Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Abiotic stress, including drought, salinity, extreme temperatures, and light intensity, profoundly affects plant growth and development. Plants being sessile cannot escape the stress conditions, thus have developed either evading or tolerance mechanisms during evolution. In plants several processes are affected by drought . there is inhibition of growth, reduction in photosynthesis, and yield, and increased membrane damage. Plants respond to drought or tolerate stress by downregulation of growth, photosynthetic machinery and membrane fluidity, increased cuticle thickness, osmolyte accumulation, increased defense chemicals, and secondary metabolites, and stress responding proteins . Late Embryogenic Abundance and Heat Shock proteins . The root architecture is elaborated, and leaf rolling occurs. Futher, there is an increase in the cell's antioxidant potential and antioxidant enzyme activity. Most of these mechanisms are investigated using proteomics and protein techniques. With the advent of sensitive proteomics techniques and the availability of databases for several plants, proteomics experiments have become routine in stress based studies. Current review highlights the modulation in the photosynthetic and chloroplastic proteins in higher plants that proteomics studies have revealed, in response to stress treatment. It specifically discusses the latest developments in terms of protein changes in leaves or other tissues. Moreover, it further discusses the future role of proteomics studies in elucidating stress mechanisms in plants.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646347647241211211906
2025-01-09
2025-09-03
Loading full text...

Full text loading...

References

  1. ClaeysH. InzéD. The agony of choice: How plants balance growth and survival under water-limiting conditions.Plant Physiol.201316241768177910.1104/pp.113.22092123766368
    [Google Scholar]
  2. KausarR. WangX. KomatsuS. Crop proteomics under abiotic stress: From data to insights.Plants20221121287710.3390/plants1121287736365330
    [Google Scholar]
  3. DalalV.K. Impact of urban ecology and related stresses on photosynthetic activities of plants.J Plant Biol Crop Res2021421044
    [Google Scholar]
  4. SharmaA. KumarV. ShahzadB. RamakrishnanM. SidhuS.G.P. BaliA.S. HandaN. KapoorD. YadavP. KhannaK. BakshiP. RehmanA. KohliS.K. KhanE.A. PariharR.D. YuanH. ThukralA.K. BhardwajR. ZhengB. Photosynthetic response of plants under different abiotic stresses: A review.J. Plant Growth Regul.202039250953110.1007/s00344‑019‑10018‑x
    [Google Scholar]
  5. HussainS. UlhassanZ. BresticM. ZivcakM. ZhouW. AllakhverdievS.I. YangX. SafdarM.E. YangW. LiuW. Photosynthesis research under climate change.Photosynth. Res.20211501-351910.1007/s11120‑021‑00861‑z34235625
    [Google Scholar]
  6. MittlerR. FinkaA. GoloubinoffP. How do plants feel the heat?Trends Biochem. Sci.201237311812510.1016/j.tibs.2011.11.00722236506
    [Google Scholar]
  7. KwonK.C. VermaD. JinS. SinghN.D. DaniellH. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.PLoS One201386e6710610.1371/journal.pone.006710623799142
    [Google Scholar]
  8. LuY. YaoJ. Chloroplasts at the crossroad of photosynthesis, pathogen infection and plant defense.Int. J. Mol. Sci.20181912390010.3390/ijms1912390030563149
    [Google Scholar]
  9. DalalV.K. Modulation of photosynthesis and other proteins during water–stress.Mol. Biol. Rep.20214843681369310.1007/s11033‑021‑06329‑633856605
    [Google Scholar]
  10. PengZ. WangM. LiF. LvH. LiC. XiaG. A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat.Mol. Cell. Proteomics20098122676268610.1074/mcp.M900052‑MCP20019734139
    [Google Scholar]
  11. ZhuD. LuoF. ZouR. LiuJ. YanY. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses.J. Proteomics202123410409710.1016/j.jprot.2020.10409733401000
    [Google Scholar]
  12. GoussiR. ManfrediM. MarengoE. DerbaliW. CantamessaS. BarbatoR. ManaaA. Thylakoid proteome variation of Eutrema salsugineum in response to drought and salinity combined stress.Biochim. Biophys. Acta Bioenerg.202118621214848210.1016/j.bbabio.2021.14848234418359
    [Google Scholar]
  13. DalalV.K. TripathyB.C. Water-stress induced downsizing of light-harvesting antenna complex protects developing rice seedlings from photo-oxidative damage.Sci. Rep.201881595510.1038/s41598‑017‑14419‑429654242
    [Google Scholar]
