Skip to content
2000
Volume 6, Issue 3
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

The outburst of COVID-19 was first detected in Wuhan city of China, at the end of 2019, and consequently, it spread all over the world as a pandemic. COVID-19 mostly spreads through close contact, respiratory droplets through coughing, talking and sneezing, and cluster infections. Different countries have invented different vaccines to stabilize the pandemic situation. But until now, it has not stabilized, and every day, a large percentage of people are getting infected, and sometimes, in severe cases, it results in the loss of life. Many researchers are working in different ways to protect, diagnose, and early detection of coronavirus disease (COVID-19). Different image processing techniques, along with modern technologies like machine learning, Artificial Intelligence, and Deep Learning, have already been used to fight against this disease. In this study, we have reviewed all applications of image processing for the diagnosis of COVID-19 patients in detail. At first, we reviewed X-ray image-based techniques to diagnose COVID-19 patients along with their limitations and findings. Various CT scan picture-based techniques are discussed for the diagnosis and treatment of this disease. At last, we have reviewed different ultrasound images based on various techniques to measure the severity of COVID-19 patients. All techniques are discussed with their merits and demerits along with their applications.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975301173240607114109
2024-06-20
2025-09-27
Loading full text...

Full text loading...

References

  1. WHOWHO coronavirus (COVID-19) dashboard.Availalbe from: https://covid19.who.int 2021
  2. ZhangW. ZhaoY. ZhangF. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China.Clin. Immunol.202021410839310.1016/j.clim.2020.108393 32222466
    [Google Scholar]
  3. JiY. MaZ. PeppelenboschM.P. PanQ. Potential association between COVID-19 mortality and health-care resource availability.Lancet Glob. Health202084e48010.1016/S2214‑109X(20)30068‑1 32109372
    [Google Scholar]
  4. HolmesL.Jr EnwereM. WilliamsJ. Black– white risk differentials in COVID-19 (SARS-COV2)transmission, mortality and case fatality in the United States: translational epidemiologic perspective and challenges.Int. J. Environ. Res. Public Health20201712432210.3390/ijerph17124322 32560363
    [Google Scholar]
  5. ArulanandamB. BeladiH. ChakrabartiA. COVID-19 mortality and the overweight: Cross-country evidence.Public Health in Practice2021210017910.1016/j.puhip.2021.100179 34485959
    [Google Scholar]
  6. YaoY. PanJ. WangW. Association of particulate matter pollution and case fatality rate of COVID-19 in 49 Chinese cities.Sci. Total Environ.202074114039610.1016/j.scitotenv.2020.140396 32592974
    [Google Scholar]
  7. AhaniA. NilashiM. Coronavirus outbreak and its impacts on global economy: the role of social network sites.J Soft Comput Decis Support Syst2020721922
    [Google Scholar]
  8. Mohd NadzirM.S. OoiM.C.G. AlhasaK.M. The impact of movement control order (MCO) during pandemic COVID-19 on local air quality in an urban area of Klang valley.Aerosol Air Qual. Res.20202061237124810.4209/aaqr.2020.04.0163
    [Google Scholar]
  9. NgB.H. Nik AbeedN.N. Abdul HamidM.F. SooC.I. LowH.J. BanY.L.A. What happens when we treat the “Typhoid Mary” of COVID‐19.Respirol. Case Rep.202086e0060410.1002/rcr2.604 32607242
    [Google Scholar]
