Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Aims

This study aims to analyze the wild type of arginine deiminase and three mutant forms of it (G320L, A303R, and E304L) in complex with arginine molecule using Molecular Dynamics (MD) simulation to find the best enzyme form with a lower level of energy and more stability.

Background

Arginine Deiminase (ADI) is an arginine-degrading enzyme that has an anticancer effect on some cancers, such as Hepatocellular Carcinoma (HCC) and melanoma.

Methods

Homology models of native and mutant forms of ADI were generated and evaluated using the I-TASSER and other databases and prediction algorithms. All prepared enzyme structures homology modeling were used as receptors in the molecular docking and MD simulation steps.

Results

MD simulation results demonstrated that the G302L structure has the lowest value of Rg over MD simulation time, indicating its more appropriate intramolecular interactions than other structures. G302L has also established the most desirable interactions with arginine molecules during 80 ns MD simulation so that the G302L/ arginine complex has the maximum intermolecular hydrogen bonds. Arginine molecule in complex with G302L has the best position in the active site of ADI protein.

Conclusion

The G302L mutant ADI from can be a good candidate for better stability in arginine deprivation therapy in arginine auxotrophic cancers.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646316618240828115529
2024-09-18
2025-10-31
Loading full text...

Full text loading...

References

  1. ZúñigaM. PérezG. González-CandelasF. Evolution of arginine deiminase (ADI) pathway genes.Mol. Phylogenet. Evol.200225342944410.1016/S1055‑7903(02)00277‑412450748
    [Google Scholar]
  2. LiL. LiZ. ChenD. LuX. FengX. WrightE.C. SolbergN.O. Dunaway-MarianoD. MarianoP.S. GalkinA. KulakovaL. HerzbergO. Green-ChurchK.B. ZhangL. Inactivation of microbial arginine deiminases by L-canavanine.J. Am. Chem. Soc.200813061918193110.1021/ja076087718205354
    [Google Scholar]
  3. TakakuH. MatsumotoM. MisawaS. MiyazakiK. Anti-tumor activity of arginine deiminase from Mycoplasma argini and its growth-inhibitory mechanism.Jpn. J. Cancer Res.199586984084610.1111/j.1349‑7006.1995.tb03094.x7591961
    [Google Scholar]
  4. MiyazakiK. TakakuH. UmedaM. FujitaT. HuangW.D. KimuraT. YamashitaJ. HorioT. Potent growth inhibition of human tumor cells in culture by arginine deiminase purified from a culture medium of a Mycoplasma-infected cell line.Cancer Res.19905015452245272164440
    [Google Scholar]
  5. GongH. ZölzerF. von RecklinghausenG. RösslerJ. BreitS. HaversW. FotsisT. SchweigererL. Arginine deiminase inhibits cell proliferation by arresting cell cycle and inducing apoptosis.Biochem. Biophys. Res. Commun.19992611101410.1006/bbrc.1999.100410405315
    [Google Scholar]
  6. GongH. ZölzerF. von RecklinghausenG. HaversW. SchweigererL. Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis.Leukemia200014582682910.1038/sj.leu.240176310803513
    [Google Scholar]
  7. TakakuH. TakaseM. AbeS.I. HayashiH. MiyazakiK. In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini.Int. J. Cancer199251224424910.1002/ijc.29105102131568792
    [Google Scholar]
  8. AbdollahiS. MorowvatM.H. SavardashtakiA. IrajieC. NajafipourS. ZareiM. GhasemiY. Amino acids sequence-based analysis of arginine deiminase from different prokaryotic organisms: an in silico approach.Recent Pat. Biotechnol.202014323524610.2174/187220831466620032411444132208128
    [Google Scholar]
  9. NiY. SchwanebergU. SunZ.H. Arginine deiminase, a potential anti-tumor drug.Cancer Lett.2008261111110.1016/j.canlet.2007.11.03818179862
    [Google Scholar]
  10. LuX. GalkinA. HerzbergO. Dunaway-MarianoD. Arginine deiminase uses an active-site cysteine in nucleophilic catalysis of L-arginine hydrolysis.J. Am. Chem. Soc.2004126175374537510.1021/ja049543p15113205
    [Google Scholar]
  11. WeiY. ZhouH. SunY. HeY. LuoY. Insight into the catalytic mechanism of arginine deiminase: Functional studies on the crucial sites.Proteins200766374075010.1002/prot.2123517080455