  14. AbidG. JebaraM. DebodeF. VertommenD. RuysS.P. GhouiliE. JebaraS.H. OuertaniR.N. AyedE.M. de OliveiraA.C. MuhovskiY. Comparative physiological, biochemical and proteomic analyses reveal key proteins and crucial regulatory pathways related to drought stress tolerance in faba bean (Vicia faba L.) leaves.Curr. Plant Biol.20243710032010.1016/j.cpb.2024.100320
    [Google Scholar]
  15. FanK. T. XuY. Unraveling proteomic adaptations to moderate heat stress in Arabidopsis thaliana: Insights for developing thermotolerant crops.ResearchGate202412610.21203/rs.3.rs‑4351529/v1
    [Google Scholar]
  16. ZhangJ. SunW. LiZ. LiangY. SongA. Cadmium fate and tolerance in rice cultivars.Agron. Sustain. Dev.200929348349010.1051/agro/2009008
    [Google Scholar]
  17. SharmaA. KapoorD. GautamS. LandiM. KandholN. AranitiF. RamakrishnanM. SatishL. SinghV.P. SharmaP. BhardwajR. TripathiD.K. ZhengB. Heavy metal induced regulation of plant biology: Recent insights.Physiol. Plant.20221743e1368810.1111/ppl.1368835470470
    [Google Scholar]
  18. SemaneB. DupaeJ. CuypersA. NobenJ.P. TuomainenM. TervahautaA. KärenlampiS. BelleghemV.F. SmeetsK. VangronsveldJ. Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress.J. Plant Physiol.2010167424725410.1016/j.jplph.2009.09.01520005002
    [Google Scholar]
  19. TammamA.A. ShehataR.A.M.M. PessarakliM. AgganE.W.H. Vermicompost and its role in alleviation of salt stress in plants – I. Impact of vermicompost on growth and nutrient uptake of salt-stressed plants.J. Plant Nutr.20234671446145710.1080/01904167.2022.2072741
    [Google Scholar]
  20. TianL.R. ChenJ.H. Photosystem I: A paradigm for understanding biological environmental adaptation mechanisms in cyanobacteria and algae.Int. J. Mol. Sci.20242516876710.3390/ijms2516876739201454
    [Google Scholar]
  21. TimperioA.M. EgidiM.G. ZollaL. Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP).J. Proteomics200871439141110.1016/j.jprot.2008.07.00518718564
    [Google Scholar]
  22. AhsanN. RenautJ. KomatsuS. Recent developments in the application of proteomics to the analysis of plant responses to heavy metals.Proteomics20099102602262110.1002/pmic.20080093519405030
    [Google Scholar]
  23. NoorZ. AhnS.B. BakerM.S. RanganathanS. MohamedaliA. Mass spectrometry–based protein identification in proteomics—A review.Brief. Bioinform.20212221620163810.1093/bib/bbz16332047889
    [Google Scholar]
  24. MergnerJ. KusterB. Plant proteome dynamics.Annu. Rev. Plant Biol.2022731679210.1146/annurev‑arplant‑102620‑03130835138880
    [Google Scholar]
  25. ChristopherJ.A. StadlerC. MartinC.E. MorgensternM. PanY. BetsingerC.N. RattrayD.G. MahdessianD. GingrasA.C. WarscheidB. LehtiöJ. CristeaI.M. FosterL.J. EmiliA. LilleyK.S. Subcellular proteomics.Nat. Rev. Meth. Prim.2021113210.1038/s43586‑021‑00029‑y34549195
    [Google Scholar]
  26. VistainL.F. TayS. Single-cell proteomics.Trends Biochem. Sci.202146866167210.1016/j.tibs.2021.01.01333653632
    [Google Scholar]
  27. MehtaD. ScandolaS. UhrigR.G. Direct data-independent acquisition (direct DIA) enables substantially improved label-free quantitative proteomics in Arabidopsis.bioRxiv202010.1101/2020.11.07.372276
    [Google Scholar]
  28. FanK.T. WangK.H. ChangW.H. YangJ.C. YehC.F. ChengK.T. HungS.C. ChenY.R. Application of data-independent acquisition approach to study the proteome change from early to later phases of tomato pathogenesis responses.Int. J. Mol. Sci.201920486310.3390/ijms2004086330781546
    [Google Scholar]
  29. MustafaG. KomatsuS. Plant proteomic research for improvement of food crops under stresses: A review.Mol. Omics202117686088010.1039/D1MO00151E34870299
    [Google Scholar]
  30. QinS. QinS. TianZ. Comprehensive site- and structure-specific characterization of N-glycosylation in model plant Arabidopsis using mass-spectrometry-based N-glycoproteomics.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2022119812323410.1016/j.jchromb.2022.12323435421698
    [Google Scholar]
  31. LiuC. NiuG. LiX. ZhangH. ChenH. HouD. LanP. HongZ. Comparative label-free quantitative proteomics analysis reveals the essential roles of N-glycans in salt tolerance by modulating protein abundance in Arabidopsis. Front. Plant Sci.20211264642510.3389/fpls.2021.64642534276718
    [Google Scholar]
  32. ChongL. HsuC.C. ZhuY. Advances in mass spectrometry-based phosphoproteomics for elucidating abscisic acid signaling and plant responses to abiotic stress.J. Exp. Bot.202273196547655710.1093/jxb/erac32435959917
    [Google Scholar]
  33. SubbaP. PrasadT.S.K. Plant phosphoproteomics: Known knowns, known unknowns, and unknown unknowns of an emerging systems science frontier.OMICS2021251275076910.1089/omi.2021.019234882020
    [Google Scholar]
