Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Damage-associated molecular Patterns (DAMP) released on the onset of tissue injury interact predominantly with pattern-recognizing receptors (PRRs) and multiple receptors to trigger and mediate inflammation and play a critical role in the progression of various diseases. Among the multiple DAMPs, S100A8 (MRP-8) and S100A9 (MRP-14) are low molecular weight calcium-binding proteins primarily expressed in innate immune cells such as myeloid cells: neutrophils, monocytes, keratinocytes, and early differentiation states of macrophages giving them the name Myeloid related proteins (MRP). S100A8 and S100A9 can exist both as homo- and heterocomplexes – shown to elicit different functions in cellular physiology, chemotaxis, phagocyte migration and modulation of various macrophage functions, apoptosis in cancer, and activation of NF-κB pathway. S100A8 and S100A9 have been shown to trigger innate immunity TLR-4 signaling, thereby increasing the production of proinflammatory cytokines and other downstream effectors of the cascade. An influx in S100A8 and S100A9 proteins has been implicated in the most prevalent arthritic conditions, such as rheumatoid arthritis (RA) and osteoarthritis (OA). Hence, the primary objective of the review is to provide a comprehensive and systematic analysis imparting insights into the role of S100A8 and S100A9 proteins as mediators of inflammation in RA and OA.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646347924241111071800
2025-01-01
2025-10-25
Loading full text...

Full text loading...

References

  1. AustermannJ. ZenkerS. RothJ. S100-alarmins: potential therapeutic targets for arthritis.Expert Opin. Ther. Targets201721773875010.1080/14728222.2017.133041128494625
    [Google Scholar]
  2. McInnesI.B. SchettG. Pathogenetic insights from the treatment of rheumatoid arthritis.Lancet2017389100862328233710.1016/S0140‑6736(17)31472‑128612747
    [Google Scholar]
  3. ChowY.Y. ChinK.Y. The Role of Inflammation in the Pathogenesis of Osteoarthritis.Mediators Inflamm.2020202011910.1155/2020/829392132189997
    [Google Scholar]
  4. NettelbladtE.G. SundbladL.K.M. Protein patterns in synovial fluid and serum in rheumatoid arthritis and osteoarthritis.Arthritis Rheum.19592214415110.1002/1529‑0131(195904)2:2<144::AID‑ART1780020206>3.0.CO;2‑G13638175
    [Google Scholar]
  5. CaiP. JiangT. LiB. QinX. LuZ. LeY. ShenC. YangY. ZhengL. ZhaoJ. Comparison of rheumatoid arthritis (RA) and osteoarthritis (OA) based on microarray profiles of human joint fibroblast-like synoviocytes.Cell Biochem. Funct.2019371314110.1002/cbf.337030468518
    [Google Scholar]
  6. World Health Organization (WHO).Rheumatoid arthritis.Available from: https://www.who.int/news-room/fact-sheets/detail/rheumatoid-arthritis(accessed on 23-10-2024)
  7. World Health Organization (WHO).Osteoarthritis.Available from: https://www.who.int/news-room/fact-sheets/detail/osteoarthritis(accessed on 23-10-2024)
  8. MedzhitovR. JanewayC.A. Decoding the patterns of self and nonself by the innate immune system.Science(80-).2002296298300
    [Google Scholar]
  9. FoellD. WittkowskiH. RothJ. Mechanisms of Disease: a ‘DAMP’ view of inflammatory arthritis.Nat. Clin. Pract. Rheumatol.20073738239010.1038/ncprheum053117599072
    [Google Scholar]
  10. van LentP.L.E.M. GreversL.C. BlomA.B. ArntzO.J. van de LooF.A.J. van der KraanP. Abdollahi-RoodsazS. SrikrishnaG. FreezeH. SloetjesA. NackenW. VoglT. RothJ. van den BergW.B. Stimulation of chondrocyte‐mediated cartilage destruction by S100A8 in experimental murine arthritis.Arthritis Rheum.200858123776378710.1002/art.2407419035520
    [Google Scholar]
  11. SinghP. AliS.A. Multifunctional Role of S100 Protein Family in the Immune System: An Update.Cells20221115227410.3390/cells1115227435892571
