Skip to content
2000
Volume 6, Issue 3
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

The coronavirus disease pandemic generated significant discussion among scientists and the general public, while also requiring healthcare staff to adapt continuously for nearly two years. COVID-19 caused various respiratory symptoms and lung damage. In addition, it also played a major role in damaging the circulatory system. The frequency of heart-lung involvement with its inverse relationship with prognosis is highlighted in the review. Direct cardiac involvement (COVID-19 myocarditis) was followed by subsequent cardiac complications (myocardial damage, myocardial infarction, and arrhythmias). The coronavirus disease vaccination's continual effects, cardiovascular problems, and the way the virus aggravated preexisting cardiovascular illness were ultimately studied in this review.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975299242240607103902
2024-06-20
2025-09-27
Loading full text...

Full text loading...

References

  1. ShiS. QinM. ShenB. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China.JAMA Cardiol.20205780281010.1001/jamacardio.2020.0950 32211816
    [Google Scholar]
  2. World Health OrganizationAvailable from: https://www.who.int(accessed on 21-5-2024)
  3. YangX. YuY. XuJ. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study.Lancet Respir. Med.20208547548110.1016/S2213‑2600(20)30079‑5 32105632
    [Google Scholar]
  4. SarduC. MaggiP. MessinaV. Could anti‐hypertensive drug therapy affect the clinical prognosis of hypertensive patients with covid‐19 infection? data from centers of southern italy.J. Am. Heart Assoc.2020917e01694810.1161/JAHA.120.016948 32633594
    [Google Scholar]
  5. XuZ. ShiL. WangY. Pathological findings of COVID-19 associated with acute respiratory distress syndrome.Lancet Respir. Med.20208442042210.1016/S2213‑2600(20)30076‑X 32085846
    [Google Scholar]
  6. GuzikT.J. MohiddinS.A. DimarcoA. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options.Cardiovasc. Res.2020116101666168710.1093/cvr/cvaa106 32352535
    [Google Scholar]
  7. KhanI.H. ZahraS.A. ZaimS. HarkyA. At the heart of COVID‐19.J. Card. Surg.20203561287129410.1111/jocs.14596 32369872
    [Google Scholar]
  8. SchultheissH.P. BaumeierC. PietschH. BockC.T. PollerW. EscherF. Cardiovascular consequences of viral infections: from COVID to other viral diseases.Cardiovasc. Res.202111713cvab31510.1093/cvr/cvab315 34609508
    [Google Scholar]
  9. Alvarez-GarciaJ. LeeS. GuptaA. Prognostic impact of prior heart failure in patients hospitalized with COVID-19.J. Am. Coll. Cardiol.202076202334234810.1016/j.jacc.2020.09.549 33129663
    [Google Scholar]
  10. PanagidesV. VincentF. WeizmanO. History of heart failure in patients with coronavirus disease 2019: Insights from a French registry.Arch. Cardiovasc. Dis.2021114541542510.1016/j.acvd.2021.04.003 34099379
    [Google Scholar]
  11. RichardsonS. HirschJ.S. NarasimhanM. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area.JAMA2020323202052205910.1001/jama.2020.6775 32320003
    [Google Scholar]
  12. NishigaM. WangD.W. HanY. LewisD.B. WuJ.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives.Nat. Rev. Cardiol.202017954355810.1038/s41569‑020‑0413‑9 32690910
    [Google Scholar]
  13. D’OnofrioN. ScisciolaL. SarduC. Glycated ACE2 receptor in diabetes: Open door for SARS-COV-2 entry in cardiomyocyte.Cardiovasc. Diabetol.20212019910.1186/s12933‑021‑01286‑7 33962629
    [Google Scholar]
  14. MatareseA. GambardellaJ. SarduC. SantulliG. miR-98 Regulates TMPRSS2 Expression in Human Endothelial Cells: Key Implications for COVID-19.Biomedicines202081146210.3390/biomedicines8110462 33143053
    [Google Scholar]
  15. BradleyBT MaioliH JohnstonR ChaudhryI FinkSL XuH 2020
  16. GarotJ. AmourJ. PezelT. SARS-CoV-2 fulminant myocarditis.JACC. Case Rep.2020291342134610.1016/j.jaccas.2020.05.060 32835276
    [Google Scholar]