  34. KhodabocusI. LiQ. MehtaD. UhrigR.G. A road map for undertaking quantitative proteomics in plants: New opportunities for cereal crops.Accelerated Breeding of Cereal CropsNew York, NYSpringer2021269292
    [Google Scholar]
  35. RenW. ShiZ. ZhouM. ZhaoB. LiH. WangJ. LiuY. ZhaoJ. iTRAQ-based quantitative proteomic analysis provides insight into the drought-stress response in maize seedlings.Sci. Rep.2022121952010.1038/s41598‑022‑13110‑735681021
    [Google Scholar]
  36. CorralE.R. SchwenkertS. LundquistP.K. Molecular changes of Arabidopsis thaliana plastoglobules facilitate thylakoid membrane remodeling under high light stress.Plant J.202110661571158710.1111/tpj.1525333783866
    [Google Scholar]
  37. United NationsAround 68% of the world population is expected to live in cities by 2050.Available from: www.un.org [Accessed on: Aug].2024
  38. KleerekoperL. van EschM. SalcedoT.B. How to make a city climate-proof, addressing the urban heat island effect.Resour. Conserv. Recycling201264303810.1016/j.resconrec.2011.06.004
    [Google Scholar]
  39. GillS.E. HandleyJ.F. EnnosA.R. PauleitS. Adapting cities for climate change: The role of the green infrastructure.Built Environ.200733111513310.2148/benv.33.1.115
    [Google Scholar]
  40. FellerU. VasevaI.I. Extreme climatic events: Impacts of drought and high temperature on physiological processes in agronomically important plants.Front. Environ. Sci.201423910.3389/fenvs.2014.00039
    [Google Scholar]
  41. QianW. ZhuY. ChenQ. WangS. ChenL. LiuT. TangH. YaoH. Comprehensive metabolomic and lipidomic alterations in response to heat stress during seed germination and seedling growth of Arabidopsis.Front. Plant Sci.202314113288110.3389/fpls.2023.113288137063208
    [Google Scholar]
  42. KhanZ. ShahwarD. Role of heat shock proteins (HSPs) and heat stress tolerance in crop plants.Sustainable agriculture in the era of climate change202021123410.1007/978‑3‑030‑45669‑6_9
    [Google Scholar]
  43. JiangC. BiY. MoJ. ZhangR. QuM. FengS. EssemineJ. Proteome and transcriptome reveal the involvement of heat shock proteins and antioxidant system in thermotolerance of Clematis florida.Sci. Rep.2020101888310.1038/s41598‑020‑65699‑232483281
    [Google Scholar]
  44. TewariK.A. TripathyC.B. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat.Plant Physiol.19981173851858.45
    [Google Scholar]
  45. DuttaS. MohantyS. TripathyB.C. Role of temperature stress on chloroplast biogenesis and protein import in pea.Plant Physiol.2009150210501061
    [Google Scholar]
  46. BernfurK. RutsdottirG. EmanuelssonC. The chloroplast‐localized small heat shock protein Hsp21 associates with the thylakoid membranes in heat‐stressed plants.Protein Sci.20172691773178410.1002/pro.321328608391
    [Google Scholar]
  47. RütgersM. MuranakaL.S. MühlhausT. SommerF. ThomsS. SchurigJ. WillmundF. RaffeltS.M. SchrodaM. Substrates of the chloroplast small heat shock proteins 22E/F point to thermolability as a regulative switch for heat acclimation in Chlamydomonas reinhardtii.Plant Mol. Biol.201795657959110.1007/s11103‑017‑0672‑y29094278
    [Google Scholar]
  48. WangZ. ShenY. YangX. PanQ. MaG. BaoM. ZhengB. DuanmuD. LinR. LarkinR.M. NingG. Overexpression of particular MADS‐box transcription factors in heat‐stressed plants induces chloroplast biogenesis in petals.Plant Cell Environ.20194251545156010.1111/pce.1347230375658
    [Google Scholar]
  49. NingG. YanX. ChenH. DongR. ZhangW. RuanY. WangW. BaoM. DaniellH. JinS. Genetic manipulation of Soc1 ‐like genes promotes photosynthesis in flowers and leaves and enhances plant tolerance to high temperature.Plant Biotechnol. J.202119181010.1111/pbi.1343232544290
    [Google Scholar]
  50. LvY. ShaoG. QiuJ. JiaoG. ShengZ. XieL. WuY. TangS. WeiX. HuP. White Leaf and Panicle 2, encoding a PEP-associated protein, is required for chloroplast biogenesis under heat stress in rice.J. Exp. Bot.201768185147516010.1093/jxb/erx33229045742
    [Google Scholar]
  51. WangG. KongF. ZhangS. MengX. WangY. MengQ. A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress.J. Exp. Bot.201566113027304010.1093/jxb/erv10225801077
    [Google Scholar]
  52. StoneS.L. The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling.Front. Plant Sci.2014513510.3389/fpls.2014.0013524795732
    [Google Scholar]
  53. ScafaroA.P. HaynesP.A. AtwellB.J. Physiological and molecular changes in Oryza meridionalis Ng., a heat-tolerant species of wild rice.J. Exp. Bot.201061119120210.1093/jxb/erp29419819927
    [Google Scholar]
