Skip to content
2000
Volume 6, Issue 3
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

The global epidemiology of asthma shows a complex association with COVID-19 regarding morbidity, comorbidity, and mortality. This study aimed to shed light on the relationship between COVID-19 and pre-existing asthma, specifically within the Indian context, considering the large population and significant burden of asthma. To review and integrate the available data on morbidity, comorbidity, and mortality outcomes of COVID-19 patients with pre-existing asthma in India, full text articles were searched from December 1st, 2019 to April 20th, 2023, in ScienceDirect and PubMed on studies with COVID-19 patients suffering from asthma. A total of 893 articles were screened based on a certain inclusion criteria, and 15 full-text articles were eligible for the review. The studies included 10,239 participants comprising 73.47% (n= 7523) of COVID-19 patients. More males (n= 4993) were affected by COVID-19 infection compared to females (n= 2510). A total of 262 (3.48%) COVID-19 patients had pre-existing asthma, and 58 deaths (0.77%) were observed among them. South India exhibited the highest number of COVID-19 patients with asthma comorbidity (5.38%), while North India had the lowest number of COVID-19-infected patients with pre-existing asthma (1.69%). The highest mortality was found among patients with asthma across India (7.14%), and the lowest mortality (0.12%) was reflected in cases from North India. This review showed less asthma comorbidity and mortality cases in COVID-19 patients in India. The study indicated higher COVID-19 infection rates in males. Regional disparities were observed in COVID-19 patients with asthma comorbidity and mortality. In contrast, few studies have reported higher asthma comorbidity and mortality in COVID-19 patients with pre-existing asthma.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975294520240607071400
2024-06-20
2025-09-27
Loading full text...

Full text loading...

References

  1. YangJ. ZhengY. GouX. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis.Int. J. Infect. Dis.202094919510.1016/j.ijid.2020.03.017 32173574
    [Google Scholar]
  2. GhoshS. DasS. MondalR. A review on the effect of COVID-19 in type 2 asthma and its management.Int. Immunopharmacol.20219110730910.1016/j.intimp.2020.107309 33385710
    [Google Scholar]
  3. HuB. GeX. WangL.F. ShiZ. Bat origin of human coronaviruses.Virol. J.201512122110.1186/s12985‑015‑0422‑1 26689940
    [Google Scholar]
  4. WHO-convened Global Study of Origins of the SARS-CoV-2 virus: China PartWorld Health Organization.Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/origins-of-the-virus(accessed on 21-5-2024)2021
  5. Number of COVID-19 cases reported to WHO.Available from: https://covid19.who.int/(accessed on 21-5-2024)2023
  6. GhinaiI. McPhersonT.D. HunterJ.C. First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA.Lancet2020395102301137114410.1016/S0140‑6736(20)30607‑3 32178768
    [Google Scholar]
  7. SakthivadivelV. GeethaJ. RadhaD. Risk assessment of covid-19 infection among the elderly population.Maedica (Buchar.)2022173672679 36540600
    [Google Scholar]
  8. DeloreyT.M. ZieglerC.G.K. HeimbergG. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets.Nature2021595786510711310.1038/s41586‑021‑03570‑8 33915569
    [Google Scholar]
