Skip to content
2000
Volume 6, Issue 3
  • ISSN: 2666-7967
  • E-ISSN: 2666-7975

Abstract

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is currently causing a global pandemic and endangering many lives. The most typical signs and symptoms of coronavirus disease 2019 (COVID-19) are fever, pneumonia, dry cough, and fatigue. Although SARS-CoV-2 is primarily associated with respiratory illnesses, new evidence indicates that the novel virus might also infect the nervous system, resulting in headaches, seizures, dizziness, strokes, anosmia, encephalopathy, meningitis, and other neurological disorders. Despite an increase in neurological complications associated with SARS-CoV-2 infection, the exact cause remains unclear, and the mechanism by which SARS-CoV-2 affects the nervous system is still not fully understood. This study aimed to review the virus invasion by which SARS-CoV-2 may directly or indirectly change the functional and structural features of the nervous system. Also, this review explained the most typical neurological signs and complications and neurological side effects associated with COVID-19 treatment.

Loading

Article metrics loading...

/content/journals/covid/10.2174/0126667975303626240605104430
2024-06-18
2025-09-27
Loading full text...

Full text loading...

References

  1. KhanM. AdilS.F. AlkhathlanH.Z. COVID-19: A global challenge with old history, epidemiology and progress so far.Molecules20202613910.3390/molecules26010039 33374759
    [Google Scholar]
  2. HarapanB.N. YooH.J. Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19).J. Neurol.202126893059307110.1007/s00415‑021‑10406‑y 33486564
    [Google Scholar]
  3. HadiA.L.I.M. DawoodH. Abdul-wahhabR.D. ShariF.H. AhmedG.S. Detrimental effects of quarantine, social lockdown and other social suffers due to COVID-19 pandemic on human health aspects.Int J Pharm Res2021130220192022
    [Google Scholar]
  4. Al-MayyahiR.S. Al-TumahW.A.G. Genetic structure, transmission, clinical characteristics, diagnosis, treatment and prevention of coronavirus disease 2019 (COVID-19): A Review.Iraqi J. Pharm Sci.2021301566510.31351/vol30iss1pp56‑65
    [Google Scholar]
  5. RogersJ.P. WatsonC.J. BadenochJ. Neurology and neuropsychiatry of COVID-19: a systematic review and meta-analysis of the early literature reveals frequent CNS manifestations and key emerging narratives.J. Neurol. Neurosurg. Psychiatry2021929jnnp-2021-32640510.1136/jnnp‑2021‑326405 34083395
    [Google Scholar]
  6. World Health OrganizationSituation Report.Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200410-sitrep-81-covid-19.pdf?sfvrsn=ca96eb84_2 2022
  7. CucinottaD. VanelliM. WHO declares COVID-19 a pandemic.Acta Biomed.2020911157160 32191675
    [Google Scholar]
  8. LuH. StrattonC.W. TangY.W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle.J. Med. Virol.202092440140210.1002/jmv.25678 31950516
    [Google Scholar]
  9. HuiD.S. I AzharE. MadaniT.A. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health: The latest 2019 novel coronavirus outbreak in Wuhan, China.Int. J. Infect. Dis.20209126426610.1016/j.ijid.2020.01.009 31953166
    [Google Scholar]
  10. KadiriS.K. MundhraS. TiwariP. Mental health and stigmatization linked to the COVID-19 pandemic.Coronaviruses202344e10102322199610.2174/0126667975250861231005103042
    [Google Scholar]
  11. BrouwerM.C. AscioneT. PaglianoP. Neurologic aspects of covid-19: A concise review.Infez. Med.202028Suppl. 14245 32532937
    [Google Scholar]