  54. ShenH. ZhongX. ZhaoF. WangY. YanB. LiQ. ChenG. MaoB. WangJ. LiY. XiaoG. HeY. XiaoH. LiJ. HeZ. Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato.Nat. Biotechnol.2015339996100310.1038/nbt.332126280413
    [Google Scholar]
  55. TammamA.A. AlsherbiniA.A. AliR.M. Vermicompost ameliorates heat stress in broad bean leaves by upregulating plastocyanin and chloroplastic ferredoxin-NADP reductase.Environ. Exp. Bot.2022a194104699
    [Google Scholar]
  56. MondalS. KarmakarS. PandaD. PramanikK. BoseB. SinghalR.K. Crucial plant processes under heat stress and tolerance through heat shock proteins.Plant Stress20231010022710.1016/j.stress.2023.100227
    [Google Scholar]
  57. YadavA. SinghJ. RanjanK. KumarP. KhannaS. GuptaM. SirohiA. Heat shock proteins: Master players for heat‐stress tolerance in plants during climate change.Heat stress tolerance in plants: Physiological, molecular and genetic perspectives202018921110.1002/9781119432401.ch9
    [Google Scholar]
  58. GuimarãesG.L. PinheiroC. OliveiraA.S.F. JoverM.A. ValverdeJ. GuedesF.A.F. AzevedoH. VárzeaV. PajaresM.A.J. The chloroplast protein HCF164 is predicted to be associated with Coffea SH9 resistance factor against Hemileia vastatrix.Sci. Rep.20231311601910.1038/s41598‑023‑41950‑437749157
    [Google Scholar]
  59. CzajaM. KołtonA. MurasP. The complex issue of urban trees—Stress factor accumulation and ecological service possibilities.Forests202011993210.3390/f11090932
    [Google Scholar]
  60. DalalV.K. TripathyB.C. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis.Plant Cell Environ.20123591685170310.1111/j.1365‑3040.2012.02520.x22494411
    [Google Scholar]
  61. TripathyB.C. OelmüllerR. Reactive oxygen species generation and signaling in plants.Plant Signal. Behav.20127121621163310.4161/psb.2245523072988
    [Google Scholar]
  62. JainP. PandeyB. RathoreS.S. PrakashA. SinghP. SachanA. SinghA.K. Crop plants, abiotic stress, reactive oxygen species production, signaling, and their consequences.Augmenting Crop Productivity in Stress EnvironmentSpringer NatureSingapore202211512610.1007/978‑981‑16‑6361‑1_7
    [Google Scholar]
  63. UrbanJ. MatouškováM. RobbW. JelínekB. ÚradníčekL. Effect of drought on photosynthesis of trees and shrubs in habitat corridors.Forests2023148152110.3390/f14081521
    [Google Scholar]
  64. YuX. JamesA.T. YangA. JonesA. PorrasM.O. BétrixC.A. MaH. ColgraveM.L. A comparative proteomic study of drought-tolerant and drought-sensitive soybean seedlings under drought stress.Crop Pasture Sci.201667552854010.1071/CP15314
    [Google Scholar]
  65. IshigaY. IshigaT. IkedaY. MatsuuraT. MysoreK.S. NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against Pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species.PeerJ20164e193810.7717/peerj.193827168965
    [Google Scholar]
  66. AhmadP. LatefA.A.A.H. RasoolS. AkramN.A. AshrafM. GucelS. Role of proteomics in crop stress tolerance.Front. Plant Sci.20167133610.3389/fpls.2016.0133627660631
    [Google Scholar]
  67. GayenD. BaruaP. LandeN.V. VarshneyS. SenguptaS. ChakrabortyS. ChakrabortyN. Dehydration-responsive alterations in the chloroplast proteome and cell metabolomic profile of rice reveals key stress adaptation responses.Environ. Exp. Bot.2019160122410.1016/j.envexpbot.2019.01.003
    [Google Scholar]
  68. XuY.H. LiuR. YanL. LiuZ.Q. JiangS.C. ShenY.Y. WangX.F. ZhangD.P. Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis.J. Exp. Bot.20126331095110610.1093/jxb/err31522143917
    [Google Scholar]
  69. ZhangC. YangR. ZhangT. ZhengD. LiX. ZhangZ.B. LiL.G. WuZ.Y. ZmTIFY16, a novel maize TIFY transcription factor gene, promotes root growth and development and enhances drought and salt tolerance in Arabidopsis and Zea mays.Plant Growth Regul.2023100114916010.1007/s10725‑022‑00946‑2
    [Google Scholar]
  70. RenZ. FuJ. ElwafaA.S.F. KuL. XieX. LiuZ. ShaoJ. WenP. AboudA.N.M. SuH. WangT. WeiL. Analysis of the molecular mechanisms regulating how ZmEREB24 improves drought tolerance in maize (Zea mays) seedlings.Plant Physiol. Biochem.202420710829210.1016/j.plaphy.2023.10829238215602
    [Google Scholar]
  71. YooY.H. ChandranN.A.K. ParkJ.C. GhoY.S. LeeS.W. AnG. JungK.H. OsPhyB-mediating novel regulatory pathway for drought tolerance in rice root identified by a global RNA-Seq transcriptome analysis of rice genes in response to water deficiencies.Front. Plant Sci.2017858010.3389/fpls.2017.0058028491065
    [Google Scholar]
  72. NawazG. LeeK. ParkS.J. KimY.O. KangH. A chloroplast-targeted cabbage DEAD-box RNA helicase BrRH22 confers abiotic stress tolerance to transgenic Arabidopsis plants by affecting translation of chloroplast transcripts.Plant Physiol. Biochem.201812733634210.1016/j.plaphy.2018.04.00729653436