  10. NilashiM. AsadiS. Minaei-BidgoliB. Recommendation agents and information sharing through social media for coronavirus outbreak.Telemat. Inform.20216110159710.1016/j.tele.2021.101597 34887615
    [Google Scholar]
  11. RupaniP.F. NilashiM. AbumallohR.A. AsadiS. SamadS. WangS. Coronavirus pandemic (COVID-19) and its natural environmental impacts.Int. J. Environ. Sci. Technol.202017114655466610.1007/s13762‑020‑02910‑x 32904898
    [Google Scholar]
  12. YadavT. SaxenaS.K. Transmission cycle of SARS-CoV and SARS-CoV-2, coronavirus disease 2019 (COVID-19).In: 3D medical animation corona virus.Springer20203342Available from: https://commons.wikimedia.org/wiki/File:3D_medical_animation_ corona_virus.jpg
    [Google Scholar]
  13. HallakJ.A. ScanzeraA.C. AzarD.T. ChanR.V.P. Artificial intelligence in ophthalmology during COVID-19 and in the post COVID-19 era.Curr. Opin. Ophthalmol.202031544745310.1097/ICU.0000000000000685 32694268
    [Google Scholar]
  14. HaghanifarA MajdabadiMM KoS COVID-cxnet: Detecting covid-19 in frontal chest X-ray images using deep learning.arXiv2006138072020121
    [Google Scholar]
  15. UcarF. KorkmazD. COVIDiagnosis-Net: Deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images.Med. Hypotheses202014010976110.1016/j.mehy.2020.109761 32344309
    [Google Scholar]
  16. MohamadouY. HalidouA. KapenP.T. A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of COVID-19.Appl. Intell.202050113913392510.1007/s10489‑020‑01770‑9 34764546
    [Google Scholar]
  17. ZhangX. OsbornT. ZhouB. Lung ultrasound surface wave elastography: A pilot clinical study.IEEE Trans. Ultrason. Ferroelectr. Freq. Control20176491298130410.1109/TUFFC.2017.2707981
    [Google Scholar]
  18. PengQ.Y. WangX.T. ZhangL.N. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic.Intensive Care Med.202046584985010.1007/s00134‑020‑05996‑6 32166346
    [Google Scholar]
  19. SoldatiG. SmargiassiA. InchingoloR. Is there a role for lung ultrasound during the covid-19 pandemic?J. Ultrasound Med.20203971459146210.1002/jum.15284
    [Google Scholar]
  20. PanwarH. GuptaP.K. SiddiquiM.K. Morales-MenendezR. SinghV. Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet.Chaos Solitons Fractals202013810994410.1016/j.chaos.2020.109944 32536759
    [Google Scholar]
  21. Duran-LopezL. Dominguez-MoralesJ.P. Corral-JaimeJ. Vicente-DiazS. Linares-BarrancoA. COVID-XNet: A custom deep learning system to diagnose and locate cOVID-19 in chest X-ray images.Appl. Sci.20201016568310.3390/app10165683
    [Google Scholar]
  22. TogacarM ErgenB. CömertZ. COVID-19 detectionusing deep learningmodels to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches.Comput. Biol. Med.20202020103805
    [Google Scholar]
  23. KarthikR. MenakaR. M.H. Learning distinctive filters for COVID-19 detection from chest X-ray using shuffled residual CNN.Appl. Soft Comput.20219910674410.1016/j.asoc.2020.106744 32989379
    [Google Scholar]
  24. HeidariM. MirniaharikandeheiS. KhuzaniA.Z. DanalaG. QiuY. ZhengB. Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms.In: Int J Med Inf.2020104284
    [Google Scholar]
  25. TurkogluM. COVIDetectioNet: COVID-19 diagnosis system based on X-ray images using features selected from pre-learned deep features ensemble.Appl. Intell.202151312131226 34764550
    [Google Scholar]
  26. Bahadur ChandraT. VermaK. Kumar SinghB. JainD. Singh NetamS. Coronavirus disease (COVID-19) detection in chest X-ray images using majority voting based classifier ensemble.Expert Syst. Appl.2020165113
    [Google Scholar]
  27. IsmaelA.M. ŞengürA. The investigation of multiresolution approaches for chest X-ray image based COVID-19 detection.Health Inf. Sci. Syst.2020812910.1007/s13755‑020‑00116‑6 31867102