  17. KimI.C. KimJ.Y. KimH.A. HanS. COVID-19-related myocarditis in a 21-year-old female patient.Eur. Heart J.20204119185910.1093/eurheartj/ehaa288 32282027
    [Google Scholar]
  18. LuetkensJ.A. IsaakA. ZimmerS. Diffuse myocardial inflammation in COVID-19 associated myocarditis detected by multiparametric cardiac magnetic resonance imaging.Circ. Cardiovasc. Imaging2020135e01089710.1161/CIRCIMAGING.120.010897 32397816
    [Google Scholar]
  19. PaulJ.F. CharlesP. RichaudC. CaussinC. DiakovC. Myocarditis revealing COVID-19 infection in a young patient.Eur. Heart J. Cardiovasc. Imaging202021777610.1093/ehjci/jeaa107 32338706
    [Google Scholar]
  20. SalaS. PerettoG. GramegnaM. Acute myocarditis presenting as a reverse Tako-Tsubo syndrome in a patient with SARS-CoV-2 respiratory infection.Eur. Heart J.202041191861186210.1093/eurheartj/ehaa286 32267502
    [Google Scholar]
  21. TavazziG. PellegriniC. MaurelliM. Myocardial localization of coronavirus in COVID‐19 cardiogenic shock.Eur. J. Heart Fail.202022591191510.1002/ejhf.1828 32275347
    [Google Scholar]
  22. FerreiraV.M. Schulz-MengerJ. HolmvangG. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations.J. Am. Coll. Cardiol.201872243158317610.1016/j.jacc.2018.09.072 30545455
    [Google Scholar]
  23. CaforioALP PankuweitS ArbustiniE Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the european society of cardiology working group on myocardial and pericardial diseases.Eur Heart J2013343326362648, 2648a-2648d10.1093/eurheartj/eht21023824828
    [Google Scholar]
  24. LindnerD. FitzekA. BräuningerH. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases.JAMA Cardiol.20205111281128510.1001/jamacardio.2020.3551 32730555
    [Google Scholar]
  25. FoxS.E. LiG. AkmatbekovA. Unexpected features of cardiac pathology in COVID-19 infection.Circulation2020142111123112510.1161/CIRCULATIONAHA.120.049465 32689809
    [Google Scholar]
  26. KawakamiR. SakamotoA. KawaiK. Pathological evidence for SARS-CoV-2 as a cause of myocarditis: JACC review topic of the week.J. Am. Coll. Cardiol.202177331432510.1016/j.jacc.2020.11.031 33478655
    [Google Scholar]
  27. HalushkaM.K. Vander HeideR.S. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations.Cardiovasc. Pathol.20215010730010.1016/j.carpath.2020.107300 33132119
    [Google Scholar]
  28. CooperL.T. BaughmanK.L. FeldmanA.M. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American heart association, the American college of cardiology, and the European society of cardiology endorsed by the heart failure society of America and the heart failure association of the European society of cardiology.Eur. Heart J.200728243076309310.1093/eurheartj/ehm456 17959624
    [Google Scholar]
  29. UkimuraA. SatomiH. OoiY. KanzakiY. Myocarditis associated with influenza A H1N1pdm2009.Influenza Res. Treat.201220121810.1155/2012/351979 23304476
    [Google Scholar]
  30. TrimailleA. RibeyrollesS. FauvelC. Cardiovascular characteristics and outcomes of young patients with COVID-19.J. Cardiovasc. Dev. Dis.202181216510.3390/jcdd8120165 34940520
    [Google Scholar]
  31. RudskiL. JanuzziJ.L. RigolinV.H. Multimodality imaging in evaluation of cardiovascular complications in patients with COVID-19: JACC scientific expert panel.J. Am. Coll. Cardiol.202076111345135710.1016/j.jacc.2020.06.080 32710927
    [Google Scholar]
  32. KirkpatrickJ.N. MitchellC. TaubC. KortS. HungJ. SwaminathanM. ASE statement on protection of patients and echocardiography service providers during the 2019 novel coronavirus outbreak: endorsed by the American College of Cardiology.J. Am. Soc. Echocardiogr.202033664865310.1016/j.echo.2020.04.001 32503700
    [Google Scholar]
  33. SkulstadH. CosynsB. PopescuB.A. COVID-19 pandemic and cardiac imaging: EACVI recommendations on precautions, indications, prioritization, and protection for patients and healthcare personnel.Eur. Heart J. Cardiovasc. Imaging202021659259810.1093/ehjci/jeaa072 32242891