    [Google Scholar]
  73. HanJ. GuL. WarrenJ.M. GuhaA. MclennanD.A. ZhangW. ZhangY. The roles of photochemical and non-photochemical quenching in regulating photosynthesis depend on the phases of fluctuating light conditions.Tree Physiol.202242484886110.1093/treephys/tpab13334617116
    [Google Scholar]
  74. ShiY. KeX. YangX. LiuY. HouX. Plants response to light stress.J. Genet. Genomics202249873574710.1016/j.jgg.2022.04.01735580763
    [Google Scholar]
  75. BjörnL.O. ShevelaD. GovindjeeG. What is photosynthesis?—A broader and inclusive view.A closer look at photosynthesisNova Science PublishersNY, USA2023143
    [Google Scholar]
  76. GuddimalliR. SomanaboinaA.K. PalleS.R. EdupugantiS. KummariD. PalakolanuS.R. NaravulaJ. GandraJ. QureshiI.A. MarkaN. PolavarapuR. Kavi KishorP.B. Overexpression of RNA ‐binding bacterial chaperones in rice leads to stay‐green phenotype, improved yield and tolerance to salt and drought stresses.Physiol. Plant.202117341351136810.1111/ppl.1336933583030
    [Google Scholar]
  77. XiaoY. SavitchL.V. LabbéC. HunerN.P. Dynamic redox-based regulation of the photosynthetic machinery in Arabidopsis thaliana under fluctuating light conditions.Plant Physiol.2022188423052319
    [Google Scholar]
  78. GaoJ. LiuZ. ZhaoB. LiuP. ZhangJ.W. Physiological and comparative proteomic analysis provides new insights into the effects of shade stress in maize (Zea mays L.).BMC Plant Biol.20202016010.1186/s12870‑020‑2264‑232024458
    [Google Scholar]
  79. AbhijitaS. DalalV.K. MisraA.N. The effects of light quality and quantity on photosynthesis.A closer look at photosynthesis DalalVK MisraAN Nova Science PublishersHauppauge, USA2023
    [Google Scholar]
  80. BednarczykD. Aviv-SharonE. SavidorA. LevinY. CharuviD. Influence of short-term exposure to high light on photosynthesis and proteins involved in photo-protective processes in tomato leaves.Environ. Exp. Bot.202017910419810.1016/j.envexpbot.2020.104198
    [Google Scholar]
  81. ChenM. JiM. WenB. LiuL. LiS. ChenX. GaoD. LiL. GOLDEN 2-LIKE transcription factors of plants.Front. Plant Sci.20167150910.3389/fpls.2016.0150927757121
    [Google Scholar]
  82. RichterA.S. NägeleT. GrimmB. KaufmannK. SchrodaM. LeisterD. KleineT. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond.Plant Commun.20234110051110.1016/j.xplc.2022.10051136575799
    [Google Scholar]
  83. WoodsonJ.D. ChoryJ. Coordination of gene expression between organellar and nuclear genomes.Nat. Rev. Genet.2011121066367518368053
    [Google Scholar]
  84. MustafaG. AkhtarM.S. AbdullahR. Global concern for salinity on various agro-ecosystems.Salt Str. Micr. Plant Int. Caus. Sol.20191119
    [Google Scholar]
  85. WitzelK. WeidnerA. SurabhiG.K. BörnerA. MockH.P. Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity.J. Exp. Bot.200960123545355710.1093/jxb/erp19819671579
    [Google Scholar]
  86. ZörbC. GeilfusC.M. MühlingK.H. DietzK.J. Proteomic changes in maize roots after short-term adjustment to saline growth conditions.Proteomics20099184209422019688749
    [Google Scholar]
  87. WuX. GongF. CaoD. HuX. WangW. Advances in crop proteomics: PTMs of proteins under abiotic stress.Plant Physiol. Biochem.20161465570
    [Google Scholar]
  88. FrukhA. SiddiqiT.O. KhanM.I.R. AhmadA. Modulation in growth, biochemical attributes and proteome profile of rice cultivars under salt stress.Plant Physiol. Biochem.20201465570
    [Google Scholar]
  89. JiangY. YangB. HarrisN.S. DeyholosM.K. Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots.J. Exp. Bot.200758133591360710.1093/jxb/erm20717916636
    [Google Scholar]
  90. GuoM. LiH. LiL. ChengX. GaoW. XuY. ZhouC. LiuF. LiuX. Comparative proteomic analysis of Arabidopsis thaliana roots between wild type and its salt-tolerant mutant.J. Plant Interact.20149133033710.1080/17429145.2013.833653
    [Google Scholar]
  91. TuranS. TripathyB.C. Salt‐stress induced modulation of chlorophyll biosynthesis during de‐etiolation of rice seedlings.Physiol. Plant.2015153347749110.1111/ppl.1225025132047
    [Google Scholar]
  92. KandoiD. TripathyB.C. Overexpression of chloroplastic Zea mays NADP-malic enzyme (ZmNADP-ME) confers tolerance to salt stress in Arabidopsis thaliana.Photosynth. Res.20231581577610.1007/s11120‑023‑01041‑x37561272
    [Google Scholar]
  93. LingQ. JarvisP. Regulation of chloroplast protein import by the ubiquitin E3 ligase SP1 is important for stress tolerance in plants.Curr. Biol.201525192527253410.1016/j.cub.2015.08.01526387714
    [Google Scholar]