  9. FiorilloL. CervinoG. MatareseM. COVID-19 surface persistence: a recent data summary and its importance for medical and dental settings.Int. J. Environ. Res. Public Health2020179313210.3390/ijerph17093132 32365891
    [Google Scholar]
  10. BalleringA.V. van ZonS.K.R. olde HartmanT.C. RosmalenJ.G.M. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study.Lancet20224001035045246110.1016/S0140‑6736(22)01214‑4 35934007
    [Google Scholar]
  11. TurnerS. KhanM.A. PutrinoD. WoodcockA. KellD.B. PretoriusE. Long COVID: pathophysiological factors and abnormalities of coagulation.Trends Endocrinol. Metab.202334632134410.1016/j.tem.2023.03.002 37080828
    [Google Scholar]
  12. RaveendranA.V. Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria.Diabetes Metab. Syndr.202115114514610.1016/j.dsx.2020.12.025 33341598
    [Google Scholar]
  13. PretoriusE. VenterC. LaubscherG.J. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/Post-Acute Sequelae of COVID-19 (PASC).Cardiovasc. Diabetol.202221114810.1186/s12933‑022‑01579‑5 35933347
    [Google Scholar]
  14. WiersingaW.J. RhodesA. ChengA.C. PeacockS.J. PrescottH.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19).JAMA2020324878279310.1001/jama.2020.12839 32648899
    [Google Scholar]
  15. AzerS.A. COVID-19: pathophysiology, diagnosis, complications and investigational therapeutics.New Microbes New Infect.20203710073810.1016/j.nmni.2020.100738 32834902
    [Google Scholar]
  16. JordanR.E. AdabP. ChengK.K. COVID-19: risk factors for severe disease and death.BMJ2020368m119810.1136/bmj.m1198 32217618
    [Google Scholar]
  17. ZhangL. JiangF. XieY. MoY. ZhangX. LiuC. Diabetic endothelial microangiopathy and pulmonary dysfunction.Front. Endocrinol. (Lausanne)202314107387810.3389/fendo.2023.1073878 37025413
    [Google Scholar]
  18. SkevakiC. KarsonovaA. KaraulovA. SARS-CoV-2 infection and COVID-19 in asthmatics: a complex relationship.Nat. Rev. Immunol.202121420220310.1038/s41577‑021‑00516‑z 33623123
    [Google Scholar]
  19. ChenT. WuD. ChenH. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study.BMJ2020368m109110.1136/bmj.m1091 32217556
    [Google Scholar]
  20. JamirL. TripathiM. ShankarS. KakkarR. AyyanarR. AravindakshanR. Determinants of outcome among critically ill police personnel with COVID-19: a retrospective observational study from Andhra Pradesh, India.Cureus20211312e2039410.7759/cureus.20394 35036224
    [Google Scholar]
  21. FarheenS. AgrawalS. ZubairS. Patho-physiology of aging and immune-senescence: possible correlates with comorbidity and mortality in middle-aged and old COVID-19 patients.Frontiers in Aging2021274859110.3389/fragi.2021.748591 35822018
    [Google Scholar]
  22. LiQ. GuanX. WuP. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia.N. Engl. J. Med.2020382131199120710.1056/NEJMoa2001316 31995857
    [Google Scholar]
  23. AsherM.I. García-MarcosL. PearceN.E. StrachanD.P. Trends in worldwide asthma prevalence.Eur. Respir. J.2020566200209410.1183/13993003.02094‑2020
    [Google Scholar]
  24. EllwoodP. AsherI. BissellK. The Global Asthma Report 2022.Available from: http://globalasthmareport.org/burden/gan.php(accessed on 21-5-2024)2022
  25. SinghV. Asthma in the South-East Asian Region.Available from: http://globalasthmareport.org/regions/seasia.php(accessed on 21-5-2024)2022