  12. PennisiM. LanzaG. FalzoneL. FisicaroF. FerriR. BellaR. Sars-cov-2 and the nervous system: From clinical features to molecular mechanisms.Int. J. Mol. Sci.20202115547510.3390/ijms21155475 32751841
    [Google Scholar]
  13. VohoraD. JainS. TripathiM. PotschkaH. COVID‐19 and seizures: Is there a link?Epilepsia20206191840185310.1111/epi.16656 32944929
    [Google Scholar]
  14. KremerS. LersyF. de SèzeJ. Brain MRI findings in severe COVID-19: A retrospective observational study.Radiology20202972E242E25110.1148/radiol.2020202222 32544034
    [Google Scholar]
  15. MoriguchiT. HariiN. GotoJ. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2.Int. J. Infect. Dis.202094555810.1016/j.ijid.2020.03.062 32251791
    [Google Scholar]
  16. DongM. ZhangJ. MaX. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19.Biomed. Pharmacother.2020131August11067810.1016/j.biopha.2020.110678 32861070
    [Google Scholar]
  17. EmamiA. FadakarN. AkbariA. Seizure in patients with COVID-19.Neurol. Sci.202041113057306110.1007/s10072‑020‑04731‑9 32949289
    [Google Scholar]
  18. MehraeenE. BehnezhadF. SalehiM.A. NooriT. HarandiH. SeyedAlinaghiS. Olfactory and gustatory dysfunctions due to the coronavirus disease (COVID-19): A review of current evidence.Eur. Arch. Otorhinolaryngol.2021278230731210.1007/s00405‑020‑06120‑6 32556781
    [Google Scholar]
  19. AlbertiP. BerettaS. PiattiM. KarantzoulisA. PiattiM.L. SantoroP. Guillain-Barré syndrome related to COVID-19 infection.Neurol. Neuroimmunol. Neuroinflamm.202074e741
    [Google Scholar]
  20. HuangC. HuangL. WangY. LiX. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study.Lancet.202340110393e21e3310.1016/S0140‑6736(20)32656‑8 33428867
    [Google Scholar]
  21. NalleballeK. Reddy OntedduS. SharmaR. Spectrum of neuropsychiatric manifestations in COVID-19.Brain Behav. Immun.20208888717410.1016/j.bbi.2020.06.020 32561222
    [Google Scholar]
  22. CascellaM. RajnikM. CuomoA. Features, Evaluation, and Treatment of Coronavirus (COVID-19).In: Continuing Education Activity.Treasure Island (FL)StatPearls Publishing2021
    [Google Scholar]
  23. WangQ. ZhangY. WuL. Structural and functional basis of SARS-CoV-2 entry by using human ACE2.Cell20201814894904.e910.1016/j.cell.2020.03.045 32275855
    [Google Scholar]
  24. GadanecL.K. McSweeneyK.R. QaradakhiT. AliB. ZulliA. ApostolopoulosV. Can SARS-CoV-2 virus use multiple receptors to enter host cells?Int. J. Mol. Sci.202122399210.3390/ijms22030992 33498183
    [Google Scholar]
  25. Mahboubi MehrabaniM. KarvandiM.S. MaafiP. DoroudianM. Neurological complications associated with COVID‐19; molecular mechanisms and therapeutic approaches.Rev. Med. Virol.2022326e233410.1002/rmv.2334 35138001
    [Google Scholar]
  26. SamiI. BashirY. AlshaerW. IsmailS. SARS-CoV-2 entry in host cells-multiple targets for treatment and prevention.Biochimie20201759398
    [Google Scholar]
  27. GheblawiM. WangK. ViveirosA. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system.Circ. Res.2020126101456147410.1161/CIRCRESAHA.120.317015 32264791
    [Google Scholar]
  28. LiM.Y. LiL. ZhangY. WangX.S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues.Infect. Dis. Poverty2020914510.1186/s40249‑020‑00662‑x 32345362
    [Google Scholar]
  29. Zamorano CuervoN. GrandvauxN. ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities.eLife20209e6139010.7554/eLife.61390 33164751
    [Google Scholar]