  94. FanP. FengJ. JiangP. ChenX. BaoH. NieL. JiangD. LvS. KuangT. LiY. Coordination of carbon fixation and nitrogen metabolism in Salicornia europaea under salinity: Comparative proteomic analysis on chloroplast proteins.Proteomics201111224346436710.1002/pmic.20110005421905221
    [Google Scholar]
  95. LakraN. KaurC. AnwarK. PareekS.S.L. PareekA. Proteomics of contrasting rice genotypes: Identification of potential targets for raising crops for saline environment.Plant Cell Environ.201841594796910.1111/pce.1294628337760
    [Google Scholar]
  96. WangX. OhM. SakataK. KomatsuS. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.J. Proteomics2016130425510.1016/j.jprot.2015.09.00726376099
    [Google Scholar]
  97. XiongQ. CaoC. ShenT. ZhongL. HeH. ChenX. Comprehensive metabolomic and proteomic analysis in biochemical metabolic pathways of rice spikes under drought and submergence stress.Biochim. Biophys. Acta. Proteins Proteomics20191867323724710.1016/j.bbapap.2019.01.00130611782
    [Google Scholar]
  98. XuK. XuX. FukaoT. CanlasP. RodriguezM.R. HeuerS. IsmailA.M. SerresB.J. RonaldP.C. MackillD.J. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice.Nature2006442710370570810.1038/nature0492016900200
    [Google Scholar]
  99. GuiG. ZhangQ. HuW. LiuF. Application of multiomics analysis to plant flooding response.Front. Plant Sci.202415138937910.3389/fpls.2024.138937939193215
    [Google Scholar]
  100. AgarwalS. GroverA. Molecular biology, biotechnology and genomics of flooding-associated low O2 stress response in plants.Crit. Rev. Plant Sci.200625112110.1080/07352680500365232
    [Google Scholar]
  101. KumarV. WegenerM. KnieperM. KayaA. ViehhauserA. DietzK.J. Strategies of molecular signal integration for optimized plant acclimation to stress combinations.Methods Mol Biol2024283232910.1007/978‑1‑0716‑3973‑3_1
    [Google Scholar]
  102. GhoshD. XuJ. Abiotic stress responses in plant roots: A proteomics perspective.Front. Plant Sci.20145610.3389/fpls.2014.0000624478786
    [Google Scholar]
  103. EzinV. PenaR.D.L. AhanchedeA. Flooding tolerance of tomato genotypes during vegetative and reproductive stages.Braz. J. Plant Physiol.201022213114210.1590/S1677‑04202010000200007
    [Google Scholar]
  104. RaiR. AgrawalM. AgrawalS.B. Impact of heavy metals on physiological processes of plants: With special reference to photosynthetic system.Springer, Singapore201612714010.1007/978‑981‑10‑2860‑1_6
    [Google Scholar]
  105. KosakivskaI.V. BabenkoL.M. RomanenkoK.O. KorotkaI.Y. PottersG. Molecular mechanisms of plant adaptive responses to heavy metals stress.Cell Biol. Int.202145225827210.1002/cbin.1150333200493
    [Google Scholar]
  106. Al-ObaidiJ.R. JamaludinA.A. RahmanN.A. KamilA.E.I. How plants respond to heavy metal contamination: A narrative review of proteomic studies and phytoremediation applications.Planta2024259510310.1007/s00425‑024‑04378‑238551683
    [Google Scholar]
  107. ZhangH. XuZ. GuoK. HuoY. HeG. SunH. GuanY. XuN. YangW. SunG. Toxic effects of heavy metal Cd and Zn on chlorophyll, carotenoid metabolism and photosynthetic function in tobacco leaves revealed by physiological and proteomics analysis.Ecotoxicol. Environ. Saf.202020211085610.1016/j.ecoenv.2020.11085632629202
    [Google Scholar]
  108. KaurH. SrivastavaS. GoyalN. WaliaS. Behavior of zinc in soils and recent advances on strategies for ameliorating zinc phyto-toxicity.Environ. Exp. Bot.202422010567610.1016/j.envexpbot.2024.105676
    [Google Scholar]
  109. LiJ. ZhangM. SunJ. MaoX. WangJ. LiuH. ZhengH. LiX. ZhaoH. ZouD. Heavy metal stress-associated proteins in rice and Arabidopsis: Genome-wide identification, phylogenetics, duplication, and expression profiles analysis.Front. Genet.20201147710.3389/fgene.2020.0047732457808
    [Google Scholar]
  110. CaoD. ZhangH. WangY. ZhengL. Accumulation and distribution characteristics of zinc and cadmium in the hyperaccumulator plant Sedum plumbizincicola.Bull. Environ. Contam. Toxicol.201493217117610.1007/s00128‑014‑1284‑824789526
    [Google Scholar]
  111. SrivastavaR.K. PandeyP. RajpootR. RaniA. DubeyR.S. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings.Protoplasma201425151047106510.1007/s00709‑014‑0614‑324482190
    [Google Scholar]
  112. WuD. SaleemM. HeT. HeG. The mechanism of metal homeostasis in plants: A new view on the synergistic regulation pathway of membrane proteins, lipids and metal ions.Membranes2021111298410.3390/membranes1112098434940485
    [Google Scholar]
