Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1570-1646
  • E-ISSN: 1875-6247

Abstract

Background

HIV-1 is the most virulent type, causing most AIDS cases worldwide. Therapeutics like NRTIs and NNRTIs terminate replication by terminating polymerization reactions. Natural-based therapeutics are increasingly being used to reduce side effects and combat disease.

Methods

The study focuses on identifying phytochemical compounds that effectively inhibit the HIV-1 reverse transcriptase process using molecular docking and molecular dynamic simulations.

Results

Molecular docking results show anisomelolide has a significantly stronger binding affinity (-29.9992KJ/mol) compared to nevirapine (-13.34696 KJ/mol), forming more hydrogen bonds and hydrophobic interactions, indicating a more stable and specific binding. MD simulations further support these findings, with anisomelolide exhibiting lower RMSD and RMSF values, suggesting greater structural stability and lower flexibility. Interaction energy analysis reveals robust binding and stability for anisomelolide over time. Additionally, hydrogen bond analysis indicates more frequent and stronger interactions for anisomelolide.

Conclusion

The phytochemical compound anisomelolide exhibits superior binding affinity, structural stability, and interaction dynamics, making it a promising candidate for drug development against HIV-1 RT.

Loading

Article metrics loading...

/content/journals/cp/10.2174/0115701646316517240901091407
2024-09-16
2025-10-31
Loading full text...

Full text loading...