    [Google Scholar]
  34. AgricolaE. BeneduceA. EspositoA. Heart and lung multimodality imaging in COVID-19.JACC Cardiovasc. Imaging20201381792180810.1016/j.jcmg.2020.05.017 32762885
    [Google Scholar]
  35. PuntmannV.O. CarerjM.L. WietersI. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19).JAMA Cardiol.20205111265127310.1001/jamacardio.2020.3557 32730619
    [Google Scholar]
  36. NagelE. PuntmannV.O. Errors in statistical numbers and data in study of cardiovascular magnetic resonance imaging in patients recently recovered from COVID-19.JAMA Cardiol.20205111307130810.1001/jamacardio.2020.4661 32840561
    [Google Scholar]
  37. JoyG. ArticoJ. KurdiH. Prospective casecontrol study of cardiovascular abnormalities 6 months following mild COVID- 19 in healthcare workers.JACC Cardiovasc. Imaging202114112155216610.1016/j.jcmg.2021.04.011 33975819
    [Google Scholar]
  38. ThygesenK. AlpertJ.S. JaffeA.S. Fourth universal definition of myocardial infarction (2018).Eur. Heart J.201940323726910.1093/eurheartj/ehy462 30165617
    [Google Scholar]
  39. ArentzM. YimE. KlaffL. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State.JAMA2020323161612161410.1001/jama.2020.4326 32191259
    [Google Scholar]
  40. BhatrajuP.K. GhassemiehB.J. NicholsM. COVID- 19 in critically ill patients in the seattle region - case series.N. Engl. J. Med.2020382212012202210.1056/NEJMoa2004500 32227758
    [Google Scholar]
  41. ChenT. WuD. ChenH. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study.BMJ2020368m109110.1136/bmj.m1091 32217556
    [Google Scholar]
  42. CummingsM.J. BaldwinM.R. AbramsD. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study.Lancet2020395102391763177010.1016/S0140‑6736(20)31189‑2 32442528
    [Google Scholar]
  43. GuoT. FanY. ChenM. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19).JAMA Cardiol.20205781181810.1001/jamacardio.2020.1017 32219356
    [Google Scholar]
  44. HanH. XieL. LiuR. Analysis of heart injury laboratory parameters in 273 COVID‐19 patients in one hospital in Wuhan, China.J. Med. Virol.202092781982310.1002/jmv.25809 32232979
    [Google Scholar]
  45. InciardiR.M. LupiL. ZacconeG. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19).JAMA Cardiol.20205781982410.1001/jamacardio.2020.1096 32219357
    [Google Scholar]
  46. LalaA. JohnsonK.W. JanuzziJ.L. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection.J. Am. Coll. Cardiol.202076553354610.1016/j.jacc.2020.06.007 32517963
    [Google Scholar]
  47. RuanQ. YangK. WangW. JiangL. SongJ. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China.Intensive Care Med.202046584684810.1007/s00134‑020‑05991‑x 32125452
    [Google Scholar]
  48. ShiS. QinM. CaiY. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019.Eur. Heart J.202041222070207910.1093/eurheartj/ehaa408 32391877
    [Google Scholar]
  49. WangD. HuB. HuC. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China.JAMA2020323111061106910.1001/jama.2020.1585 32031570
    [Google Scholar]
  50. ZhouF. YuT. DuR. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.Lancet2020395102291054106210.1016/S0140‑6736(20)30566‑3 32171076
    [Google Scholar]
  51. SandovalY. JanuzziJ.L.Jr JaffeA.S. Cardiac troponin for assessment of myocardial injury in COVID-19: JACC review topic of the week.J. Am. Coll. Cardiol.202076101244125810.1016/j.jacc.2020.06.068 32652195
    [Google Scholar]
  52. FuL. LiuX. SuY. MaJ. HongK. Prevalence and impact of cardiac injury on COVID ‐19: A systematic review and meta‐analysis.Clin. Cardiol.202144227628310.1002/clc.23540 33382482
    [Google Scholar]
  53. StefaniniG.G. MontorfanoM. TrabattoniD. ST-elevation myocardial infarction in patients with COVID-19: clinical and angiographic outcomes.Circulation2020141252113211610.1161/CIRCULATIONAHA.120.047525 32352306
    [Google Scholar]