  26. AgacheI. AkdisC.A. Endotypes of allergic diseases and asthma: An important step in building blocks for the future of precision medicine.Allergol. Int.201665324325210.1016/j.alit.2016.04.011 27282212
    [Google Scholar]
  27. HeckS. NguyenJ. LeD.D. BalsR. DinhQ.T. Pharmacological Therapy of Bronchial Asthma: The Role of Biologicals.Int. Arch. Allergy Immunol.2015168424125210.1159/000443930 26895179
    [Google Scholar]
  28. GreenC.E. TurnerA.M. The role of the endothelium in asthma and chronic obstructive pulmonary disease (COPD).Respir. Res.20171812010.1186/s12931‑017‑0505‑1 28100233
    [Google Scholar]
  29. AmbrosinoP. CalcaterraI.L. MosellaM. Endothelial dysfunction in COVID-19: a unifying mechanism and a potential therapeutic target.Biomedicines202210481210.3390/biomedicines10040812 35453563
    [Google Scholar]
  30. de RooijL.P.M.H. BeckerL.M. CarmelietP. A role for the vascular endothelium in post-acute COVID-19?Circulation2022145201503150510.1161/CIRCULATIONAHA.122.059231 35576316
    [Google Scholar]
  31. GodoS. ShimokawaH. Endothelial Functions Arter Thromb Vasc Biol201737e108e11410.1161/ATVBAHA.116.308020
    [Google Scholar]
  32. VanhoutteP.M. ShimokawaH. TangE.H.C. FeletouM. Endothelial dysfunction and vascular disease.Acta Physiol. (Oxf.)2009196219322210.1111/j.1748‑1716.2009.01964.x 19220204
    [Google Scholar]
  33. BoyceS. LwaleedB. KazmiR. Homeostasis of hemostasis: The role of endothelium.Semin. Thromb. Hemost.201541654955510.1055/s‑0035‑1556586 26270112
    [Google Scholar]
  34. LoscalzoJ. Oxidative stress in endothelial cell dysfunction and thrombosis.Pathophysiol. Haemost. Thromb.2002325-635936010.1159/000073600 13679676
    [Google Scholar]
  35. SantulliG. Endothelial cells: The heart attack of the clones.Sci. Transl. Med.201810427eaar752910.1126/scitranslmed.aar7529 29983858
    [Google Scholar]
  36. XuS. IlyasI. WengJ. Endothelial dysfunction in COVID-19: an overview of evidence, biomarkers, mechanisms and potential therapies.Acta Pharmacol. Sin.202344469570910.1038/s41401‑022‑00998‑0 36253560
    [Google Scholar]
  37. MezohG. CrowtherN.J. Endothelial dysfunction as a primary consequence of SARS-CoV-2 Infection.Adv. Exp. Med. Biol.20211321334310.1007/978‑3‑030‑59261‑5_3 33656711
    [Google Scholar]
  38. FodorA. TiperciucB. LoginC. Endothelial dysfunction, inflammation, and oxidative stress in COVID-19-mechanisms and therapeutic targets.Oxid. Med. Cell. Longev.2021202111510.1155/2021/8671713 34457119
    [Google Scholar]
  39. GuptaA. MadhavanM.V. SehgalK. Extrapulmonary manifestations of COVID-19.Nat. Med.20202671017103210.1038/s41591‑020‑0968‑3 32651579
    [Google Scholar]
  40. SchiffrinE.L. FlackJ.M. ItoS. MuntnerP. WebbR.C. Hypertension and COVID-19.Am. J. Hypertens.202033537337410.1093/ajh/hpaa057 32251498
    [Google Scholar]
  41. RichardsonS. HirschJ.S. NarasimhanM. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area.JAMA2020323202052205910.1001/jama.2020.6775 32320003
    [Google Scholar]
  42. MyersL.C. ParodiS.M. EscobarG.J. LiuV.X. Characteristics of hospitalized adults with COVID-19 in an integrated health care system in California.JAMA2020323212195219810.1001/jama.2020.7202 32329797
    [Google Scholar]
  43. GuanW. LiangW. ZhaoY. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis.Eur. Respir. J.2020555200054710.1183/13993003.00547‑2020 32217650
    [Google Scholar]
  44. ZhouF. YuT. DuR. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.Lancet2020395102291054106210.1016/S0140‑6736(20)30566‑3 32171076