    [Google Scholar]
  12. ShirleyS.H. von MaltzanK. RobbinsP.O. KusewittD.F. Melanocyte and melanoma cell activation by calprotectin.J. Skin Cancer201420141510.1155/2014/84624925197574
    [Google Scholar]
  13. VoglT. GharibyanA.L. Morozova-RocheL.A. Pro-inflammatory S100A8 and S100A9 proteins: self-assembly into multifunctional native and amyloid complexes.Int. J. Mol. Sci.20121332893291710.3390/ijms1303289322489132
    [Google Scholar]
  14. PermyakovS.E. IsmailovR.G. XueB. DenesyukA.I. UverskyV.N. PermyakovE.A. Intrinsic disorder in S100 proteins.Mol. Biosyst.2011772164218010.1039/c0mb00305k21528128
    [Google Scholar]
  15. IshikawaK. NakagawaA. TanakaI. SuzukiM. NishihiraJ. The structure of human MRP8, a member of the S100 calcium-binding protein family, by MAD phasing at 1.9 Å resolution.Acta Crystallogr. D Biol. Crystallogr.200056555956610.1107/S090744490000283310771424
    [Google Scholar]
  16. KällbergE. TahviliS. IvarsF. LeandersonT. Induction of S100A9 homodimer formation in vivo.Biochem. Biophys. Res. Commun.2018500356456810.1016/j.bbrc.2018.04.08629679568
    [Google Scholar]
  17. VoglT. LeukertN. BarczykK. StrupatK. RothJ. Biophysical characterization of S100A8 and S100A9 in the absence and presence of bivalent cations.Biochim. Biophys. Acta Mol. Cell Res.20061763111298130610.1016/j.bbamcr.2006.08.02817050004
    [Google Scholar]
  18. DonatoR. CannonR. B.; Sorci, G.; Riuzzi, F.; Hsu, K.; J. Weber, D.; L. Geczy, C. Functions of S100 Proteins.Curr. Mol. Med.20131312457
    [Google Scholar]
  19. TardifM.R. MontesJ.A. PosvandzicA. PagéN. GilbertC. TessierP.A. Secretion of S100A8, S100A9, and S100A12 by neutrophils involves reactive oxygen species and potassium efflux.J. Immunol. Res.20152015296149
    [Google Scholar]
  20. EhrchenJ.M. SunderkötterC. FoellD. VoglT. RothJ. The endogenous Toll–like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer.J. Leukoc. Biol.200986355756610.1189/jlb.100864719451397
    [Google Scholar]
  21. FritzG. HeizmannC.W.III Structures of the Calcium and Zinc Binding S100 Proteins.Handbook of MetalloproteinsWiley2004
    [Google Scholar]
  22. GilstonB.A. SkaarE.P. ChazinW.J. Binding of transition metals to S100 proteins.Sci. China Life Sci.201659879280110.1007/s11427‑016‑5088‑427430886
    [Google Scholar]
  23. ZygielE.M. NolanE.M. Transition Metal Sequestration by the Host-Defense Protein Calprotectin.Annu. Rev. Biochem.201887162164310.1146/annurev‑biochem‑062917‑01231229925260
    [Google Scholar]
  24. PolakowskaM. SteczkiewiczK. SzczepanowskiR.H. Wysłouch-CieszyńskaA. Toward an understanding of the conformational plasticity of S100A8 and S100A9 Ca2+-binding proteins.J. Biol. Chem.2023299410295210.1016/j.jbc.2023.10295236731796
    [Google Scholar]
  25. WangS. SongR. WangZ. JingZ. WangS. MaJ. S100A8/A9 in Inflammation.Front. Immunol.20189129810.3389/fimmu.2018.0129829942307
    [Google Scholar]
  26. RothJ. BurwinkelF. van den BosC. GoebelerM. VollmerE. SorgC. MRP8 and MRP14, S-100-like proteins associated with myeloid differentiation, are translocated to plasma membrane and intermediate filaments in a calcium-dependent manner.Blood19938261875188310.1182/blood.V82.6.1875.18758400238
    [Google Scholar]
  27. VoglT. LudwigS. GoebelerM. StreyA. ThoreyI.S. ReicheltR. FoellD. GerkeV. ManitzM.P. NackenW. WernerS. SorgC. RothJ. MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes.Blood2004104134260426810.1182/blood‑2004‑02‑044615331440
    [Google Scholar]
  28. LeukertN. VoglT. StrupatK. ReicheltR. SorgC. RothJ. Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity.J. Mol. Biol.2006359496197210.1016/j.jmb.2006.04.00916690079
    [Google Scholar]