  30. SchmidtA.L. TuckerM.D. BakounyZ. Association between androgen deprivation therapy and mortality among patients with prostate cancer and COVID-19.JAMA Netw. Open2021411e213433010.1001/jamanetworkopen.2021.34330 34767021
    [Google Scholar]
  31. BurksS.M. Rosas-hernandezH. Ramirez-leeM.A. CuevasE. TalposJ.C. Can SARS-CoV-2 infect the central nervous system via the olfactory bulb or the blood-brain barrier?Brain Behav. Immun.202095714 33412255
    [Google Scholar]
  32. GlebovO.O. Understanding SARS‐CoV‐2 endocytosis for COVID‐19 drug repurposing.FEBS J.2020287173664367110.1111/febs.15369 32428379
    [Google Scholar]
  33. CamposD.M.O. FulcoU.L. de OliveiraC.B.S. OliveiraJ.I.N. SARS‐CoV‐2 virus infection: Targets and antiviral pharmacological strategies.J. Evid. Based Med.202013425526010.1111/jebm.12414 33058394
    [Google Scholar]
  34. WangK. ChenW. ZhangZ. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells.Signal Transduct. Target. Ther.20205128310.1038/s41392‑020‑00426‑x 33277466
    [Google Scholar]
  35. ShangJ. WanY. LuoC. Cell entry mechanisms of SARS-CoV-2.Proc. Natl. Acad. Sci.202011721117271173410.1073/pnas.2003138117 32376634
    [Google Scholar]
  36. QiaoJ. LiW. BaoJ. The expression of SARS-CoV-2 receptor ACE2 and CD147, and protease TMPRSS2 in human and mouse brain cells and mouse brain tissues.Biochem. Biophys. Res. Commun.2020533486787110.1016/j.bbrc.2020.09.042 33008593
    [Google Scholar]
  37. BaigA.M. KhaleeqA. AliU. SyedaH. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host–virus interaction, and proposed neurotropic mechanisms.ACS Chem. Neurosci.202011799599810.1021/acschemneuro.0c00122 32167747
    [Google Scholar]
  38. Alquisiras-BurgosI. Peralta-ArrietaI. Alonso-PalomaresL.A. Zacapala-GómezA.E. Salmerón-BárcenasE.G. AguileraP. Neurological complications associated with the blood-brain barrier damage induced by the inflammatory response during SARS-CoV-2 infection.Mol. Neurobiol.202158252053510.1007/s12035‑020‑02134‑7 32978729
    [Google Scholar]
  39. LimaM. SiokasV. AloizouA.M. Unraveling the possible routes of SARS-COV-2 invasion into the central nervous system.Curr. Treat. Options Neurol.202022113710.1007/s11940‑020‑00647‑z 32994698
    [Google Scholar]
  40. The Lancet Respiratory Medicine. COVID-19 transmission—up in the air.Lancet Respir. Med.2020812115910.1016/S2213‑2600(20)30514‑2 33129420
    [Google Scholar]
  41. JohanssonA. MohamedM.S. MoulinT.C. SchiöthH.B. Neurological manifestations of COVID-19: A comprehensive literature review and discussion of mechanisms.J. Neuroimmunol.2021358May57765810.1016/j.jneuroim.2021.577658 34304141
    [Google Scholar]
  42. LiZ. LiuT. YangN. Neurological manifestations of patients with COVID-19: Potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain.Front. Med.202014553354110.1007/s11684‑020‑0786‑5 32367431
    [Google Scholar]
  43. Wan D. Du T. Hong W. Neurological complications and infection mechanism of SARS-CoV-2.Sig Transduct. Target. Ther.6, 406 (2021)10.1038/s41392‑021‑00818‑7
    [Google Scholar]
  44. DubéM. LeCoupanecA. WongA.H.M. RiniJ.M. DesforgesM. TalbotJ. crossm axonal transport enables neuron-to-neuron propagation of OC43.J. Virol.201892e00404e0041810.1128/JVI.00404‑18 29925652
    [Google Scholar]
  45. BodnarB. PatelK. HoW. LuoJ.J. HuW. Cellular mechanisms underlying neurological/neuropsychiatric manifestations of COVID‐19.J. Med. Virol.20219341983199810.1002/jmv.26720 33300152
    [Google Scholar]