    [Google Scholar]
  45. BikdeliB. MadhavanM.V. JimenezD. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up.J. Am. Coll. Cardiol.202075232950297310.1016/j.jacc.2020.04.031 32311448
    [Google Scholar]
  46. KlokF.A. KruipM.J.H.A. van der MeerN.J.M. Incidence of thrombotic complications in critically ill ICU patients with COVID-19.Thromb. Res.202019114514710.1016/j.thromres.2020.04.013 32291094
    [Google Scholar]
  47. DurvasulaR. WellingtonT. McNamaraE. WatnickS. COVID-19 and kidney failure in the acute care setting: our experience from Seattle.Am. J. Kidney Dis.20207614610.1053/j.ajkd.2020.04.001 32276031
    [Google Scholar]
  48. RoncoC. ReisT. Kidney involvement in COVID-19 and rationale for extracorporeal therapies.Nat. Rev. Nephrol.202016630831010.1038/s41581‑020‑0284‑7 32273593
    [Google Scholar]
  49. PoissyJ. GoutayJ. CaplanM. Pulmonary Embolism in patients with COVID-19: awareness of an increased prevalence.Circulation2020142218418610.1161/CIRCULATIONAHA.120.047430 32330083
    [Google Scholar]
  50. RotzingerD.C. Beigelman-AubryC. von GarnierC. QanadliS.D. Pulmonary embolism in patients with COVID-19: Time to change the paradigm of computed tomography.Thromb. Res.2020190585910.1016/j.thromres.2020.04.011 32302782
    [Google Scholar]
  51. AggarwalG. LippiG. Michael HenryB. Cerebrovascular disease is associated with an increased disease severity in patients with Coronavirus Disease 2019 (COVID-19): A pooled analysis of published literature.Int. J. Stroke2020154385389
    [Google Scholar]
  52. MaoL. JinH. WangM. Neurologic manifestations of hospitalized patients with Coronavirus Disease 2019 in Wuhan, China.JAMA Neurol.202077668369010.1001/jamaneurol.2020.1127 32275288
    [Google Scholar]
  53. SansoneA. JanniniE.A. COVID-19 and erectile dysfunction: endothelial dysfunction and beyond. world.World J. Mens Health202139482082110.5534/wjmh.210081 34184433
    [Google Scholar]
  54. LetkoM. MarziA. MunsterV. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses.Nat. Microbiol.20205456256910.1038/s41564‑020‑0688‑y 32094589
    [Google Scholar]
  55. WangQ. ZhangY. WuL. Structural and functional basis of SARS-CoV-2 entry by using human ACE2.Cell20201814894904.e910.1016/j.cell.2020.03.045 32275855
    [Google Scholar]
  56. GuzziP.H. MercatelliD. CeraoloC. GiorgiF.M. Master regulator analysis of the SARS-CoV-2/human interactome.J. Clin. Med.20209498210.3390/jcm9040982 32244779
    [Google Scholar]
  57. MatsuyamaS. NaoN. ShiratoK. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells.Proc. Natl. Acad. Sci. USA2020117137001700310.1073/pnas.2002589117 32165541
    [Google Scholar]
  58. SungnakW. HuangN. BécavinC. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes.Nat. Med.202026568168710.1038/s41591‑020‑0868‑6 32327758
    [Google Scholar]
  59. TortoriciM.A. WallsA.C. LangY. Structural basis for human coronavirus attachment to sialic acid receptors.Nat. Struct. Mol. Biol.201926648148910.1038/s41594‑019‑0233‑y 31160783
    [Google Scholar]
  60. HulswitR.J.G. LangY. BakkersM.J.G. Human coronaviruses OC43 and HKU1 bind to 9- O -acetylated sialic acids via a conserved receptor-binding site in spike protein domain A.Proc. Natl. Acad. Sci. USA201911672681269010.1073/pnas.1809667116 30679277
    [Google Scholar]
  61. ChenZ. MiL. XuJ. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus.J. Infect. Dis.2005191575576010.1086/427811 15688292