  29. KerkhoffC. KlemptM. KaeverV. SorgC. The two calcium-binding proteins, S100A8 and S100A9, are involved in the metabolism of arachidonic acid in human neutrophils.J. Biol. Chem.199927446326723267910.1074/jbc.274.46.3267210551823
    [Google Scholar]
  30. KerkhoffC. VoglT. NackenW. SopallaC. SorgC. Zinc binding reverses the calcium‐induced arachidonic acid‐binding capacity of the S100A8/A9 protein complex.FEBS Lett.1999460113413810.1016/S0014‑5793(99)01322‑810571075
    [Google Scholar]
  31. ThoreyI.S. RothJ. RegenbogenJ. HalleJ.P. BittnerM. VoglT. KaeslerS. BugnonP. ReitmaierB. DurkaS. GrafA. WöcknerM. RiegerN. KonstantinowA. WolfE. GoppeltA. WernerS. The Ca2+-binding proteins S100A8 and S100A9 are encoded by novel injury-regulated genes.J. Biol. Chem.200127638358183582510.1074/jbc.M10487120011463791
    [Google Scholar]
  32. HanC. HuangH. HuM. WangQ. GaoY. LiuY. Time-dependent expression of leukotriene B4 receptors in rat collagen-induced arthritis.Prostaglandins Other Lipid Mediat.200783322523010.1016/j.prostaglandins.2007.01.01117481560
    [Google Scholar]
  33. BenedykM. SopallaC. NackenW. BodeG. MelkonyanH. BanfiB. KerkhoffC. HaCaT keratinocytes overexpressing the S100 proteins S100A8 and S100A9 show increased NADPH oxidase and NF-kappaB activities.J. Invest. Dermatol.200712782001201110.1038/sj.jid.570082017429438
    [Google Scholar]
  34. KerkhoffC. NackenW. BenedykM. DagherM.C. SopallaC. DoussiereJ. The arachidonic acid‐binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67 phox and Rac‐2.FASEB J.200519312810.1096/fj.04‑2377fje15642721
    [Google Scholar]
  35. LimS.Y. RafteryM.J. GoyetteJ. HsuK. GeczyC.L. Oxidative modifications of S100 proteins: functional regulation by redox.J. Leukoc. Biol.200986357758710.1189/jlb.100860819237640
    [Google Scholar]
  36. GhavamiS. RashediI. DattiloB.M. EshraghiM. ChazinW.J. HashemiM. WesselborgS. KerkhoffC. LosM. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway.J. Leukoc. Biol.20088361484149210.1189/jlb.060739718339893
    [Google Scholar]
  37. TurovskayaO. FoellD. SinhaP. VoglT. NewlinR. NayakJ. NguyenM. OlssonA. NawrothP.P. BierhausA. VarkiN. KronenbergM. FreezeH.H. SrikrishnaG. RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis.Carcinogenesis200829102035204310.1093/carcin/bgn18818689872
    [Google Scholar]
  38. VoglT. TenbrockK. LudwigS. LeukertN. EhrhardtC. van ZoelenM.A.D. NackenW. FoellD. van der PollT. SorgC. RothJ. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock.Nat. Med.20071391042104910.1038/nm163817767165
    [Google Scholar]
  39. KerkhoffC. SorgC. TandonN.N. NackenW. Interaction of S100A8/S100A9-arachidonic acid complexes with the scavenger receptor CD36 may facilitate fatty acid uptake by endothelial cells.Biochemistry200140124124810.1021/bi001791k11141076
    [Google Scholar]
  40. RyckmanC. VandalK. RouleauP. TalbotM. TessierP.A. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion.J. Immunol.200317063233324210.4049/jimmunol.170.6.323312626582
    [Google Scholar]
  41. ChengP. CorzoC.A. LuettekeN. YuB. NagarajS. BuiM.M. OrtizM. NackenW. SorgC. VoglT. RothJ. GabrilovichD.I. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein.J. Exp. Med.2008205102235224910.1084/jem.2008013218809714
    [Google Scholar]
  42. Sade-FeldmanM. KantermanJ. Ish-ShalomE. ElnekaveM. HorwitzE. BaniyashM. Tumor necrosis factor-α blocks differentiation and enhances suppressive activity of immature myeloid cells during chronic inflammation.Immunity201338354155410.1016/j.immuni.2013.02.00723477736
    [Google Scholar]
  43. ViemannD. StreyA. JanningA. JurkK. KlimmekK. VoglT. HironoK. IchidaF. FoellD. KehrelB. GerkeV. SorgC. RothJ. Myeloid-related proteins 8 and 14 induce a specific inflammatory response in human microvascular endothelial cells.Blood200510572955296210.1182/blood‑2004‑07‑252015598812
    [Google Scholar]