  54. Rodriguez-LeorO. Cid AlvarezA.B. Pérez de PradoA. In-hospital outcomes of COVID-19 ST-elevation myocardial infarction patients.EuroIntervention202116171426143310.4244/EIJ‑D‑20‑00935 33164893
    [Google Scholar]
  55. De RosaS. SpaccarotellaC. BassoC. Reduction of hospitalizations for myocardial infarction in Italy in the COVID-19 era.Eur. Heart J.202041222083208810.1093/eurheartj/ehaa409 32412631
    [Google Scholar]
  56. HammadT.A. ParikhM. TashtishN. Impact of COVID ‐19 pandemic on ST‐elevation myocardial infarction in a non‐COVID ‐19 epicenter.Catheter. Cardiovasc. Interv.202197220821410.1002/ccd.28997 32478961
    [Google Scholar]
  57. MafhamM.M. SpataE. GoldacreR. COVID-19 pandemic and admission rates for and management of acute coronary syndromes in England.Lancet20203961024838138910.1016/S0140‑6736(20)31356‑8 32679111
    [Google Scholar]
  58. MesnierJ. CottinY. CosteP. Hospital admissions for acute myocardial infarction before and after lockdown according to regional prevalence of COVID-19 and patient profile in France: a registry study.Lancet Public Health2020510e536e54210.1016/S2468‑2667(20)30188‑2 32950075
    [Google Scholar]
  59. RangéG. HakimR. BeyguiF. Incidence, delays, and outcomes of STEMI during COVID‐19 outbreak: Analysis from the France PCI registry.J. Am. Coll. Emerg. Physicians Open2020161168117610.1002/emp2.12325 33363285
    [Google Scholar]
  60. MahmudE. DauermanH.L. WeltF.G.P. Management of acute myocardial infarction during the COVID-19 pandemic: a position statement from the Society for Cardiovascular Angiography and Interventions (SCAI), the American College of Cardiology (ACC), and the American College of Emergency Physicians (ACEP).J. Am. Coll. Cardiol.202076111375138410.1016/j.jacc.2020.04.039 32330544
    [Google Scholar]
  61. MeyerP. DegrauweS. Van DeldenC. GhadriJ.R. TemplinC. Typical takotsubo syndrome triggered by SARS-CoV-2 infection.Eur. Heart J.20204119186010.1093/eurheartj/ehaa306 32285915
    [Google Scholar]
  62. OrtunoS. JozwiakM. MiraJ.P. NguyenL.S. Case report: takotsubo syndrome associated with novel coronavirus disease 2019.Front. Cardiovasc. Med.2021861456210.3389/fcvm.2021.614562 33693034
    [Google Scholar]
  63. ColletJ.P. ThieleH. BarbatoE. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation.Eur. Heart J.202142141289136710.1093/eurheartj/ehaa575 32860058
    [Google Scholar]
  64. MitacchioneG. SchiavoneM. GasperettiA. ForleoG.B. Ventricular tachycardia storm management in a COVID-19 patient: a case report.Eur. Heart J. Case Rep.20204FI11610.1093/ehjcr/ytaa217 33089046
    [Google Scholar]
  65. LaiP.H. LancetE.A. WeidenM.D. Characteristics associated with out-of-hospital cardiac arrests and resuscitations during the novel coronavirus disease 2019 pandemic in New York City.JAMA Cardiol.20205101154116310.1001/jamacardio.2020.2488 32558876
    [Google Scholar]
  66. MarijonE. KaramN. JostD. Out-of-hospital cardiac arrest during the COVID-19 pandemic in Paris, France: a population-based, observational study.Lancet Public Health202058e437e44310.1016/S2468‑2667(20)30117‑1 32473113
    [Google Scholar]
  67. BaldiE. SechiG.M. MareC. Out-of-hospital cardiac arrest during the covid-19 outbreak in Italy.N. Engl. J. Med.2020383549649810.1056/NEJMc2010418 32348640
    [Google Scholar]
  68. TuragamM.K. MusikantowD. GoldmanM.E. Malignant arrhythmias in patients with COVID-19: incidence, mechanisms, and outcomes.Circ. Arrhythm. Electrophysiol.20201311e00892010.1161/CIRCEP.120.008920 33026892
    [Google Scholar]
  69. HindricksG. PotparaT. DagresN. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS).Eur. Heart J.202142537349810.1093/eurheartj/ehaa612 32860505
    [Google Scholar]
  70. BonnetG. WeizmanO. TrimailleA. Characteristics and outcomes of patients hospitalized for COVID-19 in France: The Critical COVID-19 France (CCF) study.Arch. Cardiovasc. Dis.2021114535236310.1016/j.acvd.2021.01.003 34154953
    [Google Scholar]