  113. BillahM. AktarS. SikderR.K. AhammedG.J. HuW. LiF. YangZ. Exploring regulatory roles of plant thylakoid-bound proteins involved in abiotic stress responses.J. Plant Growth Regul.20244351570159110.1007/s00344‑023‑11207‑5
    [Google Scholar]
  114. Lin, S., Yang, T., Zhu, S., Wang, J., & Ni, W. A method for screening copper-tolerant rice (Oryza sativa L.) cultivars based on hydroponic experiments and cluster analysis.Int. J. Phytoremediation201719121093109910.1080/15226514.2017.132838928678533
    [Google Scholar]
  115. ShuH. ZhangJ. LiuF. BianC. LiangJ. LiangJ. LiangW. LinZ. ShuW. LiJ. ShiQ. LiaoB. Comparative transcriptomic studies on a cadmium hyperaccumulator Viola baoshanensis and its non-tolerant counterpart V. inconspicua.Int. J. Mol. Sci.2019208190610.3390/ijms2008190630999673
    [Google Scholar]
  116. ZhangT. XiaoJ. ZhaoY. ZhangY. JieY. ShenD. YueC. HuangJ. HuaY. ZhouT. Comparative physiological and transcriptomic analyses reveal ascorbate and glutathione coregulation of cadmium toxicity resistance in wheat genotypes.BMC Plant Biol.202121145910.1186/s12870‑021‑03225‑w34625028
    [Google Scholar]
  117. TripathyB.C. DalalV. Modulation of chlorophyll biosynthesis by environmental cues.Adv. Phot. Res.20133660110.1007/978‑94‑007‑5724‑0_27
    [Google Scholar]
  118. LiY. FengH. XianS. WangJ. ZhengX. SongX. Phytotoxic effects of polyethylene microplastics combined with cadmium on the photosynthetic performance of maize (Zea mays L.).Plant Physiol. Biochem.202320310806510.1016/j.plaphy.2023.10806537797385
    [Google Scholar]
  119. ZhaoH. GuanJ. LiangQ. ZhangX. HuH. ZhangJ. Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings.Sci. Rep.2021111991310.1038/s41598‑021‑89322‑033972641
    [Google Scholar]
  120. WangS. WufuerR. DuoJ. LiW. PanX. Cadmium caused different toxicity to photosystem I and photosystem II of freshwater unicellular algae Chlorella pyrenoidosa (Chlorophyta).Toxics202210735210.3390/toxics1007035235878257
    [Google Scholar]
  121. YangY. ZhangL. HuangX. ZhouY. QuanQ. LiY. ZhuX. Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS One2020153e022856310.1371/journal.pone.022856332176700
    [Google Scholar]
  122. GrajekH. RydzyńskiD. CieślakP.A. HermanA. MaciejczykM. WieczorekZ. Cadmium ion-chlorophyll interaction – Examination of spectral properties and structure of the cadmium-chlorophyll complex and their relevance to photosynthesis inhibition.Chemosphere202026112743410.1016/j.chemosphere.2020.12743432717505
    [Google Scholar]
  123. GonçalvesA.C.Jr SchwantesD. SousaB.R.F. SilvaB.T.R. GuimarãesV.F. CampagnoloM.A. VasconcelosS.E. ZimmermannJ. Phytoremediation capacity, growth and physiological responses of Crambe abyssinica Hochst on soil contaminated with Cd and Pb.J. Environ. Manage.202026211034210.1016/j.jenvman.2020.11034232250818
    [Google Scholar]
  124. WangY. YangR. ZhengJ. ShenZ. XuX. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.).Ecotoxicol. Environ. Saf.2019167101910.1016/j.ecoenv.2018.08.06430292971
    [Google Scholar]
  125. ZhuT. LiL. DuanQ. LiuX. ChenM. Progress in our understanding of plant responses to the stress of heavy metal cadmium.Plant Signal. Behav.2021161183688410.1080/15592324.2020.183688433084518
    [Google Scholar]
  126. ChenH.C. ZhangS.L. WuK.J. LiR. HeX.R. HeD.N. HuangC. WeiH. The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of Salix variegata Franch. Under Cd stress.Ecotoxicol. Environ. Saf.202018710979010.1016/j.ecoenv.2019.10979031639642
    [Google Scholar]
  127. BarbeochP.L. LeonhardtN. VavasseurA. ForestierC. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status.Plant J.200232453954810.1046/j.1365‑313X.2002.01442.x12445125
    [Google Scholar]
  128. KayaC. AkramN.A. AshrafM. AlyemeniM.N. AhmadP. Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by up-regulating the synthesis of nitric oxide and hydrogen sulfide.J. Biotechnol.2020316354510.1016/j.jbiotec.2020.04.00832315687
    [Google Scholar]
  129. SiddiquiM.H. AlamriS. KhanN.M. CorpasF.J. Al-AmriA.A. AlsubaieQ.D. AliH.M. KalajiH.M. AhmadP. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress.J. Hazard. Mater.202039812288210.1016/j.jhazmat.2020.12288232516727
    [Google Scholar]
  130. ChenX. TaoH. WuY. XuX. Effects of Cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis.Sci. Hortic.202230511137110.1016/j.scienta.2022.111371
    [Google Scholar]
  131. HaiselD. CyrusováT. VaněkT. PodlipnáR. The effect of nanoparticles on the photosynthetic pigments in cadmium—zinc interactions.Environ. Sci. Pollut. Res. Int.20192644147415110.1007/s11356‑018‑04060‑730613887
    [Google Scholar]