    [Google Scholar]
  62. OuX. LiuY. LeiX. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV.Nat. Commun.2020111162010.1038/s41467‑020‑15562‑9 32221306
    [Google Scholar]
  63. UrumaY. ManabeT. FujikuraY. IikuraM. HojoM. KudoK. Effect of asthma, COPD, and ACO on COVID-19: A systematic review and meta-analysis.PLoS One20221711e027677410.1371/journal.pone.0276774 36318528
    [Google Scholar]
  64. Asthma and COVID-19: scientific brief, 19 April 2021.Available from: https://www.who.int/publications/i/item/who-2019-ncov-sci-brief-asthma-2021.1(accessed on 21-5-2024)2021
  65. GaiettoK. Megan CullerFreeman Leigh AnneDiCicco Childhood Asthma and COVID-19: A Nested Case-Control Study.medRxiv2021
    [Google Scholar]
  66. SuissaS. ErnstP. BenayounS. BaltzanM. CaiB. Low-dose inhaled corticosteroids and the prevention of death from asthma.N. Engl. J. Med.2000343533233610.1056/NEJM200008033430504 10922423
    [Google Scholar]
  67. ChaudriN.A. Adherence to long-term therapies evidence for action.Ann. Saudi Med.200424322122210.5144/0256‑4947.2004.221
    [Google Scholar]
  68. EngelkesM. JanssensH.M. de JongsteJ.C. SturkenboomM.C.J.M. VerhammeK.M.C. Medication adherence and the risk of severe asthma exacerbations: a systematic review.Eur. Respir. J.201545239640710.1183/09031936.00075614 25323234
    [Google Scholar]
  69. PartridgeM.R. van der MolenT. MyrsethS.E. BusseW.W. Attitudes and actions of asthma patients on regular maintenance therapy: the INSPIRE study.BMC Pulm. Med.2006611310.1186/1471‑2466‑6‑13 16772035
    [Google Scholar]
  70. SterneJ.A.C. SavovićJ. PageM.J. RoB 2: a revised tool for assessing risk of bias in randomised trials.BMJ2019366l489810.1136/bmj.l4898 31462531
    [Google Scholar]
  71. WellsG. SheaB. O’ConnellD. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomized studies in meta-analysis.Ottawa, OntarioThe Ottawa Health Research Institute2011
    [Google Scholar]
  72. ModestiP.A. ReboldiG. CappuccioF.P. Panethnic Differences in Blood Pressure in Europe: a systematic review and meta-analysis.PLoS One2016111e014760110.1371/journal.pone.0147601 26808317
    [Google Scholar]
  73. MuradM.H. SultanS. HaffarS. BazerbachiF. Methodological quality and synthesis of case series and case reports.BMJ Evid. Based Med.2018232606310.1136/bmjebm‑2017‑110853 29420178
    [Google Scholar]
  74. HigginsJPT AltmanDG GøtzschePC The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials.BMJ2011343oct18 2d592810.1136/bmj.d592822008217
    [Google Scholar]
  75. CrockerT.F. LamN. JordãoM. Risk-of-bias assessment using Cochrane’s revised tool for randomized trials (RoB 2) was useful but challenging and resource-intensive: observations from a systematic review.J. Clin. Epidemiol.2023161394510.1016/j.jclinepi.2023.06.015 37364620
    [Google Scholar]
  76. DreierJ.W. AndersenA.M.N. Berg-BeckhoffG. Systematic review and meta-analyses: fever in pregnancy and health impacts in the offspring.Pediatrics20141333e674e68810.1542/peds.2013‑3205 24567014
    [Google Scholar]
  77. PiersonD.J. How to read a case report (or teaching case of the month).Respir. Care2009541013721378 19796418
    [Google Scholar]
  78. HillA.B. The environment and disease: association or causation?Proc. R. Soc. Med.196558529530010.1177/003591576505800503 14283879
    [Google Scholar]