  71. InciardiR.M. AdamoM. LupiL. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy.Eur. Heart J.202041191821182910.1093/eurheartj/ehaa388 32383763
    [Google Scholar]
  72. InciardiR.M. AdamoM. LupiL. MetraM. Atrial fibrillation in the COVID-19 era: simple bystander or marker of increased risk?Eur. Heart J.20204132309410.1093/eurheartj/ehaa576 32699894
    [Google Scholar]
  73. Sanchis-GomarF. Perez-QuilisC. LavieC.J. Should atrial fibrillation be considered a cardiovascular risk factor for a worse prognosis in COVID-19 patients?Eur. Heart J.202041323092309310.1093/eurheartj/ehaa509 32688380
    [Google Scholar]
  74. RomitiG.F. CoricaB. LipG.Y.H. ProiettiM. Prevalence and impact of atrial fibrillation in hospitalized patients with COVID-19: a systematic review and metaanalysis.J. Clin. Med.20211011249010.3390/jcm10112490 34199857
    [Google Scholar]
  75. BikdeliB. MadhavanM.V. JimenezD. COVID- 19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up.J. Am. Coll. Cardiol.202075232950297310.1016/j.jacc.2020.04.031 32311448
    [Google Scholar]
  76. DrigginE. MadhavanM.V. BikdeliB. ChuichT. LaracyJ. Bondi-ZoccaiG. Cardiovascular considerations for patients, health care workers, and health systems during the coronavirus disease 2019 (COVID-19) pandemic.J. Am. Coll. Cardiol.202075182352237110.1016/j.jacc.2020.03.031 32201335
    [Google Scholar]
  77. TangN. LiD. WangX. SunZ. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia.J. Thromb. Haemost.202018484484710.1111/jth.14768 32073213
    [Google Scholar]
  78. DanziG.B. LoffiM. GaleazziG. GherbesiE. Acute pulmonary embolism and COVID-19 pneumonia: a random association?Eur. Heart J.20204119185810.1093/eurheartj/ehaa254 32227120
    [Google Scholar]
  79. GrilletF. BehrJ. CalameP. AubryS. DelabrousseE. Acute pulmonary embolism associated with COVID-19 pneumonia detected by pulmonary CT angiography.Radiology20202963E186E18810.1148/radiol.2020201544 32324103
    [Google Scholar]
  80. KlokF.A. KruipM.J.H.A. van der MeerN.J.M. Incidence of thrombotic complications in critically ill ICU patients with COVID-19.Thromb. Res.202019114514710.1016/j.thromres.2020.04.013 32291094
    [Google Scholar]
  81. Léonard-LorantI. DelabrancheX. SéveracF. Acute pulmonary embolism in COVID-19 patients on CT angiography and relationship to D-Dimer levels.Radiology20202963E189E19110.1148/radiol.2020201561 32324102
    [Google Scholar]
  82. PoissyJ. GoutayJ. CaplanM. Pulmonary embolism in patients with COVID-19: awareness of an increased prevalence.Circulation2020142218418610.1161/CIRCULATIONAHA.120.047430 32330083
    [Google Scholar]
  83. TrimailleA. CurtiaudA. MarchandotB. Venous thromboembolism in non-critically ill patients with COVID-19 infection.Thromb. Res.202019316616910.1016/j.thromres.2020.07.033 32707275
    [Google Scholar]
  84. SuhY.J. HongH. OhanaM. Pulmonary embolism and deep vein thrombosis in COVID-19: a systematic review and metaanalysis.Radiology20212982E70E8010.1148/radiol.2020203557 33320063
    [Google Scholar]
  85. FauvelC. WeizmanO. TrimailleA. Pulmonary embolism in COVID-19 patients: a French multicentre cohort study.Eur. Heart J.202041323058306810.1093/eurheartj/ehaa500 32656565
    [Google Scholar]
  86. SzekelyY. LichterY. TaiebP. BanaiA. HochstadtA. MerdlerI. The spectrum of cardiac manifestations in coronavirus disease 2019 (COVID-19) - a systematic echocardiographic study.Circulation2020142434235310.1161/CIRCULATIONAHA.120.047971 32469253
    [Google Scholar]
  87. DweckM.R. BulargaA. HahnR.T. Global evaluation of echocardiography in patients with COVID-19.Eur. Heart J. Cardiovasc. Imaging202021994995810.1093/ehjci/jeaa178 32556199
    [Google Scholar]
  88. KimJ. VolodarskiyA. SultanaR. Prognostic utility of right ventricular remodeling over conventional risk stratification in patients with COVID-19.J. Am. Coll. Cardiol.202076171965197710.1016/j.jacc.2020.08.066 33092732
    [Google Scholar]