  44. DeveryJ.M. KingN.J. GeczyC.L. Acute inflammatory activity of the S100 protein CP-10. Activation of neutrophils in vivo and in vitro.J. Immunol.199415241888189710.4049/jimmunol.152.4.18888120396
    [Google Scholar]
  45. ChenB. MillerA.L. RebelattoM. BrewahY. RoweD.C. ClarkeL. CzapigaM. RosenthalK. ImamichiT. ChenY. ChangC.S. ChowdhuryP.S. NaimanB. WangY. YangD. HumblesA.A. HerbstR. SimsG.P. S100A9 induced inflammatory responses are mediated by distinct damage associated molecular patterns (DAMP) receptors in vitro and in vivo.PLoS One2015102e011582810.1371/journal.pone.011582825706559
    [Google Scholar]
  46. GuoQ. WangY. XuD. NossentJ. PavlosN.J. XuJ. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies.Bone Res.2018611510.1038/s41413‑018‑0016‑929736302
    [Google Scholar]
  47. WuY. LiX. WuS. NiuX. YinS. HuangC. LiJ. Role of the S100 protein family in rheumatoid arthritis.Arthritis Res. Ther.20222413510.1186/s13075‑022‑02727‑835101111
    [Google Scholar]
  48. Inciarte-MundoJ. Frade-SosaB. SanmartíR. From bench to bedside: Calprotectin (S100A8/S100A9) as a biomarker in rheumatoid arthritis.Front. Immunol.202213100102510.3389/fimmu.2022.100102536405711
    [Google Scholar]
  49. GreversL.C. de VriesT.J. VoglT. Abdollahi-RoodsazS. SloetjesA.W. LeenenP.J.M. RothJ. EvertsV. van den BergW.B. van LentP.L.E.M. S100A8 enhances osteoclastic bone resorption in vitro through activation of Toll-like receptor 4: Implications for bone destruction in murine antigen-induced arthritis.Arthritis Rheum.20116351365137510.1002/art.3029021337316
    [Google Scholar]
  50. RampersadR.R. EssermanD. McGinnisM.W. LeeD.M. PatelD.D. TarrantT.K. S100A9 is not essential for disease expression in an acute (K/BxN) or chronic (CIA) model of inflammatory arthritis.Scand. J. Rheumatol.200938644544910.3109/0300974090289574319922019
    [Google Scholar]
  51. KoendersM.I. MarijnissenR.J. DevesaI. LubbertsE. JoostenL.A.B. RothJ. van LentP.L.E.M. van de LooF.A. van den BergW.B. Tumor necrosis factor–interleukin‐17 interplay induces S100A8, interleukin‐1β, and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: Rationale for combination treatment during arthritis.Arthritis Rheum.20116382329233910.1002/art.3041821520013
    [Google Scholar]
  52. CesaroA. AncerizN. PlanteA. PagéN. TardifM.R. TessierP.A. An inflammation loop orchestrated by S100A9 and calprotectin is critical for development of arthritis.PLoS One201279e4547810.1371/journal.pone.004547823029038
    [Google Scholar]
  53. VoglT. EisenblätterM. VöllerT. ZenkerS. HermannS. van LentP. FaustA. GeyerC. PetersenB. RoebrockK. SchäfersM. BremerC. RothJ. Alarmin S100A8/S100A9 as a biomarker for molecular imaging of local inflammatory activity.Nat. Commun.201451459310.1038/ncomms559325098555
    [Google Scholar]
  54. KesselC. RothJ. FoellD. VoglT. PReS-FINAL-2340: A pathogenic role for S100A8/A9 in experimental autoimmune arthritis.Pediatr. Rheumatol. Online J.201311S2P33010.1186/1546‑0096‑11‑S2‑P330
    [Google Scholar]
  55. BovinL.F. RieneckK. WorkmanC. NielsenH. SørensenS.F. SkjødtH. FlorescuA. BrunakS. BendtzenK. Blood cell gene expression profiling in rheumatoid arthritis.Immunol. Lett.2004932-321722610.1016/j.imlet.2004.03.01815158620
    [Google Scholar]
  56. ObryA. LequerréT. HardouinJ. BoyerO. FardelloneP. PhilippeP. Le LoëtX. CosetteP. VittecoqO. Identification of S100A9 as biomarker of responsiveness to the methotrexate/etanercept combination in rheumatoid arthritis using a proteomic approach.PLoS One2014912e11580010.1371/journal.pone.011580025546405
    [Google Scholar]
  57. MundoJ. EsquideV. HernándezM.V. CañeteJ.D. VillalbaS.R. RamirezJ. YagüeJ. SanmartiR. Calprotectin more accurately discriminates the disease status of rheumatoid arthritis patients receiving tocilizumab than acute phase reactants.Rheumatology54125410.1093/rheumatology/kev251