    [Google Scholar]
  28. HassantabarS. AhmadiM. SharifiA. Diagnosis and detection of infected tissue of COVID-19 patients based on lung X-ray image using convolutional neural network approaches.Chaos Solitons Fractals202014011017010.1016/j.chaos.2020.110170 32834651
    [Google Scholar]
  29. GoelT. MuruganR. MirjaliliS. ChakrabarttyD.K. OptCoNet: An optimized con-volutional neural network for an automatic diagnosis of COVID-19.Appl. Intell.20202020116
    [Google Scholar]
  30. ElazizM.A. HosnyK.M. SalahA. DarwishM.M. LuS. SahlolA.T. New machine learning method for image-based diagnosis of COVID-19.PLoS One2020156e023518710.1371/journal.pone.0235187 32589673
    [Google Scholar]
  31. AltanA. KarasuS. Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique.Chaos Solitons Fractals202014011007110.1016/j.chaos.2020.110071 32834627
    [Google Scholar]
  32. DasD. SantoshK.C. PalU. Truncated inception net: COVID-19 outbreak screening using chest X-rays.Phys. Eng. Sci. Med.202043391592510.1007/s13246‑020‑00888‑x 32588200
    [Google Scholar]
  33. KhanM.A. An automated and fast system to identify COVID ‐19 from X‐ray radiograph of the chest using image processing and machine learning.Int. J. Imaging Syst. Technol.202131249950810.1002/ima.22564 33821097
    [Google Scholar]
  34. JuniorJ.R.F. CardenasD.A.C. MorenoR.A. Novel chest radiographic biomarkers for COVID-19 using radiomicfeatures associated with diagnostics and outcomes.J. Digit. Imaging20212021111
    [Google Scholar]
  35. KhannaM. AgarwalA. SinghL.K. ThawkarS. KhannaA. GuptaD. Radiologist-level two novel and robust automated computer-aided prediction models forearly detection of COVID-19 infection from chest X-ray images.Arab. J. Sci. Eng.20212021133 34395156
    [Google Scholar]
  36. AroraR. BansalV. BuckchashH. KumarR. SahayasheelaV.J. NarayananN. AI-based diagnosis of COVID-19 patients using X-ray scans with stochasticensemble of CNNs.In: Phys Eng Sci Med2021115
    [Google Scholar]
  37. ShanF GaoY WangJ ShiW ShiN HanM Lung infection quantification of covid-19 in ct images with deep learning.arXiv2003.046552020119
    [Google Scholar]
  38. ÖztürkŞ. ÖzkayaU. BarstuğanM. Classification of Coronavirus ( COVID ‐19) from X‐ray and CT images using shrunken features.Int. J. Imaging Syst. Technol.202131151510.1002/ima.2246932904960
    [Google Scholar]
  39. MohammedA.K. WangC. ZhaoM. UllahM. NaseemR. WangH. Semisupervised network for detection of COVID-19 in chest CT scans.IEEE Access202081559876000
    [Google Scholar]
  40. FungD.L.X. LiuQ. ZammitJ. LeungC.K.S. HuP. Self-supervised deep learning model for COVID-19 lung CT image segmentation highlighting putative causal relationship among age, underlying disease and COVID-19.J. Transl. Med.202119131810.1186/s12967‑021‑02992‑234311742
    [Google Scholar]
  41. ZhengQ. LuY. LureF. JaegerS. LuP. Clinical and radiological features of novel coronavirus pneumonia.J. XRay Sci. Technol.202028339140410.3233/XST‑200687
    [Google Scholar]
  42. LichtensteinD. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome.Am J Respir Crit Care Med199715651640164610.1164/ajrccm.156.5.96‑07096
    [Google Scholar]
  43. CopettiR. SoldatiG. CopettiP. Chest sonography: A useful tool to differentiate acute cardiogenic pulmonary edema from acute respiratory distress syndrome.Cardiovasc Ultrasound200861610.1186/1476‑7120‑6‑16
    [Google Scholar]
  44. PicanoE. PellikkaP. A. Ultrasound of extravascular lung water: A new standard for pulmonary congestion.Eur Heart J201637272097210410.1093/eurheartj/ehw164