References

  1. PandeyA. GalvaniA.P. The global burden of HIV and prospects for control.Lancet HIV2019612e809e81110.1016/S2352‑3018(19)30230‑931439533
    [Google Scholar]
  2. BekkerL.G. BeyrerC. MgodiN. LewinS.R. Delany-MoretlweS. TaiwoB. MastersM.C. LazarusJ.V. HIV infection.Nat. Rev. Dis. Primers2023914210.1038/s41572‑023‑00452‑337591865
    [Google Scholar]
  3. LuD.Y. WuH.Y. YarlaN.S. XuB. DingJ. LuT.R. HAART in HIV/AIDS treatments: future trends.Infect. Disord. Drug Targ.2018181152210.2174/1871526517666170505122800
    [Google Scholar]
  4. GrantA.D. De CockK.M. ABC of AIDS: HIV infection and AIDS in the developing world.BMJ200132273001475147810.1136/bmj.322.7300.147511408309
    [Google Scholar]
  5. ReevesJ.D. DomsR.W. Human immunodeficiency virus type 2.J. Gen. Virol.20028361253126510.1099/0022‑1317‑83‑6‑125312029140
    [Google Scholar]
  6. CeccarelliG. GiovanettiM. SagnelliC. CiccozziA. d’EttorreG. AngelettiS. BorsettiA. CiccozziM. Human immunodeficiency virus type 2: the neglected threat.Pathogens20211011137710.3390/pathogens1011137734832533
    [Google Scholar]
  7. BarasaS.S. True story about HIV: theory of viral sequestration and reserve infection.HIV/AIDS-Res. Palliat. Care2011312513310.2147/HIV.S26578
    [Google Scholar]
  8. TortiC. PaiardiniM. GoriA. Immunity to human immunodeficiency virus (HIV) infection.Clin. Dev. Immunol.201220121210.1155/2012/62935622829852
    [Google Scholar]
  9. GougeonM-L. To kill or be killed: how HIV exhausts the immune system.Cell Death Differ.200512S1Suppl. 184585410.1038/sj.cdd.440161615832178
    [Google Scholar]
  10. KumarA. HerbeinG. The macrophage: a therapeutic target in HIV-1 infection.Mol. Cell. Ther.2014211010.1186/2052‑8426‑2‑1026056579
    [Google Scholar]
  11. MukherjeeS. BoutantE. RéalE. MélyY. AntonH. Imaging viral infection by fluorescence microscopy: Focus on HIV-1 early stage.Viruses202113221310.3390/v1302021333573241
    [Google Scholar]
  12. JonckheereH. AnnéJ. De ClercqE. The HIV-1 reverse transcription (RT) process as target for RT inhibitors.Med. Res. Rev.200020212915410.1002/(SICI)1098‑1128(200003)20:2<129::AID‑MED2>3.0.CO;2‑A10723025
    [Google Scholar]
  13. GuS.X. ZhuY.Y. WangC. WangH.F. LiuG.Y. CaoS. HuangL. Recent discoveries in HIV-1 reverse transcriptase inhibitors.Curr. Opin. Pharmacol.20205416617210.1016/j.coph.2020.09.01733176248
    [Google Scholar]
  14. El SafadiY. Vivet-BoudouV. MarquetR. HIV-1 reverse transcriptase inhibitors.Appl. Microbiol. Biotechnol.200775472373710.1007/s00253‑007‑0919‑717370068
    [Google Scholar]
  15. SinghA.K. DasK. Insights into HIV-1 reverse transcriptase (RT) inhibition and drug resistance from thirty years of structural studies.Viruses2022145102710.3390/v1405102735632767
    [Google Scholar]
  16. SinghA.K. KumarA. AroraS. KumarR. VermaA. KhalilullahH. Current insights and molecular docking studies of HIV-1 reverse transcriptase inhibitors.Chem. Biol. Drug Des.202310.1111/cbdd.1437237817296
    [Google Scholar]
  17. DasK. ClarkA.D.Jr LewiP.J. HeeresJ. de JongeM.R. KoymansL.M.H. VinkersH.M. DaeyaertF. LudoviciD.W. KuklaM.J. De CorteB. KavashR.W. HoC.Y. YeH. LichtensteinM.A. AndriesK. PauwelsR. de BéthuneM.P. BoyerP.L. ClarkP. HughesS.H. JanssenP.A.J. ArnoldE. Roles of conformational and positional adaptability in structure-based design of TMC125-R165335 (etravirine) and related non-nucleoside reverse transcriptase inhibitors that are highly potent and effective against wild-type and drug-resistant HIV-1 variants.J. Med. Chem.200447102550256010.1021/jm030558s15115397
    [Google Scholar]
  18. SmithS.J. PaulyG.T. AkramA. MelodyK. AmbroseZ. SchneiderJ.P. HughesS.H. Rilpivirine and doravirine have complementary efficacies against NNRTI-resistant HIV-1 mutants.J. Acquir. Immune Def. Synd.201672548510.1097/QAI.0000000000001031
