on nanomaterials and nanomedicines in United States, Europe and India.Appl. Clin. Res. Clin. Trials Regul. Aff.20207322523610.2174/2213476X06666191129094236
    [Google Scholar]
  168. ShahzadM. HameedH. AmjadA. KhanM.A. QureshiI.S. HameedA. SaeedA. MunirR. An updated landscape on nanopharmaceutical delivery for mitigation of colon cancer.Naunyn Schmiedebergs Arch. Pharmacol.202411910.1007/s00210‑024‑03482‑039361171
    [Google Scholar]
  169. SinhaA. RoyS. Prospective therapeutic targets and recent advancements in the treatment of inflammatory bowel disease.Immunopharmacol. Immunotoxicol.202446455056310.1080/08923973.2024.238175639013809
    [Google Scholar]
  170. KiranN.S. YashaswiniC. MaheshwariR. BhattacharyaS. PrajapatiB.G. Advances in precision medicine approaches for colorectal cancer: From molecular profiling to targeted therapies.ACS Pharmacol. Transl. Sci.20247496799010.1021/acsptsci.4c0000838633600
    [Google Scholar]
  171. HashemiM. AbbaszadehS. RashidiM. AminiN. Talebi AnarakiK. MotahharyM. KhalilipouyaE. Harif NashtifaniA. ShafieiS. Ramezani FaraniM. NabaviN. SalimimoghadamS. ArefA.R. RaesiR. TaheriazamA. EntezariM. ZhaW. STAT3 as a newly emerging target in colorectal cancer therapy: Tumorigenesis, therapy response, and pharmacological/nanoplatform strategies.Environ. Res.202323311645810.1016/j.envres.2023.11645837348629
    [Google Scholar]
  172. GuX. MinkoT. Targeted nanoparticle-based diagnostic and treatment options for pancreatic cancer.Cancers2024168158910.3390/cancers1608158938672671
    [Google Scholar]
  173. ParsanaH. ChotaliyaM. DudhatK. Formulation and evaluation of itraconazole novel nanosuspension-based in situ gelling system for vaginal candidiasis using 24 factorial design.Bionanoscience20231341870188410.1007/s12668‑023‑01169‑z
    [Google Scholar]
  174. FernandesM.R. AggarwalP. CostaR.G.F. ColeA.M. TrinchieriG. Targeting the gut microbiota for cancer therapy.Nat. Rev. Cancer2022221270372210.1038/s41568‑022‑00513‑x36253536
    [Google Scholar]
  175. DhavalM. MakwanaJ. SakariyaE. DudhatK. Drug nanocrystals: A comprehensive review with current regulatory guidelines.Curr. Drug Deliv.202017647048210.2174/156720181766620051210483332394834
    [Google Scholar]
  176. YounisM.A. TawfeekH.M. AbdellatifA.A.H. Abdel-AleemJ.A. HarashimaH. Clinical translation of nanomedicines: Challenges, opportunities, and keys.Adv. Drug Deliv. Rev.202218111408310.1016/j.addr.2021.11408334929251
    [Google Scholar]
  177. MurthyS. AnbazhaganM. MaddipatlaS.C. KolachalaV.L. DoddA. PeliaR. CutlerD.J. MatthewsJ.D. KugathasanS. Single-cell transcriptomics of rectal organoids from individuals with perianal fistulizing Crohn’s disease reveals patient-specific signatures.Sci. Rep.20241412614210.1038/s41598‑024‑75947‑439477985
    [Google Scholar]
  178. McNerneyM.P. DoironK.E. NgT.L. ChangT.Z. SilverP.A. Theranostic cells: Emerging clinical applications of synthetic biology.Nat. Rev. Genet.2021221173074610.1038/s41576‑021‑00383‑334234299
    [Google Scholar]
  179. GuoL. DingJ. ZhouW. Harnessing bacteria for tumor therapy: Current advances and challenges.Chin. Chem. Lett.202435210855710.1016/j.cclet.2023.108557
    [Google Scholar]
  180. LamasB. Martins BreynerN. HoudeauE. Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: potential consequences for host health.Part. Fibre Toxicol.20201711910.1186/s12989‑020‑00349‑z32487227
    [Google Scholar]
  181. GangadooS. NguyenH. RajapakshaP. ZreiqatH. LathamK. CozzolinoD. ChapmanJ. TruongV.K. Inorganic nanoparticles as food additives and their influence on the human gut microbiota.Environ. Sci. Nano2021861500151810.1039/D1EN00025J
    [Google Scholar]
  182. ZhouP. WangL. AnS. WangC. JiangQ. LiX. Fabrication of quercetin-loaded nanoparticles based on Hohenbuehelia serotina polysaccharides and their modulatory effects on intestinal function and gut microbiota in vivo.Innov. Food Sci. Emerg. Technol.20227810299310.1016/j.ifset.2022.102993
    [Google Scholar]
  183. LiuT. ChaiS. LiM. ChenX. XieY. ZhaoZ. XieJ. YuY. GaoF. ZhuF. YangL. A nanoparticle-based sonodynamic therapy reduces Helicobacter pylori infection in mouse without disrupting gut microbiota.Nat. Commun.202415184410.1038/s41467‑024‑45156‑838286999
    [Google Scholar]
  184. JayaseelanC. AchiramanS. SaravananD. Nanotechnological intervention for harnessing microbiome potential.Progress in Soil Microbiome Research.Springer202431933810.1007/978‑3‑031‑71487‑0_14
    [Google Scholar]
  185. AnandU. CarpenaM. Kowalska-GóralskaM. Garcia-PerezP. SunitaK. BontempiE. DeyA. PrietoM.A. ProćkówJ. Simal-GandaraJ. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective.Sci. Total Environ.202282115347210.1016/j.scitotenv.2022.15347235093375
    [Google Scholar]
  186. WangY. MoY. SunY. LiJ. AnY. FengN. LiuY. Intestinal nanoparticle delivery and cellular response: A review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties.J. Nanobiotechnology202422166910.1186/s12951‑024‑02930‑639487532
    [Google Scholar]
  187. YangM. ZhangY. MaY. YanX. GongL. ZhangM. ZhangB. Nanoparticle-based therapeutics of inflammatory bowel diseases: A narrative review of the current state and prospects.Journal of Bio-X Research20203415717310.1097/JBR.0000000000000078
    [Google Scholar]
  188. DasB.K. SarmaA. GoswamiA.K. Gut-health pharmacology: Integrating microbiota insights with natural product based therapies.Biochemical and Molecular Pharmacology in Drug Discovery.Elsevier202437739910.1016/B978‑0‑443‑16013‑4.00018‑X
    [Google Scholar]
/content/journals/cp/10.2174/0115701646355945250107043902
Loading
/content/journals/cp/10.2174/0115701646355945250107043902
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test