    [Google Scholar]
  45. GarganiL. DoveriM. D’ErricoL. FrassiF. BazzichiM. L. SedieA. D. ScaliM. C. MontiS. MondilloS. BombardieriS. CaramellaD. PicanoE. Ultrasound lung comets in systemic sclerosis: A chest sonography hallmark of pulmonary interstitial fibrosis.Rheumatology200948111382138710.1093/rheumatology/kep263
    [Google Scholar]
  46. SoldatiG. DemiM. InchingoloR. SmargiassiA. DemiL. On the physical basis of pulmonary sonographic interstitial syndrome.J Ultrasound Med201635102075208610.7863/ultra.15.08023
    [Google Scholar]
  47. MoshaveghR. HansenK.L. Møller-SørensenH. NielsenM.B. JensenJ.A. Automatic detection of b-lines in in vivo lung ultrasound.IEEE Trans. Ultrason. Ferroelectr. Freq. Control201966230931710.1109/TUFFC.2018.288595530530325
    [Google Scholar]
  48. van SlounR.J. DemiL. Localizing b-lines in lung ultrasonography by weakly-supervised deep learning, in vivo results.IEEE J. Biomed. Health Inform.201924495796431425126
    [Google Scholar]
  49. CorreaM. ZimicM. BarrientosF. BarrientosR. Román-GonzalezA. PajueloM.J. AnticonaC. MaytaH. AlvaA. Solis-VasquezL. FigueroaD.A. ChavezM.A. LavarelloR. CastañedaB. Paz-SoldánV.A. CheckleyW. GilmanR.H. OberhelmanR. Automatic classification of pediatric pneumonia based on lung ultrasound pattern recognition.PLoS One20181312e020641010.1371/journal.pone.020641030517102
    [Google Scholar]
  50. RoyS. MenapaceW. OeiS. LuijtenB. FiniE. SaltoriC. HuijbenI. ChennakeshavaN. MentoF. SentelliA. PeschieraE. TrevisanR. MaschiettoG. TorriE. InchingoloR. SmargiassiA. SoldatiG. RotaP. PasseriniA. van SlounR.J.G. RicciE. DemiL. Deep learning for classification and localization of covid-19 markers in point-of-care lung ultrasound.IEEE Trans. Med. Imaging20203982676268710.1109/TMI.2020.299445932406829
    [Google Scholar]
  51. AnantrasirichaiN. HayesW. AllinoviM. BullD. AchimA. Line detection as an inverse problem: Application to lung ultrasound imaging.IEEE Trans. Med. Imaging201736102045205610.1109/TMI.2017.271588028682247
    [Google Scholar]
  52. KulhareS. ZhengX. MehanianC. GregoryC. ZhuM. GregoryK. XieH. JonesJ.M. WilsonB. “Ultrasound-based detection of lung abnormalities using single shot detection convolutional neural networks,” in Simulation, Image Processing, and Ultrasound Systems for Assisted Diagnosis and Navigation.Springer20186573
    [Google Scholar]
  53. CarrerL. DoniniE. MarinelliD. ZanettiM. MentoF. TorriE. SmargiassiA. InchingoloR. SoldatiG. DemiL. BovoloF. BruzzoneL. Automatic pleural line extraction and COVID-19 scoring from lung ultrasound data.IEEE Trans. Ultrason. Ferroelectr. Freq. Control202067112207221710.1109/TUFFC.2020.300551232746195
    [Google Scholar]
  54. Karakus¸O. AnantrasirichaiN. AguersifA. SilvaS. BasarabA. AchimA. Detection of line artefacts in lung ultrasound images of COVID-19 patients via non-convex regularization.IEEE Trans. Ultrason. Ferroelectr. Freq. Control202067112218222910.1109/TUFFC.2020.301609232784133
    [Google Scholar]
  55. PereiraR.M. BertoliniD. TeixeiraL.O. SillaC.N.Jr CostaY.M.G. COVID-19 identification in chest X-ray images on flat and hierarchical classification scenarios.Comput. Methods Programs Biomed.202019410553210.1016/j.cmpb.2020.10553232446037
    [Google Scholar]
  56. Civit-MasotJ. Luna-PerejónF. Domínguez MoralesM. CivitA. Deep learning system for COVID-19 Diagnosis aid using X-ray pulmonary images.Appl. Sci.20201013464010.3390/app10134640
    [Google Scholar]
  57. ShaziaA. XuanT.Z. ChuahJ.H. UsmanJ. QianP. LaiK.W. A comparative study of multiple neural network for detection of COVID-19 on chest X-ray.EURASIP J. Adv. Signal Process.2021202115010.1186/s13634‑021‑00755‑134335736