    [Google Scholar]
  19. RimandoA.M. PezzutoJ.M. FarnsworthN.R. SantisukT. ReutrakulV. KawanishiK. New lignans from Anogeissus acuminata with HIV-1 reverse transcriptase inhibitory activity.J. Nat. Prod.199457789690410.1021/np50109a0047525878
    [Google Scholar]
  20. KusumotoI.T. NakabayashiT. KidaH. MiyashiroH. HattoriM. NambaT. ShimotohnoK. Screening of various plant extracts used in ayurvedic medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease.Phytother. Res.19959318018410.1002/ptr.2650090305
    [Google Scholar]
  21. JaiswalJ. SiddiqiN.J. FatimaS. AbudawoodM. AlDaihanS.K. AlharbiM.G. de Lourdes PereiraM. SharmaP. SharmaB. Analysis of Biochemical and Antimicrobial Properties of Bioactive Molecules of Argemone mexicana. Molecules20232811442810.3390/molecules2811442837298904
    [Google Scholar]
  22. AwahF.M. UzoegwuP.N. IfeonuP. In vitro anti-HIV and immunomodulatory potentials of Azadirachta indica (Meliaceae) leaf extract.Int. Scholar J.20115111353135910.5897/AJPP11.173
    [Google Scholar]
  23. PatilA.D. FreyerA.J. EgglestonD.S. HaltiwangerR.C. BeanM.F. TaylorP.B. CaranfaM.J. BreenA.L. BartusH.R. JohnsonR.K. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn.J. Med. Chem.199336264131413810.1021/jm00078a0017506311
    [Google Scholar]
  24. ReddyD.S. SkariyachanS. PalanivelB. AnishD.T. KiranJ. GopalR. Viro-Informatics: Finding a herbal remedy for AIDS and blocking the translation pathway of HIV glycoproteins by RNAi technique.Int. J. Pharmaceut. Sci. Rev. Res.2012101142146
    [Google Scholar]
  25. Anti-HIV-1 protease activity of compounds from Cassia garrettiana.Walailak J. Sci. Technol.20161310827835[WJST].
    [Google Scholar]
  26. LeeJ.S. KimH.J. LeeY.S. A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium.Planta Med.200369985986110.1055/s‑2003‑4320714598216
    [Google Scholar]
  27. TakuyaK. ToruO. Screening of medicinal plants in Egypt for anti-human immunodeficiency virus type-1 (HIV-1) activity.Jasmr20094118
    [Google Scholar]
  28. MauryW. PriceJ.P. BrindleyM.A. OhC. NeighborsJ.D. WiemerD.F. WillsN. CarpenterS. HauckC. MurphyP. WidrlechnerM.P. DelateK. KumarG. KrausG.A. RizshskyL. NikolauB. Identification of light-independent inhibition of human immunodeficiency virus-1 infection through bioguided fractionation of Hypericum perforatum.Virol. J.20096110110.1186/1743‑422X‑6‑10119594941
    [Google Scholar]
  29. ModiM. GoelT. DasT. MalikS. SuriS. RawatA.K.S. SrivastavaS.K. TuliR. MalhotraS. GuptaS.K. Nutan Ellagic acid & gallic acid from Lagerstroemia speciosa L. inhibit HIV-1 infection through inhibition of HIV-1 protease & reverse transcriptase activity.Indian J. Med. Res.20131373540548https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705663/23640562
    [Google Scholar]
  30. ColemanM.I. KhanM. GbodossouE. DiopA. DeBarrosK. DuongH. BondV.C. FloydV. KondwaniK. Montgomery RiceV. VillingerF. PowellM.D. Identification of a novel anti-HIV-1 protein from Momordica balsamina leaf extract.Int. J. Environ. Res. Public Health202219221522710.3390/ijerph19221522736429944
    [Google Scholar]
  31. ZhaoY.Y. LiY.J. YuX.M. SuQ.T. WangL.W. ZhuY.S. FuY.H. ChenG.Y. LiuY.P. Bisabolane-type sesquiterpenoids with potential anti-inflammatory and anti-HIV activities from the stems and leaves of Morinda citrifolia.Nat. Prod. Res.202337121961196810.1080/14786419.2022.211257735975763
    [Google Scholar]
  32. EldeenI.M.S. SeowE-M. AbdullahR. SulaimanS.F. In vitro antibacterial, antioxidant, total phenolic contents and anti-HIV-1 reverse transcriptase activities of extracts of seven Phyllanthus sp.S. Afr. J. Bot.2011771757910.1016/j.sajb.2010.05.009
    [Google Scholar]