  89. LiY. LiH. ZhuS. Prognostic value of right ventricular longitudinal strain in patients with COVID-19.JACC Cardiovasc. Imaging202013112287229910.1016/j.jcmg.2020.04.014 32654963
    [Google Scholar]
  90. Soulat-DufourL. FauvelC. WeizmanO. Prognostic value of right ventricular dilatation in patients with COVID-19: a multicentre study.Eur. Heart J. Cardiovasc. Imaging202223456957710.1093/ehjci/jeab067 34008835
    [Google Scholar]
  91. JainS.S. LiuQ. RaikhelkarJ. FriedJ. EliasP. PoteruchaT.J. Indications and findings on transthoracic echocardiogram in COVID-19.J. Am. Soc. Echocardiogr.2020331012781284
    [Google Scholar]
  92. RumeryK. SeoA. JiangL. Outcomes of coronavirus disease‐2019 among veterans with pre‐existing diagnosis of heart failure.ESC Heart Fail.2021832338234410.1002/ehf2.13291 33728800
    [Google Scholar]
  93. BhattA.S. JeringK.S. VaduganathanM. Clinical outcomes in patients with heart failure hospitalized with COVID-19.JACC Heart Fail.202191657310.1016/j.jchf.2020.11.003 33384064
    [Google Scholar]
  94. ReyJ.R. Caro-CodónJ. RosilloS.O. Heart failure in COVID‐19 patients: prevalence, incidence and prognostic implications.Eur. J. Heart Fail.202022122205221510.1002/ejhf.1990 32833283
    [Google Scholar]
  95. BaigentC. WindeckerS. AndreiniD. ArbeloE. BarbatoE. European society of cardiology guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: part 1—epidemiology, pathophysiology, and diagnosis.Eur. Heart J.2021431110331058
    [Google Scholar]
  96. TomasoniD. InciardiR.M. LombardiC.M. Impact of heart failure on the clinical course and outcomes of patients hospitalized for COVID ‐19. Results of the Cardio‐COVID‐Italy multicentre study.Eur. J. Heart Fail.202022122238224710.1002/ejhf.2052 33179839
    [Google Scholar]
  97. KusterG.M. PfisterO. BurkardT. SARS-CoV2: should inhibitors of the renin–angiotensin system be withdrawn in patients with COVID-19?Eur. Heart J.202041191801180310.1093/eurheartj/ehaa235 32196087
    [Google Scholar]
  98. PatelA.B. VermaA. COVID-19 and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: What is the evidence?JAMA2020323181769177010.1001/jama.2020.4812 32208485
    [Google Scholar]
  99. LopesR.D. MacedoA.V.S. de BarrosE. SilvaP.G.M. Effect of discontinuing vs continuing angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on days alive and out of the hospital in patients admitted with COVID-19: A randomized clinical trial.JAMA2021325325426410.1001/jama.2020.25864 33464336
    [Google Scholar]
  100. BromageD.I. CannatàA. RindI.A. The impact of COVID ‐19 on heart failure hospitalization and management: report from a Heart Failure Unit in London during the peak of the pandemic.Eur. J. Heart Fail.202022697898410.1002/ejhf.1925 32478951
    [Google Scholar]
  101. DoolubG. WongC. HewitsonL. Impact of COVID‐19 on inpatient referral of acute heart failure: a single‐centre experience from the south‐west of the UK.ESC Heart Fail.2021821691169510.1002/ehf2.13158 33410281
    [Google Scholar]
  102. GoyalP. ChoiJ.J. PinheiroL.C. Clinical characteristics of COVID-19 in New York City.N. Engl. J. Med.2020382242372237410.1056/NEJMc2010419 32302078
    [Google Scholar]
  103. GrasselliG. ZangrilloA. ZanellaA. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the lombardy region, Italy.JAMA2020323161574158110.1001/jama.2020.5394 32250385
    [Google Scholar]
  104. MarfellaR. PaolissoP. SarduC. Negative impact of hyperglycaemia on tocilizumab therapy in Covid-19 patients.Diabetes Metab.202046540340510.1016/j.diabet.2020.05.005 32447102
    [Google Scholar]
  105. HuangY. LuY. HuangY.M. Obesity in patients with COVID-19: A systematic review and meta-analysis.Metabolism202011315437810.1016/j.metabol.2020.154378 33002478
    [Google Scholar]
  106. SarduC. D’OnofrioN. BalestrieriM.L. Hyperglycaemia on admission to hospital and COVID-19.Diabetologia202063112486248710.1007/s00125‑020‑05216‑2 32632527
    [Google Scholar]