    [Google Scholar]
  12. KeZ. GuoH. XieD. WangS. ZhangY. Ab initio QM/MM free-energy studies of arginine deiminase catalysis: the protonation state of the Cys nucleophile.J. Phys. Chem. B2011115133725373310.1021/jp200843s21395290
    [Google Scholar]
  13. HanssonT. OostenbrinkC. van GunsterenW. Molecular dynamics simulations.Curr. Opin. Struct. Biol.200212219019610.1016/S0959‑440X(02)00308‑111959496
    [Google Scholar]
  14. PikkemaatM.G. LinssenA.B.M. BerendsenH.J.C. JanssenD.B. Molecular dynamics simulations as a tool for improving protein stability.Protein Eng. Des. Sel.200215318519210.1093/protein/15.3.18511932489
    [Google Scholar]
  15. RuedaM. Ferrer-CostaC. MeyerT. PérezA. CampsJ. HospitalA. GelpíJ.L. OrozcoM. A consensus view of protein dynamics.Proc. Natl. Acad. Sci. USA2007104379680110.1073/pnas.060553410417215349
    [Google Scholar]
  16. HollingsworthS.A. DrorR.O. Molecular dynamics simulation for all.Neuron20189961129114310.1016/j.neuron.2018.08.01130236283
    [Google Scholar]
  17. ZareiM. NezafatN. RahbarM.R. NegahdaripourM. SabetianS. MorowvatM.H. GhasemiY. Decreasing the immunogenicity of arginine deiminase enzyme via structure-based computational analysis.J. Biomol. Struct. Dyn.201937252353610.1080/07391102.2018.143115129363409
    [Google Scholar]
  18. ZhangY. I-TASSER server for protein 3D structure prediction.BMC Bioinformatics2008914010.1186/1471‑2105‑9‑4018215316
    [Google Scholar]
  19. GuexN. PeitschM.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling.Electrophoresis199718152714272310.1002/elps.11501815059504803
    [Google Scholar]
  20. EisenbergD. LüthyR. BowieJ.U. [20] VERIFY3D: Assessment of protein models with three-dimensional profiles.Methods in EnzymologyElsevier2771997396404
    [Google Scholar]
  21. SchmidtM.W. BaldridgeK.K. BoatzJ.A. ElbertS.T. GordonM.S. JensenJ.H. KosekiS. MatsunagaN. NguyenK.A. SuS. WindusT.L. DupuisM. MontgomeryJ.A.Jr General atomic and molecular electronic structure system.J. Comput. Chem.199314111347136310.1002/jcc.540141112
    [Google Scholar]
  22. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  23. Abraham, M.; Spoel, V.D.D.; Lindahl, E.; Hess, B. The GROMACS development team. In: GROMACS User Manual Version, 2014; 5(2).
  24. Lindorff-LarsenK. PianaS. PalmoK. MaragakisP. KlepeisJ.L. DrorR.O. ShawD.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field.Proteins20107881950195810.1002/prot.2271120408171
    [Google Scholar]
  25. Sousa da SilvaA.W. VrankenW.F. ACPYPE - AnteChamber PYthon Parser interfacE.BMC Res. Notes20125136710.1186/1756‑0500‑5‑36722824207
    [Google Scholar]
  26. GalkinA. LuX. Dunaway-MarianoD. HerzbergO. Crystal structures representing the Michaelis complex and the thiouronium reaction intermediate of Pseudomonas aeruginosa arginine deiminase.J. Biol. Chem.200528040340803408710.1074/jbc.M50547120016091358
    [Google Scholar]
  27. Drug Design with Validated 3D Modeling and Simulation Tools.Available from: https://www.3ds.com/products/biovia/discovery-studio
  28. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.2008415264254
    [Google Scholar]
  29. ChenY.C. Beware of docking!Trends Pharmacol. Sci.2015362789510.1016/j.tips.2014.12.00125543280
    [Google Scholar]
  30. ChanH.C.S. ShanH. DahounT. VogelH. YuanS. Advancing drug discovery via artificial intelligence.Trends Pharmacol. Sci.201940859260410.1016/j.tips.2019.06.00431320117
    [Google Scholar]
  31. LobanovM.Y. BogatyrevaN.S. GalzitskayaO.V. Radius of gyration as an indicator of protein structure compactness.Mol. Biol.200842462362810.1134/S002689330804019518856071
    [Google Scholar]
  32. WangC. XuD. ZhangL. XieD. GuoH. Molecular dynamics and density functional studies of substrate binding and catalysis of arginine deiminase.J. Phys. Chem. B2007111123267327310.1021/jp067541g17388453
    [Google Scholar]
/content/journals/cp/10.2174/0115701646316618240828115529
Loading
/content/journals/cp/10.2174/0115701646316618240828115529
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test