    [Google Scholar]
  58. Narayan DasN. KumarN. KaurM. KumarV. SinghD. Automated deep transfer learning-based approach for detection of COVID-19 infection in chest X-rays.Ing Rech Biomed202243211411910.1016/j.irbm.2020.07.001
    [Google Scholar]
  59. MehrrotraaR. AnsariM.A. AgrawalRajeev Ensembling of efficient deep convolutional networks and machine learning algorithms for resource effective detection of tuberculosis using thoracic (Chest) radiography.IEEE Access202210854428545810.1109/ACCESS.2022.3194152
    [Google Scholar]
  60. UkwuomaC.C. QinZ. HeyatM.B.B. AkhtarF. SmahiA. JacksonJ.K. Furqan QadriS. MuaadA.Y. MondayH.N. NnejiG.U. Automated lung-related pneumonia and COVID-19 detection based on novel feature extraction framework and vision transformer approaches using Chest X-ray images.Bioengineering202291170910.3390/bioengineering911070936421110
    [Google Scholar]
  61. UkwuomaC.C. CaiD. HeyatM.B.B. BamisileO. AdunH. Al-HudaZ. Al-antariM.A. Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images.J. King. Saud. Univ. Comp. Inform. Sci.202335710159610.1016/j.jksuci.2023.10159637275558
    [Google Scholar]
  62. IqbalM.S. NaqviR.A. AlizadehsaniR. HussainS. MoqurrabS.A. LeeS-W. An adaptive ensemble deep learning framework for reliable detection of pandemic patients.Comput. Biol. Med.202416810783610.1016/j.compbiomed.2023.107836
    [Google Scholar]
  63. AliM.U. ZafarA. TanveerJ. KhanM.A. KimS.H. AlsulamiM.M. LeeS.W. Deep learning network selection and optimized information fusion for enhanced COVID‐19 detection.Int. J. Imaging Syst. Technol.2024342e2300110.1002/ima.23001
    [Google Scholar]
  64. KhosraviMohammad R. A CNN-based chest infection diagnostic model: A multistage multiclass isolated and developed transfer learning framework.Int. J. Intell. Syst.20230884817310.1155/2023/6850772
    [Google Scholar]
  65. Sousa RêgoL.O. Alves BragaL.L. Vilas-BoasG.S. Oliveira CardosoM.S. DuraesA.R. Cardiovascular and neurological complications of COVID-19: A narrative review.J. Clin. Med.2023128281910.3390/jcm1208281937109156
    [Google Scholar]
  66. StillerK. Physiotherapy in intensive care: An updated systematic review.Chest2013144382584710.1378/chest.12‑293023722822
    [Google Scholar]
  67. CorreiaA.O. FeitosaP.W.G. MoreiraJ.L.S. NogueiraS.Á.R. FonsecaR.B. NobreM.E.P. Neurological manifestations of COVID-19 and other coronaviruses: A systematic review.Neurol. Psychiatry Brain Res.202037273210.1016/j.npbr.2020.05.00832834527
    [Google Scholar]
  68. MadaniNeishabooriA. MoshrefiaraghiD. Mohamed AliK. TolouiA. YousefifardM. HosseiniM. Central nervous system complications in COVID-19 patients : A systematic review and meta-analysis based on current evidence.Arch. Acad. Emerg. Med.202081e6233134959
    [Google Scholar]
  69. BoscuttiA. DelvecchioG. PigoniA. CeredaG. CiappolinoV. BellaniM. Fusar-PoliP. BrambillaP. Olfactory and gustatory dysfunctions in SARS-CoV-2 infection: A systematic review.Brain, Behavior, & Immunity - Health20211510026810.1016/j.bbih.2021.10026834027497
    [Google Scholar]
  70. MauryA. LyoubiA. Peiffer-SmadjaN. de BrouckerT. MeppielE. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: A narrative review for clinicians.Rev. Neurol.20211771-2516410.1016/j.neurol.2020.10.00133446327
    [Google Scholar]
  71. FotuhiM. MianA. MeysamiS. RajiC.A. Neurobiology of COVID-19.J. Alzheimers Dis.202076131910.3233/JAD‑20058132538857
    [Google Scholar]