  107. SarduC. GargiuloG. EspositoG. PaolissoG. MarfellaR. Impact of diabetes mellitus on clinical outcomes in patients affected by Covid-19.Cardiovasc. Diabetol.20201917610.1186/s12933‑020‑01047‑y 32527257
    [Google Scholar]
  108. SarduC. D’OnofrioN. BalestrieriM.L. Outcomes in patients with hyperglycemia affected by COVID-19: Can we do more on glycemic control?Diabetes Care20204371408141510.2337/dc20‑0723 32430456
    [Google Scholar]
  109. WeiZ.Y. QiaoR. ChenJ. The influence of pre-existing hypertension on coronavirus disease 2019 patients.Epidemiol. Infect.2021149e410.1017/S0950268820003118 33397519
    [Google Scholar]
  110. ZhangJ. WuJ. SunX. Association of hypertension with the severity and fatality of SARS-CoV-2 infection: A meta-analysis.Epidemiol. Infect.2020148e10610.1017/S095026882000117X 32460927
    [Google Scholar]
  111. LeungJ.M. YangC.X. TamA. ACE-2 expression in the small airway epithelia of smokers and COPD patients: implications for COVID-19.Eur. Respir. J.2020555200068810.1183/13993003.00688‑2020 32269089
    [Google Scholar]
  112. LutchmanD. Could the smoking gun in the fight against COVID-19 be the (rh)ACE-2?Eur. Respir. J.2020561200156010.1183/13993003.01560‑2020 32398309
    [Google Scholar]
  113. RossatoM. RussoL. MazzocutS. Di VincenzoA. FiorettoP. VettorR. Current smoking is not associated with COVID-19.Eur. Respir. J.2020556200129010.1183/13993003.01290‑2020 32350106
    [Google Scholar]
  114. WilliamsonE.J. WalkerA.J. BhaskaranK. Factors associated with COVID-19-related death using OpenSAFELY.Nature2020584782143043610.1038/s41586‑020‑2521‑4 32640463
    [Google Scholar]
  115. WeizmanO. MikaD. CellierJ. Characteristics and impact of cardiovascular comorbidities on coronavirus disease 2019 in women: A multicentre cohort study.Arch. Cardiovasc. Dis.2021114539440610.1016/j.acvd.2021.04.002 34154954
    [Google Scholar]
  116. WuQ. ZhouL. SunX. Altered lipid metabolism in recovered SARS patients twelve years after infection.Sci. Rep.201771911010.1038/s41598‑017‑09536‑z 28831119
    [Google Scholar]
  117. NguyenJ.L. YangW. ItoK. MatteT.D. ShamanJ. KinneyP.L. Seasonal influenza infections and cardiovascular disease mortality.JAMA Cardiol.20161327428110.1001/jamacardio.2016.0433 27438105
    [Google Scholar]
  118. CarfìA. BernabeiR. LandiF. Persistent symptoms in patients after acute COVID-19.JAMA2020324660360510.1001/jama.2020.12603 32644129
    [Google Scholar]
  119. LogueJ.K. FrankoN.M. McCullochD.J. Sequelae in adults at 6 months after COVID-19 infection.JAMA Netw. Open202142e21083010.1001/jamanetworkopen.2021.0830 33606031
    [Google Scholar]
  120. HuangC. HuangL. WangY. LiX. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study.Lancet.202340110393e21e3310.1016/S0140‑6736(20)32656‑8 33428867
    [Google Scholar]
  121. Romero-DuarteÁ. Rivera-IzquierdoM. Guerrero-Fernández de AlbaI. Sequelae, persistent symptomatology and outcomes after COVID-19 hospitalization: the ANCOHVID multicentre 6-month follow-up study.BMC Med.202119112910.1186/s12916‑021‑02003‑7 34011359
    [Google Scholar]
  122. Carvalho-SchneiderC. LaurentE. LemaignenA. Follow-up of adults with noncritical COVID-19 two months after symptom onset.Clin. Microbiol. Infect.202127225826310.1016/j.cmi.2020.09.052 33031948
    [Google Scholar]
  123. ZhouM. WongC.K. UnK.C. Cardiovascular sequalae in uncomplicated COVID-19 survivors.PLoS One2021162e024673210.1371/journal.pone.0246732 33571321
    [Google Scholar]
  124. XieY. XuE. BoweB. Al-AlyZ. Long-term cardiovascular outcomes of COVID-19.Nat. Med.202228358359010.1038/s41591‑022‑01689‑3 35132265
    [Google Scholar]
  125. MattaA. KallamadiR. MattaD. BandeD. Post-mRNA COVID-19 vaccination myocarditis.Eur. J. Case Rep. Intern. Med.202188002769 34527626
    [Google Scholar]
  126. TailorP.D. FeigheryA.M. El-SabawiB. PrasadA. Case report: acute myocarditis following the second dose of mRNA-1273 SARS-CoV-2 vaccine.Eur. Heart J. Case Rep.202158ytab31910.1093/ehjcr/ytab319 34514306
    [Google Scholar]