  46. MtsweniE.S. HörneT. van der PollJ.A. RosliM. TemperoE. Luxton-reillyA. Evidence for gastrointestinal infection of SARS-CoV-2.Eng Constr Archit Manag20202511910.1016/j.jss.2014.12.010%0A10.1016/j.sbspro.2013.03.034%0AAvailable from: https://www.iiste.org/Journals/index.php/JPID/article/viewFile/19288/19711%0A http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.678.6911&rep=rep1&type=pdf
    [Google Scholar]
  47. HanC. DuanC. ZhangS. Digestive symptoms in COVID-19 patients with mild disease severity: Clinical presentation, stool viral RNA testing, and outcomes.Am. J. Gastroenterol.2020115691692310.14309/ajg.0000000000000664 32301761
    [Google Scholar]
  48. CheungK.S. HungI.F.N. ChanP.P.Y. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a hong kong cohort: Systematic review and meta-analysis.Gastroenterology20201591819510.1053/j.gastro.2020.03.065 32251668
    [Google Scholar]
  49. DesforgesM. Le CoupanecA. DubeauP. Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system?Viruses20191211410.3390/v12010014 31861926
    [Google Scholar]
  50. HaidarM.A. JourdiH. Haj HassanZ. AshekyanO. FardounM. WehbeZ. Neurological and neuropsychological changes associated with SARS-CoV-2 infection: New observations, new mechanisms.Neuroscientist2020286552571 33393420
    [Google Scholar]
  51. IadecolaC. AnratherJ. KamelH. Effects of COVID-19 on the nervous system.Cell202018311627.e110.1016/j.cell.2020.08.028 32882182
    [Google Scholar]
  52. HammingI. TimensW. BulthuisM.L.C. LelyA.T. NavisG.J. van GoorH. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis.J. Pathol.2004203263163710.1002/path.1570 15141377
    [Google Scholar]
  53. McQuaidC. BradyM. DeaneR. SARS-CoV-2: Is there neuroinvasion?Fluids Barriers CNS20211813210.1186/s12987‑021‑00267‑y 34261487
    [Google Scholar]
  54. MonteilV. KwonH. PradoP. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2.Cell20201814905913.e710.1016/j.cell.2020.04.004 32333836
    [Google Scholar]
  55. VargaZ. FlammerA.J. SteigerP. Endothelial cell infection and endotheliitis in COVID-19.Lancet2020395102341417141810.1016/S0140‑6736(20)30937‑5 32325026
    [Google Scholar]
  56. PellegriniL. AlbeckaA. MalleryD.L. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids.Cell Stem Cell2020276951961.e510.1016/j.stem.2020.10.001 33113348
    [Google Scholar]
  57. DanemanR. PratA. The blood brain barrier.In: Neuroimmune Pharmacol.Berlin, HeidelbergSpringer20082138
    [Google Scholar]
  58. FernandoisD. DeligiaE. PerbetR. FlorentV. BaronciniM. MattotV. The hypothalamus as a hub for putative SARS-CoV-2 brain infection.bioRxiv2020
    [Google Scholar]
  59. BurdoT.H. LacknerA. WilliamsK.C. Monocyte/macrophages and their role in HIV neuropathogenesis.Immunol. Rev.2013254110211310.1111/imr.12068 23772617
    [Google Scholar]
  60. PaulA.M. AcharyaD. DutyL. Osteopontin facilitates West Nile virus neuroinvasion via neutrophil “Trojan horse” transport.Sci. Rep.201771472210.1038/s41598‑017‑04839‑7 28680095
    [Google Scholar]
  61. AcharA. GhoshC. COVID-19-associated neurological disorders: The potential route of CNS invasion and blood-brain barrier relevance.Cells2020911236010.3390/cells9112360 33120941
    [Google Scholar]
  62. ZubairA.S. McAlpineL.S. GardinT. FarhadianS. KuruvillaD.E. SpudichS. Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: A review.JAMA Neurol.20207781018102710.1001/jamaneurol.2020.2065 32469387
    [Google Scholar]
  63. ZhangJ.M. AnJ. Cytokines, inflammation, and pain.Int. Anesthesiol. Clin.2007452273710.1097/AIA.0b013e318034194e 17426506