  72. MunhozR.P. PedrosoJ.L. NascimentoF.A. AlmeidaS.M. BarsottiniO.G.P. CardosoF.E.C. TeiveH.A.G. Neurological complications in patients with SARS-CoV-2 infection: A systematic review.Arq. Neuropsiquiatr.202078529030010.1590/0004‑282x2020005132490966
    [Google Scholar]
  73. NetoJ.C. FeitosaE.M.S. CunhaB.S. NascimentoM.N.R. FélixN.D.D.C. Stroke in COVID-19 patients: A scoping review.Texto Context. Enferm202130
    [Google Scholar]
  74. HessD.C. EldahshanW. RutkowskiE. COVID-19-related stroke.Transl. Stroke Res.202011332232510.1007/s12975‑020‑00818‑932378030
    [Google Scholar]
  75. GuoT. FanY. ChenM. WuX. ZhangL. HeT. WangH. WanJ. WangX. LuZ. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19).JAMA Cardiol.20205781181810.1001/jamacardio.2020.101732219356
    [Google Scholar]
  76. HeyatB. MdB. Role of oxidative stress and inflammation in insomnia sleep disorder and cardiovascular diseases: Herbal antioxidants and anti-inflammatory coupled with insomnia detection using machine learning.Curr Pharm Des202228453618363610.2174/1381612829666221201161636
    [Google Scholar]
  77. HeyatM.B.B. AkhtarF. MunirF. Unravelling the complexities of depression with medical intelligence: Exploring the interplay of genetics, hormones, and brain function.In: Complex Intell. Syst202410.1007/s40747‑024‑01346‑x
    [Google Scholar]
  78. SinghS. DesaiR. GandhiZ. FongH.K. DoreswamyS. DesaiV. ChockalingamA. MehtaP.K. SachdevaR. KumarG. Takotsubo syndrome in patients with COVID-19: A systematic review of published cases.SN Compr. Clin. Med.20202112102210810.1007/s42399‑020‑00557‑w33043251
    [Google Scholar]
  79. TechasatianW. NishimuraY. NagamineT. HaG. HuangR. ShahP. YeoJ. KanitsoraphanC. Characteristics of takotsubo cardiomyopathy in patients with COVID-19: Systematic scoping review.Am. Heart.J.Plus. Cardiol. Res. Pract.20221310009210.1016/j.ahjo.2022.10009235128499
    [Google Scholar]
  80. KunalS. SharmaS.M. SharmaS.K. GautamD. BhatiaH. MahlaH. SharmaS. BhandariS. Cardiovascular complications and its impact on outcomes in COVID-19.Indian Heart J.202072659359810.1016/j.ihj.2020.10.00533357651
    [Google Scholar]
  81. HousseinE.H. EmamM.M. AliA.A. SuganthanP.N. Deep and machine learning techniques for medical imaging-based breast cancer: A comprehensive review.Expert Syst. Appl.20202020114161
    [Google Scholar]
  82. PueyoT. Coronavirus: the hammer and the dance. Medium.2020Available from: https://medium.com/@tomaspueyo/coronavirus-the-hammer-and-the-dance- (Accessed 5 Sep 2020).
  83. FergusonN. LaydonD. Nedjati-GilaniG. Report 9—impact of non pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. WHO Collaborating Centre for Infectious Disease Modelling; MRC Centre for Global Infectious Disease AnalysisAbdul Latif Jameel Institute for Disease and Emergency Analytics; Imperial College LondonUK2020Available from: http://www.imperial.ac.uk/medicine/departments/school-public-health/infectious-disease-epidemiology/mrc-global-infectious-disease-analysis/covid-19/report-9-impact-of-npis-on-covid-19/
    [Google Scholar]
  84. ZeeshanH.M. HeyatM.B.B. HayatM.A.B. Worldwide research trends and hotspot on IOMT based on bibliometric analysis.Conference: 2023 20th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), Chengdu, China, 2023, pp 1-1410.1109/ICCWAMTIP60502.2023.10387075
    [Google Scholar]
/content/journals/covid/10.2174/0126667975301173240607114109
Loading
/content/journals/covid/10.2174/0126667975301173240607114109
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): coronavirus; COVID-19; CT scan; deep learning; machine learning; X-ray
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test