    [Google Scholar]
  58. GernertM. SchmalzingM. TonyH.P. StrunzP.P. SchwaneckE.C. FröhlichM. Calprotectin (S100A8/S100A9) detects inflammatory activity in rheumatoid arthritis patients receiving tocilizumab therapy.Arthritis Res. Ther.202224120010.1186/s13075‑022‑02887‑735986420
    [Google Scholar]
  59. OnuoraS. Calprotectin tracks tocilizumab-treated RA.Nat. Rev. Rheumatol.2022181161236163436
    [Google Scholar]
  60. RoszkowskiL. JaszczykB. PlebańczykM. CiechomskaM. S100A8 and S100A12 Proteins as Biomarkers of High Disease Activity in Patients with Rheumatoid Arthritis That Can Be Regulated by Epigenetic Drugs.Int. J. Mol. Sci.202224171010.3390/ijms2401071036614150
    [Google Scholar]
  61. NordalH.H. BrunJ.G. HordvikM. EidsheimM. JonssonR. HalseA-K. Calprotectin (S100A8/A9) and S100A12 are associated with measures of disease activity in a longitudinal study of patients with rheumatoid arthritis treated with infliximab.Scand. J. Rheumatol.201645427428110.3109/03009742.2015.110712826767827
    [Google Scholar]
  62. NordalH.H. FagerholM.K. HalseA.K. HammerH.B. Calprotectin (S100A8/A9) should preferably be measured in EDTA-plasma; results from a longitudinal study of patients with rheumatoid arthritis.Scand. J. Clin. Lab. Invest.2018781-210210810.1080/00365513.2017.141937129278951
    [Google Scholar]
  63. NordalH.H. BrokstadK.A. SolheimM. HalseA.K. KvienT.K. HammerH.B. Calprotectin (S100A8/A9) has the strongest association with ultrasound-detected synovitis and predicts response to biologic treatment: results from a longitudinal study of patients with established rheumatoid arthritis.Arthritis Res. Ther.2017191310.1186/s13075‑016‑1201‑028081709
    [Google Scholar]
  64. HurnakovaJ. ZavadaJ. HanovaP. HulejovaH. KleinM. MannH. SleglovaO. OlejarovaM. ForejtovaS. RuzickovaO. KomarcM. VencovskyJ. PavelkaK. SenoltL. Serum calprotectin (S100A8/9): an independent predictor of ultrasound synovitis in patients with rheumatoid arthritis.Arthritis Res. Ther.201517125210.1186/s13075‑015‑0764‑526373925
    [Google Scholar]
  65. HurnakovaJ. HulejovaH. ZavadaJ. HanovaP. KomarcM. MannH. KleinM. SleglovaO. OlejarovaM. ForejtovaS. RuzickovaO. VencovskyJ. PavelkaK. SenoltL. Relationship between serum calprotectin (S100A8/9) and clinical, laboratory and ultrasound parameters of disease activity in rheumatoid arthritis: A large cohort study.PLoS One2017128e018342010.1371/journal.pone.018342028832684
    [Google Scholar]
  66. Al-BassamW.W. Ad’hiahA.H. MayoufK.Z. Significance of calgranulins (S100A8, S100A9 and S100A12), ferritin and toll-like receptor 4 in juvenile idiopathic arthritis children.Egypt. Rheumatol.202042214715210.1016/j.ejr.2019.08.005
    [Google Scholar]
  67. NysG. CobraivilleG. ServaisA.C. MalaiseM.G. de SenyD. FilletM. Targeted proteomics reveals serum amyloid A variants and alarmins S100A8-S100A9 as key plasma biomarkers of rheumatoid arthritis.Talanta201920450751710.1016/j.talanta.2019.06.04431357327
    [Google Scholar]
  68. ChenY.S. YanW. GeczyC.L. BrownM.A. ThomasR. Serum levels of soluble receptor for advanced glycation end products and of S100 proteins are associated with inflammatory, autoantibody, and classical risk markers of joint and vascular damage in rheumatoid arthritis.Arthritis Res. Ther.2009112R3910.1186/ar264519284577
    [Google Scholar]
  69. Andrés CerezoL. MannH. PechaO. PleštilováL. PavelkaK. VencovskýJ. ŠenoltL. Decreases in serum levels of S100A8/9 (calprotectin) correlate with improvements in total swollen joint count in patients with recent-onset rheumatoid arthritis.Arthritis Res. Ther.2011134R12210.1186/ar342621791097
    [Google Scholar]
  70. Van HoovelsL. Vander CruyssenB. BogaertL. Van den BremtS. BossuytX. Pre-Analytical and Analytical Confounders of Serum Calprotectin as a Biomarker in Rheumatoid Arthritis.2020584049