  33. SaepouS. PohmakotrM. ReutrakulV. YoosookC. KasisitJ. NapaswadC. TuchindaP. Anti-HIV-1 diterpenoids from leaves and twigs of Polyalthia sclerophylla.Planta Med.201076772172510.1055/s‑0029‑124068320013639
    [Google Scholar]
  34. WiwatC. KwantrairatS. HIV-1 Reverse Transcriptase Inhibitors fromThai Medicinal Plants and Elephantopus scaber Linn. Mahidol U-niversity.J. Pharm. Sci.20144033544
    [Google Scholar]
  35. BalotraP.V. Analysis of Inhibitory Activity of Ricin Extracted from Ricinus Communis on Human Cancer Cell Lines and testing its activity on HIV receptor CD4 using Insilico analysis.Helix20142521526
    [Google Scholar]
  36. MahmoodN. PiacenteS. PizzaC. BurkeA. KhanA.I. HayA.J. The anti-HIV activity and mechanisms of action of pure compounds isolated from Rosa damascena.Biochem. Biophys. Res. Commun.19962291737910.1006/bbrc.1996.17598954085
    [Google Scholar]
  37. FuM. NgT.B. JiangY. PiZ.F. LiuZ.K. LiL. LiuF. Compounds from rose (Rosa rugosa) flowers with human immunodeficiency virus type 1 reverse transcriptase inhibitory activity.J. Pharm. Pharmacol.20065891275128010.1211/jpp.58.9.0015
    [Google Scholar]
  38. BedoyaL.M. Sanchez-PalominoS. AbadM.J. BermejoP. AlcamiJ. Anti-HIV activity of medicinal plant extracts.J. Ethnopharmacol.200177111311610.1016/S0378‑8741(01)00265‑311483387
    [Google Scholar]
  39. MatsuseI.T. LimY.A. HattoriM. CorreaM. GuptaM.P. A search for anti-viral properties in Panamanian medicinal plants.J. Ethnopharmacol.1998641152210.1016/S0378‑8741(98)00099‑310075118
    [Google Scholar]
  40. MinB.S. KimY.H. TomiyamaM. NakamuraN. MiyashiroH. OtakeT. HattoriM. Inhibitory effects of Korean plants on HIV-1 activities.Phytother. Res.200115648148610.1002/ptr.75111536375
    [Google Scholar]
  41. SabdeS. BodiwalaH.S. KarmaseA. DeshpandeP.J. KaurA. AhmedN. ChautheS.K. BrahmbhattK.G. PhadkeR.U. MitraD. BhutaniK.K. SinghI.P. Anti-HIV activity of Indian medicinal plants.J. Nat. Med.2011653-466266910.1007/s11418‑011‑0513‑221365365
    [Google Scholar]
  42. ParkI.W. HanC. SongX. GreenL.A. WangT. LiuY. CenC. SongX. YangB. ChenG. HeJ.J. Inhibition of HIV-1 entry by extracts derived from traditional Chinese medicinal herbal plants.BMC Complement. Altern. Med.2009912910.1186/1472‑6882‑9‑2919656383
    [Google Scholar]
  43. HusseinG. MiyashiroH. NakamuraN. HattoriM. KawahataT. OtakeT. KakiuchiN. ShimotohnoK. Inhibitory effects of Sudanese plant extracts on HIV-1 replication and HIV-1 protease.Phytother. Res.1999131313610.1002/(SICI)1099‑1573(199902)13:1<31::AID‑PTR381>3.0.CO;2‑C10189947
    [Google Scholar]
  44. BedoyaL.M. PalominoS.S. AbadM.J. BermejoP. AlcamiJ. Screening of selected plant extracts for in vitro inhibitory activity on Human Immunodeficiency Virus.Phytother. Res.200216655055410.1002/ptr.99212237813
    [Google Scholar]
  45. WoradulayapinijW. SoonthornchareonnonN. WiwatC. In vitro HIV type 1 reverse transcriptase inhibitory activities of Thai medicinal plants and Canna indica L. rhizomes.J. Ethnopharmacol.20051011-3848910.1016/j.jep.2005.03.03015951145
    [Google Scholar]
  46. AsresK. BucarF. KartnigT. WitvrouwM. PannecouqueC. De ClercqE. Antiviral activity against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) of ethnobotanically selected Ethiopian medicinal plants.Phytother. Res.2001151626910.1002/1099‑1573(200102)15:1<62::AID‑PTR956>3.0.CO;2‑X11180526
    [Google Scholar]
  47. TshikalangeT.E. MeyerJ.J.M. LallN. MuñozE. SanchoR. Van de VenterM. OosthuizenV. In vitro anti-HIV-1 properties of ethnobotanically selected South African plants used in the treatment of sexually transmitted diseases.J. Ethnopharmacol.2008119347848110.1016/j.jep.2008.08.02718809485
    [Google Scholar]
  48. TewtrakulS. SubhadhirasakulS. CheenprachaS. KaralaiC. HIV-1 protease and HIV-1 integrase inhibitory substances from Eclipta prostrata.Phytother. Res.200721111092109510.1002/ptr.225217696192