    [Google Scholar]
  64. MahallawiW.H. KhabourO.F. ZhangQ. MakhdoumH.M. SulimanB.A. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile.Cytokine2018104January81310.1016/j.cyto.2018.01.025 29414327
    [Google Scholar]
  65. WongC.K. LamC.W.K. WuA.K.L. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome.Clin. Exp. Immunol.200413619510310.1111/j.1365‑2249.2004.02415.x 15030519
    [Google Scholar]
  66. HuangC. WangY. LiX. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.Lancet20203951022349750610.1016/S0140‑6736(20)30183‑5 31986264
    [Google Scholar]
  67. HanH. MaQ. LiC. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors.Emerg. Microbes Infect.2020911123113010.1080/22221751.2020.1770129 32475230
    [Google Scholar]
  68. LiuJ. LiS. LiuJ. LiangB. WangX. WangH. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients.EBioMedicine2019202055 32361250
    [Google Scholar]
  69. MeradM. MartinJ.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages.Nat. Rev. Immunol.202020635536210.1038/s41577‑020‑0331‑4 32376901
    [Google Scholar]
  70. Del ValleD.M. Kim-SchulzeS. HuangH.H. An inflammatory cytokine signature predicts COVID-19 severity and survival.Nat. Med.202026101636164310.1038/s41591‑020‑1051‑9 32839624
    [Google Scholar]
  71. MandelM. HarariG. GurevichM. AchironA. Cytokine prediction of mortality in COVID19 patients.Cytokine2020134January15519010.1016/j.cyto.2020.155190 32673995
    [Google Scholar]
  72. ErtaM. QuintanaA. HidalgoJ. Interleukin-6, a major cytokine in the central nervous system.Int. J. Biol. Sci.2012891254126610.7150/ijbs.4679 23136554
    [Google Scholar]
  73. BenameurK. AgarwalA. AuldS.C. Encephalopathy and encephalitis associated with cerebrospinal fluid cytokine alterations and coronavirus disease, atlanta, georgia, usa, 2020.Emerg. Infect. Dis.20202692016202110.3201/eid2609.202122 32487282
    [Google Scholar]
  74. ZhaoZ. NelsonA.R. BetsholtzC. ZlokovicB.V. Establishment and dysfunction of the blood-brain barrier.Cell201516351064107810.1016/j.cell.2015.10.067 26590417
    [Google Scholar]
  75. BuzhdyganT.P. DeOreB.J. Baldwin-LeclairA. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier.Neurobiol. Dis.2020146June10513110.1016/j.nbd.2020.105131 33053430
    [Google Scholar]
  76. BellonM. SchweblinC. LambengN. Cerebrospinal fluid features in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcription polymerase chain reaction (RT-PCR) positive patients.Clin. Infect. Dis.2021739e3102e310510.1093/cid/ciaa1165 32770235
    [Google Scholar]
  77. ChenW. JuX.Z. LuY. DingX.W. MiaoC.H. ChenJ.W. Propofol improved hypoxia‐impaired integrity of blood‐brain barrier via modulating the expression and phosphorylation of zonula occludens‐1.CNS Neurosci. Ther.201925670471310.1111/cns.13101 30680941
    [Google Scholar]
  78. DhontS. DeromE. Van BraeckelE. DepuydtP. LambrechtB.N. Conceptions of the pathophysiology of happy hypoxemia in COVID-19.Respir. Res.20212211210.1186/s12931‑021‑01614‑1 33419436
    [Google Scholar]
  79. EngelhardtS. PatkarS. OgunsholaO.O. Cell‐specific blood–brain barrier regulation in health and disease: A focus on hypoxia.Br. J. Pharmacol.201417151210123010.1111/bph.12489 24641185
    [Google Scholar]
  80. ColganS.P. FurutaG.T. TaylorC.T. Hypoxia and innate immunity: Keeping Up with the HIFsters.Annu. Rev. Immunol.202038134136310.1146/annurev‑immunol‑100819‑121537 31961750
    [Google Scholar]