    [Google Scholar]
  71. YoussefP. RothJ. FroschM. CostelloP. FitzgeraldO. SorgC. BresnihanB. Expression of myeloid related proteins (MRP) 8 and 14 and the MRP8/14 heterodimer in rheumatoid arthritis synovial membrane.J. Rheumatol.199926122523252810606357
    [Google Scholar]
  72. SunahoriK. YamamuraM. YamanaJ. TakasugiK. KawashimaM. YamamotoH. ChazinW.J. NakataniY. YuiS. MakinoH. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis.Arthritis Res. Ther.200683R6910.1186/ar193916613612
    [Google Scholar]
  73. CarriónM. JuarranzY. MartínezC. González-ÁlvaroI. PablosJ.L. Gutiérrez-CañasI. GomarizR.P. IL-22/IL-22R1 axis and S100A8/A9 alarmins in human osteoarthritic and rheumatoid arthritis synovial fibroblasts.Rheumatology (Oxford)201352122177218610.1093/rheumatology/ket31524056519
    [Google Scholar]
  74. BailletA. TrocméC. BerthierS. ArlottoM. GrangeL. ChenauJ. QuétantS. SèveM. BergerF. JuvinR. MorelF. GaudinP. Synovial fluid proteomic fingerprint: S100A8, S100A9 and S100A12 proteins discriminate rheumatoid arthritis from other inflammatory joint diseases.Rheumatology (Oxford)201049467168210.1093/rheumatology/kep45220100792
    [Google Scholar]
  75. PapT. Müller-LadnerU. GayR.E. GayS. Fibroblast biology. Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis.Arthritis Res.20002536136710.1186/ar11311094449
    [Google Scholar]
  76. KangK.Y. WooJ.W. ParkS.H. S100A8/A9 as a biomarker for synovial inflammation and joint damage in patients with rheumatoid arthritis.Korean J. Intern. Med. (Korean. Assoc. Intern. Med.)2014291121910.3904/kjim.2014.29.1.1224574827
    [Google Scholar]
  77. BachM. MoonJ. MooreR. PanT. NelsonJ.L. LoodC. A Neutrophil Activation Biomarker Panel in Prognosis and Monitoring of Patients With Rheumatoid Arthritis.Arthritis Rheumatol.2020721475610.1002/art.4106231353807
    [Google Scholar]
  78. JungN. SchentenV. BuebJ.L. TolleF. BréchardS. miRNAs Regulate Cytokine Secretion Induced by Phosphorylated S100A8/A9 in Neutrophils.Int. J. Mol. Sci.20192022569910.3390/ijms2022569931739406
    [Google Scholar]
  79. HayashiJ. KiharaM. KatoH. NishimuraT. A proteomic profile of synoviocyte lesions microdissected from formalin-fixed paraffin-embedded synovial tissues of rheumatoid arthritis.Clin. Proteomics20151212010.1186/s12014‑015‑9091‑826251654
    [Google Scholar]
  80. SunS. Bay-JensenA.C. KarsdalM.A. SiebuhrA.S. ZhengQ. MaksymowychW.P. ChristiansenT.G. HenriksenK. The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases.BMC Musculoskelet. Disord.20141519310.1186/1471‑2474‑15‑9324641725
    [Google Scholar]
  81. NeflaM. HolzingerD. BerenbaumF. JacquesC. The danger from within: alarmins in arthritis.Nat. Rev. Rheumatol.2016121166968310.1038/nrrheum.2016.16227733758
    [Google Scholar]
  82. YaoQ. WuX. TaoC. GongW. ChenM. QuM. ZhongY. HeT. ChenS. XiaoG. Osteoarthritis: pathogenic signaling pathways and therapeutic targets.Signal Transduct. Target. Ther.2023815610.1038/s41392‑023‑01330‑w36737426
    [Google Scholar]
  83. LambertC. ZappiaJ. SanchezC. FlorinA. DubucJ.E. HenrotinY. The Damage-Associated Molecular Patterns (DAMPs) as Potential Targets to Treat Osteoarthritis: Perspectives From a Review of the Literature.Front. Med. (Lausanne)2021760718610.3389/fmed.2020.60718633537330
    [Google Scholar]
  84. van DalenS.C.M. KruisbergenN.N.L. WalgreenB. HelsenM.M.A. SlöetjesA.W. CremersN.A.J. KoendersM.I. van de LooF.A.J. RothJ. VoglT. BlomA.B. van der KraanP.M. van LentP.L.E.M. van den BoschM.H.J. The role of NOX2-derived reactive oxygen species in collagenase-induced osteoarthritis.Osteoarthritis Cartilage201826121722173210.1016/j.joca.2018.08.01430195046
    [Google Scholar]