  79. PandaS. RoyS. GargR.K. COVID‐19 disease in hospitalized young adults in India and China: Evaluation of risk factors predicting progression across two major ethnic groups.J. Med. Virol.202294127227810.1002/jmv.27315 34468994
    [Google Scholar]
  80. DeeptiM.K. PaulA.J. TimothyF. KuttikatS. KaruppusamiR. Prabhakar AbhilashK.P. Profile and outcome of COVID-19 patients treated at a secondary hospital in Central India during the second wave of the pandemic.J. Family Med. Prim. Care202211117180718410.4103/jfmpc.jfmpc_804_22 36993006
    [Google Scholar]
  81. GoelN. SpalgaisS. MrigpuriP. KhannaM. MenonB. KumarR. Characteristics of COVID-19 at a non-COVID tertiary pulmonary care centre in Delhi, India.Monaldi Arch. Chest Dis.202090410.4081/monaldi.2020.1568 33169599
    [Google Scholar]
  82. GopalanN. SenthilS. PrabakarN.L. Predictors of mortality among hospitalized COVID-19 patients and risk score formulation for prioritizing tertiary care—An experience from South India.PLoS One2022172e026347110.1371/journal.pone.0263471 35113971
    [Google Scholar]
  83. GoelD. KumarS. Co-morbid conditions in COVID-19 patients in Uttarakhand state of India.J. Glob. Health2021110302910.7189/jogh.11.03029 33692884
    [Google Scholar]
  84. JahanN. RubeshkumarP. KaruppiahM. Entry and initial spread of COVID-19 in India: Epidemiological analysis of media surveillance data, India, 2020.Clin. Epidemiol. Glob. Health2021934735410.1016/j.cegh.2020.10.008 33195880
    [Google Scholar]
  85. AsirvathamE.S. SarmanC.J. SaravanamurthyS.P. MahalingamP. MaduraipandianS. LakshmananJ. Who is dying from COVID-19 and when? An Analysis of fatalities in Tamil Nadu, India.Clin. Epidemiol. Glob. Health2021927527910.1016/j.cegh.2020.09.010 33043168
    [Google Scholar]
  86. HamzaA. ShahN. AzadA. GhanshyamO. KhanZ. Impact of age, gender and comorbidities affecting the severity of COVID-19 infection in Kashmir.J. Family Med. Prim. Care20221141519152410.4103/jfmpc.jfmpc_278_21 35516702
    [Google Scholar]
  87. MurugesanM. GovindarajanR. PrakashL. MuruganC.K. JasmineJ.J. KrishnasamyN. In COVID-19 patients, the identified gastrointestinal symptoms in tertiary care center of India.Euroasian J. Hepatogastroenterol.2022121243010.5005/jp‑journals‑10018‑1371 35990860
    [Google Scholar]
  88. MeenakumariR. ThangarajK. SundaramA. Clinical outcomes among COVID-19 patients managed with modern and traditional Siddha medicine – A retrospective cohort study.J. Ayurveda Integr. Med.202213210047010.1016/j.jaim.2021.06.010 34188417
    [Google Scholar]
  89. SajgureA. KulkarniA. JoshiA. Safety and efficacy of mycophenolate in COVID-19: A nonrandomised prospective study in western India.Lancet Reg Health Southeast Asia2023111
    [Google Scholar]
  90. BhatnagarT. ChaudhuriS. PonnaiahM. Effectiveness of BBV152/Covaxin and AZD1222/Covishield vaccines against severe COVID-19 and B.1.617.2/Delta variant in India, 2021: a multi-centric hospital-based case-control study.Int. J. Infect. Dis.202212269370210.1016/j.ijid.2022.07.033 35843496
    [Google Scholar]
  91. GirijaP.L.T. SivanN. NaikP. MurugavelY.A. M RavindranathT. CvK. Standalone Ayurvedic treatment of high-risk COVID-19 patients with multiple co-morbidities: A case series.J. Ayurveda Integr. Med.202213110046610.1016/j.jaim.2021.06.006 34276163
    [Google Scholar]