  81. Taniguchi-PoncianoK. VadilloE. MayaniH. Increased expression of hypoxia-induced factor 1α mRNA and its related genes in myeloid blood cells from critically ill COVID-19 patients.Ann. Med.202153119720710.1080/07853890.2020.1858234 33345622
    [Google Scholar]
  82. SerebrovskaZ.O. ChongE.Y. SerebrovskaT.V. TumanovskaL.V. XiL. Hypoxia, HIF-1α, and COVID-19: From pathogenic factors to potential therapeutic targets.Acta Pharmacol. Sin.202041121539154610.1038/s41401‑020‑00554‑8 33110240
    [Google Scholar]
  83. BallabhP. BraunA. NedergaardM. The blood–brain barrier: An overview.Neurobiol. Dis.200416111310.1016/j.nbd.2003.12.016 15207256
    [Google Scholar]
  84. DivaniA.A. AndalibS. Di NapoliM. Coronavirus disease 2019 and stroke: Clinical manifestations and pathophysiological insights.J. Stroke Cerebrovasc. Dis.202029810494110.1016/j.jstrokecerebrovasdis.2020.104941 32689643
    [Google Scholar]
  85. LodigianiC. IapichinoG. CarenzoL. CecconiM. FerrazziP. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy.Thromb. Res.2020191914
    [Google Scholar]
  86. GuS.X. TyagiT. JainK. Thrombocytopathy and endotheliopathy: Crucial contributors to COVID-19 thromboinflammation.Nat. Rev. Cardiol.202118319420910.1038/s41569‑020‑00469‑1 33214651
    [Google Scholar]
  87. LibbyP. LüscherT. COVID-19 is, in the end, an endothelial disease.Eur. Heart J.202041323038304410.1093/eurheartj/ehaa623 32882706
    [Google Scholar]
  88. LeonardiM. PadovaniA. McArthurJ.C. Neurological manifestations associated with COVID-19: A review and a call for action.J. Neurol.202026761573157610.1007/s00415‑020‑09896‑z 32436101
    [Google Scholar]
  89. KeyhanianK. PizzolatoR.J. SARS-CoV-2 and nervous system: From pathogenesis to clinical manifestation.J. Neuroimmunol.2020350577436
    [Google Scholar]
  90. NaqviW. GargP. SrivastavaP. Impact of prolonged use of COVID-19 drugs on the human neurological system using insilco drug-gene interaction.Coronaviruses202342e26072321910510.2174/2666796704666230726122536
    [Google Scholar]
  91. CooperK.W. BrannD.H. FarruggiaM.C. COVID-19 and the chemical senses: Supporting players take center stage.Neuron2020107221923310.1016/j.neuron.2020.06.032 32640192
    [Google Scholar]
  92. BrannD.H. TsukaharaT. WeinrebC. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia.Sci. Adv.2020631eabc580110.1126/sciadv.abc5801 32937591
    [Google Scholar]
  93. JafarA. LassoA. ShorrR. HuttonB. KiltyS. Olfactory recovery following infection with COVID-19: A systematic review.PLoS One20211612010.1371/journal.pone.0259321
    [Google Scholar]
  94. TsaiS.T. LuM.K. SanS. TsaiC.H. The neurologic manifestations of coronavirus disease 2019 pandemic: A systemic review.Front. Neurol.202011May49810.3389/fneur.2020.00498 32574246
    [Google Scholar]
  95. CollantesM.E.V. EspirituA.I. SyM.C.C. AnlacanV.M.M. JamoraR.D.G. Neurological manifestations in COVID-19 infection: A systematic review and meta-analysis.Can. J. Neurol. Sci.2021481667610.1017/cjn.2020.146 32665054
    [Google Scholar]
  96. JiangX. CoffeeM. BariA. Towards an artificial intelligence framework for data-driven prediction of coronavirus clinical severity.Comput. Mater. Continua202062353755110.32604/cmc.2020.010691
    [Google Scholar]
  97. Borges do NascimentoI.J. CacicN. AbdulazeemH.M. Novel coronavirus infection (Covid-19) in humans: A scoping review and meta-analysis.J. Clin. Med.20209494110.3390/jcm9040941 32235486
    [Google Scholar]