  132. ManzoorN. AhmedT. NomanM. ShahidM. NazirM.M. AliL. AlnusaireT.S. LiB. SchulinR. WangG. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake.Sci. Total Environ.202176914522110.1016/j.scitotenv.2021.14522133736258
    [Google Scholar]
  133. WangY. TanP. ChangL. YueZ. ZengC. LiM. LiuZ. DongX. YanM. Exogenous proline mitigates toxic effects of cadmium via the decrease of cadmium accumulation and reestablishment of redox homeostasis in Brassica juncea.BMC Plant Biol.202222118210.1186/s12870‑022‑03538‑435395715
    [Google Scholar]
  134. ManzoorH. Mehwish BukhatS. RasulS. RehmaniM.I.A. NoreenS. AtharH.R. ZafarZ.U. SkalickyM. SoufanW. BresticM. RahmanH.M. OgbagaC.C. SabaghE.A. Methyl jasmonate alleviated the adverse effects of cadmium stress in pea (Pisum sativum L.): A nexus of photosystem II activity and dynamics of redox balance.Front. Plant Sci.20221386066410.3389/fpls.2022.86066435401592
    [Google Scholar]
  135. ChenL. HuW. LongC. WangD. Exogenous plant growth regulator alleviate the adverse effects of U and Cd stress in sunflower (Helianthus annuus L.) and improve the efficacy of U and Cd remediation.Chemosphere202126212780910.1016/j.chemosphere.2020.12780932781331
    [Google Scholar]
  136. LinS. SongX.F. MaoH.T. LiS.Q. GanJ.Y. YuanM. ZhangZ.W. YuanS. ZhangH.Y. SuY.Q. ChenY.E. Exogenous melatonin improved photosynthetic efficiency of photosystem II by reversible phosphorylation of thylakoid proteins in wheat under osmotic stress.Front. Plant Sci.20221396618110.3389/fpls.2022.96618135982696
    [Google Scholar]
  137. ZhangS. ChenH. HeD. HeX. YanY. WuK. WeiH. Effects of exogenous organic acids on Cd tolerance mechanism of Salix variegata Franch. under Cd stress.Front. Plant Sci.20201159435210.3389/fpls.2020.59435233193554
    [Google Scholar]
  138. SawadaH. KomatsuS. NanjoY. KhanN.A. KohnoY. Proteomic analysis of rice response involved in reduction of grain yield under elevated ozone stress.Environ. Exp. Bot.20127710811610.1016/j.envexpbot.2011.11.009
    [Google Scholar]
  139. GalantA. KoesterR.P. AinsworthE.A. HicksL.M. JezJ.M. From climate change to molecular response: Redox proteomics of ozone‐induced responses in soybean.New Phytol.2012194122022910.1111/j.1469‑8137.2011.04037.x22272738
    [Google Scholar]
  140. WangY. SangZ. XuS. XuQ. ZengX. JabuD. YuanH. Comparative proteomics analysis of Tibetan hull-less barley under osmotic stress via data-independent acquisition mass spectrometry.Gigascience202093giaa01910.1093/gigascience/giaa01932126136
    [Google Scholar]
  141. NirmalS. Plants and their interaction to environmental pollution: Damage detection, adaptation, tolerance, physiological and molecular responses. HusenA. NetherlandsElsevier Science2022253264
    [Google Scholar]
  142. ZandalinasS.I. FritschiF.B. MittlerR. Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster.Trends Plant Sci.202126658859910.1016/j.tplants.2021.02.01133745784
    [Google Scholar]
  143. SinghH. SinghP. AgrawalS.B. AgrawalM. Implications of foliar particulate matter deposition on the physiology and nutrient allocation of dominant perennial species of the Indo-Gangetic Plains.Front. Plant Sci.20221393995010.3389/fpls.2022.93995035928714
    [Google Scholar]
  144. RoyA. MandalM. DasS. PopekR. RakwalR. AgrawalG.K. AwasthiA. SarkarA. The cellular consequences of particulate matter pollutants in plants: Safeguarding the harmonious integration of structure and function.Sci. Total Environ.202491416976310.1016/j.scitotenv.2023.16976338181950
    [Google Scholar]
  145. AntenozioM.L. CaissuttiC. CaporussoF.M. MarziD. BrunettiP. Urban air pollution and plant tolerance: Omics responses to ozone, nitrogen oxides, and particulate matter.Plants20241315202710.3390/plants1315202739124144
    [Google Scholar]
  146. YuJ. LiY. QinZ. GuoS. LiY. MiaoY. SongC. ChenS. DaiS. Plant chloroplast stress response: Insights from thiol redox proteomics.Antioxid. Redox Signal.2020331355710.1089/ars.2019.782331989831
    [Google Scholar]
  147. RampitschC. SrinivasanM. The application of proteomics to plant biology: A review.Botany2006846883892
    [Google Scholar]
  148. HoyosR.G. MorenoF.L.P. Proteomics: A tool for the study of plant response to abiotic stress.Agron. Colomb.2011292412422
    [Google Scholar]
  149. HashiguchiA. KomatsuS. Impact of post-translational modifications of crop proteins under abiotic stress.Proteomes2016444210.3390/proteomes404004228248251
    [Google Scholar]
/content/journals/cp/10.2174/0115701646347647241211211906
Loading
/content/journals/cp/10.2174/0115701646347647241211211906
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test