  85. RosenbergJ.H. RaiV. DilisioM.F. SekundiakT.D. AgrawalD.K. Increased expression of damage-associated molecular patterns (DAMPs) in osteoarthritis of human knee joint compared to hip joint.Mol. Cell. Biochem.20174361-2596910.1007/s11010‑017‑3078‑x28573383
    [Google Scholar]
  86. ZreiqatH. BelluoccioD. SmithM.M. WilsonR. RowleyL.A. JonesK. RamaswamyY. VoglT. RothJ. BatemanJ.F. LittleC.B. S100A8 and S100A9 in experimental osteoarthritis.Arthritis Res. Ther.2010121R1610.1186/ar291720105291
    [Google Scholar]
  87. van LentP.L.E.M. BlomA.B. SchelbergenR.F.P. SlöetjesA. LafeberF.P.J.G. LemsW.F. CatsH. VoglT. RothJ. van den BergW.B. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis.Arthritis Rheum.20126451466147610.1002/art.3431522143922
    [Google Scholar]
  88. SchelbergenR.F. van DalenS. ter HuurneM. RothJ. VoglT. NoëlD. JorgensenC. van den BergW.B. van de LooF.A. BlomA.B. van LentP.L.E.M. Treatment efficacy of adipose-derived stem cells in experimental osteoarthritis is driven by high synovial activation and reflected by S100A8/A9 serum levels.Osteoarthritis Cartilage20142281158116610.1016/j.joca.2014.05.02224928317
    [Google Scholar]
  89. GevenE.J. DavidsonE.N.B. VittersE.L. SloetjesA.W. WalgreenB. BlomA.B. van LentP.L. The role of S100A9 in pain response during experimentally induced acute synovitis.Osteoarthritis Cartilage201725S38010.1016/j.joca.2017.02.649
    [Google Scholar]
  90. BlomA.B. van den BoschM.H. Blaney DavidsonE.N. RothJ. VoglT. van de LooF.A. KoendersM. van der KraanP.M. GevenE.J. van LentP.L. The alarmins S100A8 and S100A9 mediate acute pain in experimental synovitis.Arthritis Res. Ther.202022119910.1186/s13075‑020‑02295‑932854769
    [Google Scholar]
  91. van den BoschM.H. BlomA.B. SchelbergenR.F.P. VoglT. RothJ.P. SlöetjesA.W. van den BergW.B. van der KraanP.M. van LentP.L.E.M. Induction of Canonical Wnt Signaling by the Alarmins S100A8/A9 in Murine Knee Joints: Implications for Osteoarthritis.Arthritis Rheumatol.201668115216310.1002/art.3942026360647
    [Google Scholar]
  92. de MunterW. van den BoschM.H.J. SloetjesA.W. VoglT. RothJ. van der KraanP.M. van den BergW.B. van LentP.L.E.M. A9.13 Systemic LDL cholesterol-accumulation during experimental oa leads to increased synovial thickening, s100a8/9 production and ectopic bone formation.Ann. Rheum. Dis.201473A97
    [Google Scholar]
  93. van DalenS.C.M. BlomA.B. SlöetjesA.W. HelsenM.M.A. RothJ. VoglT. van de LooF.A.J. KoendersM.I. van der KraanP.M. van den BergW.B. van den BoschM.H.J. van LentP.L.E.M. Interleukin-1 is not involved in synovial inflammation and cartilage destruction in collagenase-induced osteoarthritis.Osteoarthritis Cartilage201725338539610.1016/j.joca.2016.09.00927654963
    [Google Scholar]
  94. CremersN.A.J. van den BoschM.H.J. van DalenS. Di CeglieI. AsconeG. van de LooF. KoendersM. van der KraanP. SloetjesA. VoglT. RothJ. GevenE.J.W. BlomA.B. van LentP.L.E.M. S100A8/A9 increases the mobilization of pro-inflammatory Ly6Chigh monocytes to the synovium during experimental osteoarthritis.Arthritis Res. Ther.201719121710.1186/s13075‑017‑1426‑628969686
    [Google Scholar]
  95. WangY. WuC. TaoJ. ZhaoD. JiangX. TianW. Differential proteomic analysis of tibial subchondral bone from male and female guinea pigs with spontaneous osteoarthritis.Exp. Ther. Med.202121663310.3892/etm.2021.1006533968164
    [Google Scholar]
  96. SchelbergenR.F.P. BlomA.B. MunterW. de SloetjesA. VoglT. RothJ. BergW.B. van den LentP. van A8.1 alarmins S100A8/A9 cause osteophyte formation in experimental osteoarthritis with high synovial involvement.Ann. Rheum. Dis.201372A57
    [Google Scholar]
  97. SchelbergenR.F.P. de MunterW. van den BoschM.H.J. LafeberF.P.J.G. SloetjesA. VoglT. RothJ. van den BergW.B. van der KraanP.M. BlomA.B. van LentP.L.E.M. Alarmins S100A8/S100A9 aggravate osteophyte formation in experimental osteoarthritis and predict osteophyte progression in early human symptomatic osteoarthritis.Ann. Rheum. Dis.201675218