  92. ShanmugamK. NirmalaA. ParthibanP. Safety and efficacy of siddha medicine preparation in the management of COVID-19: A prospective randomised open label study.J. Ayurveda Integr. Med.202213310059710.1016/j.jaim.2022.100597 35677618
    [Google Scholar]
  93. MunshiR. KumbharD. PawaskarP. RajadakshyaG. PalepH.S. An open labeled, randomized, controlled clinical study to evaluate the efficacy of Torchnil capsules and Febcin tablet as add-on therapy for COVID-19 patients.J. Ayurveda Integr. Med.202213210055910.1016/j.jaim.2022.100559 35228783
    [Google Scholar]
  94. AggarwalA. ShrivastavaA. KumarA. AliA. Clinical and epidemiological features of SARS-CoV-2 patients in SARI ward of a tertiary care centre in New Delhi.J. Assoc. Physicians India20206871926 32602676
    [Google Scholar]
  95. MithalA. JevalikarG. SharmaR. High prevalence of diabetes and other comorbidities in hospitalized patients with COVID-19 in Delhi, India, and their association with outcomes.Diabetes Metab. Syndr.202115116917510.1016/j.dsx.2020.12.029 33360081
    [Google Scholar]
  96. AgarwalN. BiswasB. SinghC. Early determinants of length of hospital stay: a case control survival analysis among COVID-19 patients admitted in a tertiary healthcare facility of East India.J. Prim. Care Community Health20211210.1177/21501327211054281 34704488
    [Google Scholar]
  97. PapadopoulosN.G. MathioudakisA.G. CustovicA. Childhood asthma outcomes during the COVID‐19 pandemic: Findings from the PeARL multi‐national cohort.Allergy20217661765177510.1111/all.14787 33608919
    [Google Scholar]
  98. KumarR. RaiA.K. PhukanM.M. Accumulating impact of smoking and co-morbidities on severity and mortality of COVID-19 infection: a systematic review and meta-analysis.Curr. Genomics202122533935210.2174/1389202922666210921101728 35283665
    [Google Scholar]
  99. ReyesF.M. Hache-MarliereM. KaramanisD. Assessment of the association of COPD and asthma with in-hospital mortality in patients with COVID-19. a systematic review, meta-analysis, and meta-regression analysis.J. Clin. Med.20211010208710.3390/jcm10102087 34068023
    [Google Scholar]
  100. KoyaS.F. EbrahimS.H. BhatL.D. COVID-19 and comorbidities: audit of 2,000 COVID-19 deaths in India.J. Epidemiol. Glob. Health202111223023210.2991/jegh.k.210303.001 33876594
    [Google Scholar]
  101. JeyashreeK. RajuM. PonnaiahM. Self-reported and clinically identified loss of smell and taste among persons tested for COVID-19 in Chennai, southern India, July-August 2020: A cross sectional study.Clin. Epidemiol. Glob. Health20211110071810.1016/j.cegh.2021.100718 33754133
    [Google Scholar]
  102. AlkhathamiM. AdvaniS. AbalkhailA. Prevalence and mortality of lung comorbidities among patients with COVID-19: A systematic review and meta-analysis.Lung India2021387Suppl.3110.4103/lungindia.lungindia_497_20 33686977
    [Google Scholar]
  103. GhoshT. SuriT.M. JatK.R. Clinical profile and in-hospital outcomes of COVID-19 among adolescents at a tertiary care hospital in India.Lung India202239434334710.4103/lungindia.lungindia_128_22 35848666
    [Google Scholar]
  104. JindalR. GuptaM. KhanF. ChaudhryG. Prevalence of co-morbidities and its association with mortality in Indian patients with COVID-19: A meta-analysis.Indian J. Anaesth.202266639941810.4103/ija.ija_845_21 35903589
    [Google Scholar]
  105. KaurU. BalaS. JoshiA. Persistent health issues, adverse events, and effectiveness of vaccines during the second wave of COVID-19: a cohort study from a tertiary hospital in North India.Vaccines (Basel)2022107115310.3390/vaccines10071153 35891317