  98. KimE.S. ChinB.S. KangC.K. Clinical course and outcomes of patients with severe acute respiratory syndrome coronavirus 2 infection: A preliminary report of the first 28 patients from the korean cohort study on COVID-19.J. Korean Med. Sci.20203513e14210.3346/jkms.2020.35.e142 32242348
    [Google Scholar]
  99. BelvisR. Headaches during COVID‐19: My clinical case and review of the literature.Headache20206071422142610.1111/head.13841 32413158
    [Google Scholar]
  100. CaronnaE. BallvéA. LlauradóA. Headache: A striking prodromal and persistent symptom, predictive of COVID-19 clinical evolution.Cephalalgia202040131410142110.1177/0333102420965157 33146036
    [Google Scholar]
  101. SinghJ. AliA. Headache as the presenting symptom in 2 patients with COVID‐19 and a history of migraine: 2 case reports.Headache20206081773177610.1111/head.13890 32521062
    [Google Scholar]
  102. ChenN. ZhouM. DongX. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study.Lancet20203951022350751310.1016/S0140‑6736(20)30211‑7 32007143
    [Google Scholar]
  103. CiprianiG. DantiS. NutiA. CarlesiC. LucettiC. Di FiorinoM. A complication of coronavirus disease 2019: Delirium.Acta Neurol. Belg.2020120492793210.1007/s13760‑020‑01401‑7 32524537
    [Google Scholar]
  104. ZhaiP. DingY. LiY. The impact of COVID-19 on ischemic stroke.Diagn. Pathol.20201517810.1186/s13000‑020‑00994‑0 32600350
    [Google Scholar]
  105. JainR. YoungM. DograS. KennedyH. NguyenV. COVID-19 related neuroimaging findings: A signal of thromboembolic complications and a strong prognostic marker of poor patient outcome.J. Neurol. Sci.2020414116923
    [Google Scholar]
  106. Diaz-SegarraN. EdmondA. KunacA. YonclasP. COVID-19 ischemic strokes as an emerging rehabilitation population.Am. J. Phys. Med. Rehabil.2020991087687910.1097/PHM.0000000000001532 32675706
    [Google Scholar]
  107. PonsS. FodilS. AzoulayE. ZafraniL. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection.Crit. Care202024135310.1186/s13054‑020‑03062‑7 32546188
    [Google Scholar]
  108. Al-AniF. ChehadeS. Lazo-LangnerA. Thrombosis risk associated with COVID-19 infection. A scoping review.Thromb. Res.2020192April15216010.1016/j.thromres.2020.05.039 32485418
    [Google Scholar]
  109. BrüggemannR. HesterG. BoreforeJ. HugoT. CateS. Arterial and venous thromboembolic disease in a patient with COVID-19: A case report.Thromb. Res.2020191153155
    [Google Scholar]
  110. AhmadI. RathoreF.A. Neurological manifestations and complications of COVID-19: A literature review.J. Clin. Neurosci.20207781210.1016/j.jocn.2020.05.017 32409215
    [Google Scholar]
  111. PlattM.P. AgalliuD. CutforthT. Hello from the other side: How autoantibodies circumvent the blood-brain barrier in autoimmune encephalitis.Front. Immunol.20178APR44210.3389/fimmu.2017.00442 28484451
    [Google Scholar]
  112. EllulM. SolomonT. Acute encephalitis diagnosis and management.Clin. Med.201818215515910.7861/clinmedicine.18‑2‑155 29626021
    [Google Scholar]
  113. Al MazroueiS.S. SaeedG.A. Al HelaliA.A. AhmedM. COVID-19-associated encephalopathy: Neurological manifestation of COVID-19.Radiol. Case Rep.20201591646164910.1016/j.radcr.2020.07.009 32690988
    [Google Scholar]
  114. PoyiadjiN. ShahinG. NoujaimD. StoneM. PatelS. GriffithB. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: Imaging features.Radiology20202962E119E12010.1148/radiol.2020201187 32228363
    [Google Scholar]
  115. EdénA. KanbergN. GostnerJ. CSF biomarkers in patients with COVID-19 and neurologic symptoms.Neurology2021962e294e30010.1212/WNL.0000000000010977 33004602