  127. ViscloskyT. TheyyunniN. KlekowskiN. BradinS. Myocarditis following mRNA COVID-19 vaccine.Pediatr. Emerg. Care2021371158358410.1097/PEC.0000000000002557 34731877
    [Google Scholar]
  128. HajjoR. SabbahD.A. BardaweelS.K. TropshaA. Shedding the light on post-vaccine myocarditis and pericarditis in COVID-19 and non-COVID-19 vaccine recipients.Vaccines2021910118610.3390/vaccines9101186 34696294
    [Google Scholar]
  129. WitbergG. BardaN. HossS. Myocarditis after COVID-19 vaccination in a large health care organization.N. Engl. J. Med.2021385232132213910.1056/NEJMoa2110737 34614329
    [Google Scholar]
  130. ShiyovichA. WitbergG. AvivY. EisenA. OrvinK. WiessmanM. Myocarditis following COVID-19 vaccination: magnetic resonance imaging study.Eur. Heart J. Cardiovasc. Imaging20210018 34739045
    [Google Scholar]
  131. MevorachD. AnisE. CedarN. Myocarditis after BNT162b2 mRNA Vaccine against Covid-19 in Israel.N. Engl. J. Med.2021385232140214910.1056/NEJMoa2109730 34614328
    [Google Scholar]
  132. MarfellaR. D’OnofrioN. SarduC. Does poor glycaemic control affect the immunogenicity of the COVID‐19 vaccination in patients with type 2 diabetes: The CAVEAT study.Diabetes Obes. Metab.202224116016510.1111/dom.14547 34494705
    [Google Scholar]
  133. SadoffJ. DavisK. DouoguihM. Thrombotic thrombocytopenia after Ad26.COV2.S vaccination - response from the manufacturer.N. Engl. J. Med.2021384201965196610.1056/NEJMc2106075 33861522
    [Google Scholar]
  134. PottegårdA. LundL.C. KarlstadØ. Arterial events, venous thromboembolism, thrombocytopenia, and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: population based cohort study.BMJ20213731114n111410.1136/bmj.n1114 33952445
    [Google Scholar]
  135. MarchandotB. CarmonaA. TrimailleA. CurtiaudA. MorelO. Procoagulant microparticles: a possible link between vaccine-induced immune thrombocytopenia (VITT) and cerebral sinus venous thrombosis.J. Thromb. Thrombolysis202152368969110.1007/s11239‑021‑02505‑4 34129181
    [Google Scholar]
  136. ReddyS. ReddyS. AroraM. A case of postural orthostatic tachycardia syndrome secondary to the messenger RNA COVID-19 vaccine.Cureus2021135e1483710.7759/cureus.14837 33968543
    [Google Scholar]
  137. MarfellaR. PaolissoP. SarduC. SARS-COV-2 colonizes coronary thrombus and impairs heart microcirculation bed in asymptomatic SARS-CoV-2 positive subjects with acute myocardial infarction.Crit. Care202125121710.1186/s13054‑021‑03643‑0 34167575
    [Google Scholar]
  138. TajstraM. JaroszewiczJ. GąsiorM. Acute coronary tree thrombosis after vaccination for COVID-19.JACC Cardiovasc. Interv.2021149e103e10410.1016/j.jcin.2021.03.003 33958175
    [Google Scholar]
  139. CraneP. WongC. MehtaN. BarlisP. Takotsubo (stress) cardiomyopathy after ChAdOx1 nCoV-19 vaccination.BMJ Case Rep.20211410e24658010.1136/bcr‑2021‑246580 34625447
    [Google Scholar]
  140. MarfellaR. SarduC. D’OnofrioN. Glycaemic control is associated with SARS-CoV-2 breakthrough infections in vaccinated patients with type 2 diabetes.Nat. Commun.2022131231810.1038/s41467‑022‑30068‑2 35484164
    [Google Scholar]
  141. MeylanS. LivioF. FoersterM. GenoudP.J. MarguetF. WuerznerG. Stage III hypertension in patients after mRNA-based SARS-CoV-2 vaccination.Hypertension2021776e56e5710.1161/HYPERTENSIONAHA.121.17316 33764160
    [Google Scholar]
  142. ZappaM. VerdecchiaP. SpanevelloA. ViscaD. AngeliF. Blood pressure increase after Pfizer/BioNTech SARS-CoV-2 vaccine.Eur. J. Intern. Med.20219011111310.1016/j.ejim.2021.06.013 34158234
    [Google Scholar]
  143. FauvelC. TrimailleA. WeizmanO. Cardiovascular manifestations secondary to COVID-19: A narrative review.Respir. Med. Res.20228110090410.1016/j.resmer.2022.100904 35525097
    [Google Scholar]
/content/journals/covid/10.2174/0126667975299242240607103902
Loading
/content/journals/covid/10.2174/0126667975299242240607103902
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test