    [Google Scholar]
  106. SrivastavaS. GargI. SinghY. Evaluation of altered miRNA expression pattern to predict COVID-19 severity.Heliyon202392e1338810.1016/j.heliyon.2023.e13388 36743852
    [Google Scholar]
  107. MatsumotoK. SaitoH. Does asthma affect morbidity or severity of COVID-19?J. Allergy Clin. Immunol.20201461555710.1016/j.jaci.2020.05.017 32470485
    [Google Scholar]
  108. RevathishreeK. Shyam SudhakarS. InduR. SrinivasanK. Covid-19 demographics from a tertiary care center: does it depreciate quality-of-life?Indian J. Otolaryngol.202018 32953634
    [Google Scholar]
  109. CharfeddineS. Ibn Hadj AmorH. JdidiJ. Long COVID 19 syndrome: is it related to microcirculation and endothelial dysfunction? Insights from TUN-EndCOV study.Front. Cardiovasc. Med.2021874575810.3389/fcvm.2021.745758 34917659
    [Google Scholar]
  110. RodríguezI. López-CaroJ.C. Gonzalez-CarranzaS. Adherence to inhaled corticosteroids in patients with asthma prior to and during the COVID-19 pandemic.Sci. Rep.20231311308610.1038/s41598‑023‑40213‑6 37567951
    [Google Scholar]
  111. PlazaV. López-ViñaA. CosioB.G. Test of adherence to inhalers.Arch. Bronconeumol.20175336036110.1016/j.arbr.2017.03.005
    [Google Scholar]
  112. CardetJ.C. PapiA. ReddelH.K. “As-Needed” Inhaled Corticosteroids for Patients With Asthma.J. Allergy Clin. Immunol. Pract.202311372673410.1016/j.jaip.2023.01.010 36702246
    [Google Scholar]
  113. FahmyO. FahmyU.A. AlhakamyN.A. Khairul-AsriM.G. Single-Port versus Multiple-Port Robot-Assisted Radical Prostatectomy: A Systematic Review and Meta-Analysis.J. Clin. Med.20211024572310.3390/jcm10245723 34945018
    [Google Scholar]
  114. NørgaardR.L. FromsejerH.R. HøyrupC.D. Work-related musculoskeletal disorders among occupational fishermen: a systematic literature review.Occupat. Environ. Med.202178522529
    [Google Scholar]
  115. Torres-DuqueC.A. Maria PatinoC. Carvalho FerreiraJ. Case series: an essential study design to build knowledge and pose hypotheses for rare and new diseases.J. Bras. Pneumol.2020464e2020038910.36416/1806‑3756/e20200389 32901691
    [Google Scholar]
  116. SeyedAlinaghiS KarimiA BarzegaryA COVID-19 mortality in patients with immunodeficiency and its predictors: a systematic review.Eur. J. Med. Res.202227119510.1186/s40001‑022‑00824‑7 36209202
    [Google Scholar]
  117. MehraeenE OliaeiS SeyedAlinaghiS. COVID-19 in Pediatrics: A Systematic Review of Current Knowledge and Practice.Infect. Disord. Drug Targets2022225e29092119690810.2174/1871526521666210929121705 34587889
    [Google Scholar]
  118. De CassaiA. BoscoloA. ZarantonelloF. Enhancing study quality assessment: an in-depth review of risk of bias tools for meta-analysis—a comprehensive guide for anesthesiologists.Journal of Anesthesia, Analgesia and Critical Care2023314410.1186/s44158‑023‑00129‑z 37932825
    [Google Scholar]
/content/journals/covid/10.2174/0126667975294520240607071400
Loading
/content/journals/covid/10.2174/0126667975294520240607071400
Loading

Data & Media loading...

Supplements

The file contains Quality/Risk of bias assessment in detail for each included study in the review article.


  • Article Type:
    Review Article
Keyword(s): asthma; COVID-19; MERS-CoV; morbidity; mortality; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test