    [Google Scholar]
  116. UmapathiT. QuekW.M.J. YenJ.M. Encephalopathy in COVID-19 patients; viral, parainfectious, or both?eNeurologicalSci202021June10027510.1016/j.ensci.2020.100275 32984561
    [Google Scholar]
  117. BensaidaneM.R. Picher-MartelV. ÉmondF. De SerresG. DupréN. BeaucheminP. Case Report: Acute necrotizing encephalopathy following COVID-19 vaccine.Front. Neurol.202213April87273410.3389/fneur.2022.872734 35572945
    [Google Scholar]
  118. GarcíaC.C. SánchezE.A. HuertaD.H. Gómez-ArnauJ. COVID-19 treatment-induced neuropsychiatric adverse effects.Gen. Hosp. Psychiatry202067163166
    [Google Scholar]
  119. HorbyP. LimW.S. EmbersonJ.R. Dexamethasone in hospitalized patients with COVID-19.N. Engl. J. Med.2021384869370410.1056/NEJMoa2021436 32678530
    [Google Scholar]
  120. EhrenreichH. WeissenbornK. BegemannM. BuschM. VietaE. MiskowiakK.W. Erythropoietin as candidate for supportive treatment of severe COVID-19.Mol. Med.20202615810.1186/s10020‑020‑00186‑y 32546125
    [Google Scholar]
  121. KlokF.A. KruipM.J.H.A. van der MeerN.J.M. Incidence of thrombotic complications in critically ill ICU patients with COVID-19.Thromb. Res.202019114514710.1016/j.thromres.2020.04.013 32291094
    [Google Scholar]
  122. MooreH.B. BarrettC.D. MooreE.E. Is there a role for tissue plasminogen activator as a novel treatment for refractory COVID-19 associated acute respiratory distress syndrome?J. Trauma Acute Care Surg.202088671371410.1097/TA.0000000000002694 32281766
    [Google Scholar]
  123. OngW.Y. GoM.L. WangD.Y. CheahI.K.M. HalliwellB. Effects of antimalarial drugs on neuroinflammation-potential use for treatment of COVID-19-related neurologic complications.Mol. Neurobiol.202158110611710.1007/s12035‑020‑02093‑z 32897518
    [Google Scholar]
  124. BorettiA. BanikB. CastellettoS. Mechanism of action of chloroquine/hydroxychloroquine for COVID-19 infection.Coronaviruses202126e13062118791010.2174/2666796701999201112125319
    [Google Scholar]
  125. ZengL. ZhangH. HeY. A severe COVID-19 case with schizophrenia as well as other chronic diseases.Braz. J. Med. Biol. Res.2021543e1042610.1590/1414‑431x202010426 33470392
    [Google Scholar]
  126. CastilloR.R. QuizonG.R.A. JucoM.J.M. Melatonin as adjuvant treatment for coronavirus disease 2019 pneumonia patients requiring hospitalization (MAC-19 PRO): A case series.Melatonin Research20203329731010.32794/mr11250063
    [Google Scholar]
  127. SherY. RabkinB. MaldonadoJ.R. MohabirP. COVID-19–associated hyperactive intensive care unit delirium with proposed pathophysiology and treatment: A case report.Psychosomatics202061554455010.1016/j.psym.2020.05.007 32591212
    [Google Scholar]
  128. BallerE.B. HoganC.S. FusunyanM.A. Neurocovid: Pharmacological recommendations for delirium associated with COVID-19.Psychosomatics202061658559610.1016/j.psym.2020.05.013 32828569
    [Google Scholar]
  129. OngI.Z. KolsonD.L. SchindlerM.K. Mechanisms, effects, and management of neurological complications of post-acute sequelae of COVID-19 (NC-PASC).Biomedicines202311237710.3390/biomedicines11020377 36830913
    [Google Scholar]
  130. GrundmannA. WuC.H. HardwickM. Fewer COVID‐19 neurological complications with dexamethasone and remdesivir.Ann. Neurol.20239318810210.1002/ana.26536 36261315
    [Google Scholar]
/content/journals/covid/10.2174/0126667975303626240605104430
Loading
/content/journals/covid/10.2174/0126667975303626240605104430
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test