    [Google Scholar]
  49. TewtrakulS. MiyashiroH. NakamuraN. HattoriM. KawahataT. OtakeT. YoshinagaT. FujiwaraT. SupavitaT. YuenyongsawadS. RattanasuwonP. Dej-AdisaiS. HIV-1 integrase inhibitory substances from Coleus parvifolius.Phytother. Res.200317323223910.1002/ptr.111112672152
    [Google Scholar]
  50. MuanzaD.N. EulerK.L. WilliamsL. NewmanD.J. Screening for antitumor and anti-HIV activities of nine medicinal plants from Zaire.Int. J. Pharmacog.19953329810610.3109/13880209509055207
    [Google Scholar]
  51. RegeA. In-vitro testing of anti-HIV activity of some medicinal plantsIndian J. Nat. Prod. Resourc.2010169
    [Google Scholar]
  52. MambaP. AdebayoS. A. TshikalangeT. E. Anti-microbial, anti-inflammatory and hiv-1 reverse transcriptase activity of selected south african plants used to treat sexually transmitted diseases.Int. J. Pharmacog. Phytochem. Res.201681118701876
    [Google Scholar]
  53. KapewangoloP. HusseinA.A. MeyerD. Inhibition of HIV-1 enzymes, antioxidant and anti-inflammatory activities of Plectranthus barbatus.J. Ethnopharmacol.2013149118419010.1016/j.jep.2013.06.01923811046
    [Google Scholar]
  54. RanaM. LakheraS. DevlalK. Detailed quantum chemical, ADMET, reactivity, and molecular docking interaction analysis of potential phytochemicals from Asparagus racemosus targeting HIV enzyme/DNA receptors.Life in Silico202421116
    [Google Scholar]
  55. Al-MasriA.A. Identification of phytoconstituents from Albizia lebbeck as potential therapeutics against HIV-1 reverse transcriptase associated with infective endocarditis: In silico and in vitro approaches.Saudi J. Biol. Sci.202330910375110.1016/j.sjbs.2023.10375137593463
    [Google Scholar]
  56. GurjarV.K. PalD. Classification of Medicinal Plants Showing Antiviral Activity, Classified by Family and Viral Infection Types.Anti-Viral Metabolites from Medicinal Plants.ChamSpringer International Publishing202219910.1007/978‑3‑030‑83350‑3_3‑1
    [Google Scholar]
  57. KitadiJ.M. LengbiyeE.M. GboloB.Z. InkotoC.L. MuanyishayC.L. LufuluaboG.L. Justicia secunda Vahl species: Phytochemistry, Pharmacology and Future Directions: a mini-review.Disc. Phytomed.201964157171
    [Google Scholar]
  58. JiangM. ShengF. ZhangZ. MaX. GaoT. FuC. LiP. Andrographis paniculata (Burm.f.) Nees and its major constituent andrographolide as potential antiviral agents.J. Ethnopharmacol.202127211395410.1016/j.jep.2021.11395433610706
    [Google Scholar]
  59. PathakD.V. SagarS.R. BhattH.G. PatelP.K. A search for potential anti-HIV phytoconstituents from the natural product repository.Adv. Tradit. Med.202223513210.1007/s13596‑022‑00646‑2
    [Google Scholar]
  60. RaniseA. SpallarossaA. CesariniS. BondavalliF. SchenoneS. BrunoO. MenozziG. FossaP. MostiL. La CollaM. SannaG. MurredduM. ColluG. BusoneraB. MarongiuM.E. PaniA. La CollaP. LoddoR. Structure-based design, parallel synthesis, structure-activity relationship, and molecular modeling studies of thiocarbamates, new potent non-nucleoside HIV-1 reverse transcriptase inhibitor isosteres of phenethylthiazolylthiourea derivatives.J. Med. Chem.200548113858387310.1021/jm049252r15916438
    [Google Scholar]
  61. SussmanJ.L. LinD. JiangJ. ManningN.O. PriluskyJ. RitterO. AbolaE.E. Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules.Acta Crystallogr. D Biol. Crystallogr.19985461078108410.1107/S090744499800937810089483
    [Google Scholar]
  62. DeLanoW.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl.Protein Crystallogr20024018292
    [Google Scholar]
  63. SchwedeT. KoppJ. GuexN. PeitschM.C. SWISS-MODEL: an automated protein homology-modeling server.Nucleic Acids Res.200331133381338510.1093/nar/gkg52012824332
    [Google Scholar]