    [Google Scholar]
  98. RuanG. XuJ. WangK. ZhengS. WuJ. RenJ. BianF. ChangB. ZhuZ. HanW. DingC. Associations between serum S100A8/S100A9 and knee symptoms, joint structures and cartilage enzymes in patients with knee osteoarthritis.Osteoarthritis Cartilage20192719910510.1016/j.joca.2018.08.02030240939
    [Google Scholar]
  99. Abd ElsameaM.H. MahranS.A. BadrA.N. KamalD.T. KhidreT.M. Evaluation of serum calprotectin level as a biomarker of disease activity in rheumatoid arthritis and osteoarthritis patients.Egypt. Rheumatol.202244318519010.1016/j.ejr.2021.12.006
    [Google Scholar]
  100. van den BoschM.H. BlomA.B. SchelbergenR.F. KoendersM.I. van de LooF.A. van den BergW.B. VoglT. RothJ. van der KraanP.M. van LentP.L. Alarmin S100A9 induces proinflammatory and catabolic effects predominantly in the m1 macrophages of human osteoarthritic Synovium.J. Rheumatol.201643187410.3899/jrheum.160270
    [Google Scholar]
  101. van den BoschM.H. BlomA.B. HoekP. SchelbergenR.F. van den BergW.B. van der KraanP.M. van LentP.L. S100 proteins induce canonical Wnt signaling, which causes increased expression of MMPs in the synovium.Osteoarthritis Cartilage201523A49A5010.1016/j.joca.2015.02.107
    [Google Scholar]
  102. LambertC. DubucJ.E. MontellE. VergésJ. MunautC. NoëlA. HenrotinY. Gene expression pattern of cells from inflamed and normal areas of osteoarthritis synovial membrane.Arthritis Rheumatol.201466496096810.1002/art.3831524757147
    [Google Scholar]
  103. AulinC. LarssonS. VoglT. RothJ. ÅkessonA. SwärdP. HeinbäckR. Erlandsson HarrisH. StruglicsA. The alarmins high mobility group box protein 1 and S100A8/A9 display different inflammatory profiles after acute knee injury.Osteoarthritis Cartilage20223091198120910.1016/j.joca.2022.06.00935809846
    [Google Scholar]
  104. YangH.Y. ChuangS.Y. FangW.H. HuangG.S. WangC.C. HuangY.Y. ChuM.Y. LinC. SuW. ChenC.Y. YangY.T. SuS.L. Effect of RAGE polymorphisms on susceptibility to and severity of osteoarthritis in a Han Chinese population: a case-control study.Genet. Mol. Res.2015143113621137010.4238/2015.September.25.326436377
    [Google Scholar]
  105. SchelbergenR.F.P. BlomA.B. van den BoschM.H.J. SlöetjesA. Abdollahi-RoodsazS. SchreursB.W. MortJ.S. VoglT. RothJ. van den BergW.B. van LentP.L.E.M. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll‐like receptor 4.Arthritis Rheum.20126451477148710.1002/art.3349522127564
    [Google Scholar]
  106. BjörkP. BjörkA. VoglT. StenströmM. LibergD. OlssonA. RothJ. IvarsF. LeandersonT. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides.PLoS Biol.200974e100009710.1371/journal.pbio.100009719402754
    [Google Scholar]
  107. SchelbergenR.F. BlomA.B. LeandersonT. ErikssonH. van den BergW.B. van der KraanP.M. van LentP.L. The S100A9 inhibitor paquinimod (ABR-215757) reduces synovial activation, osteophyte formation and cartilage damage in experimental osteoarthritis.Osteoarthritis Cartilage201422S482S48310.1016/j.joca.2014.02.916
    [Google Scholar]
  108. SchelbergenR.F. GevenE.J. van den BoschM.H.J. ErikssonH. LeandersonT. VoglT. RothJ. van de LooF.A.J. KoendersM.I. van der KraanP.M. van den BergW.B. BlomA.B. van LentP.L.E.M. Prophylactic treatment with s100a9 inhibitor paquinimod reduces pathology in experimental collagenase-induced osteoarthritis.Ann. Rheum. Dis.201574225410.1136/annrheumdis‑2014‑206517
    [Google Scholar]
/content/journals/cp/10.2174/0115701646347924241111071800
Loading
/content/journals/cp/10.2174/0115701646347924241111071800
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): chemotaxis; DAMP; myeloid; osteoarthritis; rheumatoid arthritis; S100A8; S100A9
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test