  64. HueyR. MorrisG.M. ForliS. Using AutoDock 4 and AutoDock vina with AutoDockTools: a tutorial.Scripps Research Institute Molecular Graphics Laboratory201210550920371000
    [Google Scholar]
  65. ANAND KUMAR A computational investigation on immunogenicity of uricase from aspergillus flavus and candida utilis.Physical Chemistry Research202311368369310.22036/pcr.2022.355694.2162
    [Google Scholar]
  66. NaharL. NathS. SarkerS.D. “Malancha”[Alternanthera philoxeroides (Mart.) Griseb.]: A potential therapeutic option against viral diseases.Biomolecules202212458210.3390/biom1204058235454170
    [Google Scholar]
  67. AnwarN. ShahM. SaleemS. RahmanH. Plant mediated synthesis of silver nanoparticles and their biological applications.Bull. Chem. Soc. Ethiop.201832346947910.4314/bcse.v32i3.6
    [Google Scholar]
  68. AlamR. ImonR.R. Kabir TalukderM.E. AkhterS. HossainM.A. AhammadF. RahmanM.M. GC-MS analysis of phytoconstituents from Ruellia prostrata and Senna tora and identification of potential anti-viral activity against SARS-CoV-2.RSC Advances20211163401204013510.1039/D1RA06842C35494115
    [Google Scholar]
  69. JansiPC In vitro Antibacterial and Cytotoxic Activity of The Leaf Extract of Anisomeles malabarica against HepG2 Cancer Cell Lines.Egypt. Acad. J. Biol. Sci. B Zool.202214234931010.21608/eajbsz.2022.271230
    [Google Scholar]
  70. ZhangM.Q. WilkinsonB. Drug discovery beyond the ‘rule-of-five’.Curr. Opin. Biotechnol.200718647848810.1016/j.copbio.2007.10.00518035532
    [Google Scholar]
  71. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.2029116211538
    [Google Scholar]
  72. HuangJ. MacKerellA.D.Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data.J. Comput. Chem.201334252135214510.1002/jcc.2335423832629
    [Google Scholar]
  73. ZoeteV. CuendetM.A. GrosdidierA. MichielinO. SwissParam: A fast force field generation tool for small organic molecules.J. Comput. Chem.201132112359236810.1002/jcc.2181621541964
    [Google Scholar]
  74. WallaceA.C. LaskowskiR.A. ThorntonJ.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions.Protein Eng. Des. Sel.19958212713410.1093/protein/8.2.1277630882
    [Google Scholar]
  75. GuzzoF. RussoR. SannaC. CelajO. CareddaA. CoronaA. TramontanoE. FiorentinoA. EspositoF. D’AbroscaB. Chemical characterization and anti-HIV-1 activity assessment of iridoids and flavonols from Scrophularia trifoliata.Molecules20212616477710.3390/molecules2616477734443358
    [Google Scholar]
  76. EspositoF. CarliI. Del VecchioC. XuL. CoronaA. GrandiN. PianoD. MaccioniE. DistintoS. ParolinC. TramontanoE. Sennoside A, derived from the traditional chinese medicine plant Rheum L., is a new dual HIV-1 inhibitor effective on HIV-1 replication.Phytomedicine201623121383139110.1016/j.phymed.2016.08.00127765358
    [Google Scholar]
  77. KlosM. van de VenterM. MilneP.J. TraoreH.N. MeyerD. OosthuizenV. In vitro anti-HIV activity of five selected South African medicinal plant extracts.J. Ethnopharmacol.2009124218218810.1016/j.jep.2009.04.04319409474
    [Google Scholar]
  78. PalshetkarA. PathareN. JadhavN. PawarM. WadhwaniA. KulkarniS. SinghK.K. In vitro anti-HIV activity of some Indian medicinal plant extracts.BMC Complementary Medicine and Therapies20202016910.1186/s12906‑020‑2816‑x32143607
    [Google Scholar]
  79. MurgaJ.D. FrantiM. PevearD.C. MaddonP.J. OlsonW.C. Potent antiviral synergy between monoclonal antibody and small- molecule CCR5 inhibitors of human immunodeficiency virus type 1.Antimicrob. Agents Chemother.200650103289329610.1128/AAC.00699‑0617005807
    [Google Scholar]
/content/journals/cp/10.2174/0115701646316517240901091407
Loading
/content/journals/cp/10.2174/0115701646316517240901091407
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test