Skip to content
2000
image of Ultrasound-mediated Tandem Synthesis of New Highly Functionalized 4-Hydroxy-quinoline Derivatives with Amidine and Imidate Skeletons from Trichloroacet-amidine(imidate), Alkynes, and Isatoic Anhydride

Abstract

Introduction

In this study, using a novel design and readily available starting materials, various quinoline derivatives were synthesized by replacing imidates and amidines. Additionally, in heterocyclic chemistry, a four-component reaction involving alkynes, isatoic anhydride, trichloroacetonitrile, and various amines or alcohols yielded 4-hydroxy-quinoline-3-carboximidamide (imidate) with satisfactory efficiency. Using an inexpensive copper(I) catalyst, DMF as the solvent, and ultrasonic conditions for 40 minutes, the synthesis and characterization of new compounds can be achieved without the need for ligands or oxidants. The combination of readily available starting materials, mild reaction conditions, catalytic systems, and simple purification procedures facilitates the synthesis of a diverse range of substituted 4-hydroxy-quinoline derivatives, including those containing amidine and imidate skeletons.

Methods

In this study, isatoic anhydride was employed to trap the triple bond. A copper-catalyzed reaction of alkynes, isatoic anhydride, trichloroacetonitrile, and various amines or alcohols was carried out to synthesize substituted quinoline derivatives containing amidine and imidate skeletons, as illustrated in Scheme . In this reaction, isatoic anhydride, at 80°C in DMF, released carbon dioxide to generate an active intermediate. This intermediate reacted with the triple bond of the compound formed from the terminal alkyne and the amidine derivative through a [4+2] cycloaddition to produce the desired quinoline product. The advantages of this method include its simplicity and safety, the use of inexpensive materials and catalysts, ultrasonic-assisted reaction conditions that improve efficiency and speed, and good yields (72-93%). This approach is, therefore, highly attractive for the synthesis of substituted quinoline derivatives. In this study, new quinolines containing amidine and imidate skeletons were synthesized with potential for further biological evaluation.

Results

To start the synthesis of compound , the required starting materials, including aniline phenylacetylene , trichloroacetonitrile , and isatoic anhydride , were selected. In the next step, the reaction conditions were optimized by changing the catalyst and different solvents. Among the copper catalysts investigated, CuI gave satisfactory results. Among the solvents, DMF was also the solvent of choice. Finally, the reaction was carried out in DMF using (0.019 g) 10 mol% CuI as catalyst, (0.100 g) 1.0 mmol EtN as base, (0.142 g) 1.0 mmol of trichloroacetonitrile, (0.093 g) 1.0 mmol of aniline, and (0.163 g) 1.0 mmol of isatoic anhydride under ultrasonic irradiation at a power of 60 W.

Discussion

The structure of all the synthesized compounds () was determined by mass spectral data, IR, 1H-NMR, and 13C-NMR. For example, the mass spectrum of showed a molecular ion peak at m/z = 339. The 1H-NMR spectrum of showed three singlets for the OH (δ = 8.13 ppm) and two NH (δ = 5.03 and 5.96 ppm) groups with confirmed multiplets for the phenyl protons. The 13C-NMR spectrum of exhibited 17 signals in agreement with the proposed structure. The NMR spectra of the rest of the compounds were found to be similar to due to the different substitutions on the ring.

Conclusion

In this study, a new protocol was used to synthesize a variety of 4-hydroxy-quinoline-3-carboxyimidamides (imidates) using alkynes, isatoic anhydride, trichloroacetonitrile, and various amines or alcohols in the presence of available copper(I) iodide catalyst, under ultrasonic conditions for 40 minutes at room temperature in DMF solvent to prepare various quinolines with substituted imidate and amidine derivatives. The combination of readily available starting materials, efficient catalysis by the copper catalyst, mild reaction conditions, the use of ultrasonic conditions to improve reaction speed and efficiency, and ease of purification collectively contributes to the high yields of the synthesized compounds. Using this method, 13 new quinoline-based compounds, including those with amidine and imidate skeletons, with potential for biological evaluation, were synthesized.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794434227251126053317
2026-01-07
2026-01-31
Loading full text...

Full text loading...

References

  1. Bringmann G. Reichert Y. Kane V.V. The total synthesis of streptonigrin and related antitumor antibiotic natural products. Tetrahedron 2004 60 16 3539 3574 10.1016/j.tet.2004.02.060
    [Google Scholar]
  2. Sultan S. Zenati R.A. Anbar H.S. El-Gamal M.I. Semreen M.H. Recent advances of quinoline‐based small molecules as kinase inhibitors (2020-2024). ChemMedChem 2025 20 14 202500279 10.1002/cmdc.202500279 40356522
    [Google Scholar]
  3. Van de Walle T. Cools L. Mangelinckx S. D’hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur. J. Med. Chem. 2021 226 15 113865 10.1016/j.ejmech.2021.113865 34655985
    [Google Scholar]
  4. Chokkar N. Kalra S. Chauhan M. Kumar R. A review on quinoline-derived scaffolds as anti-HIV agents. Mini Rev. Med. Chem. 2019 19 6 510 526 10.2174/1389557518666181018163448 30338737
    [Google Scholar]
  5. Kaur R. Kumar K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur. J. Med. Chem. 2021 215 34 113220 10.1016/j.ejmech.2021.113220 33609889
    [Google Scholar]
  6. Ghanim A.M. Girgis A.S. Kariuki B.M. Samir N. Said M.F. Abdelnaser A. Nasr S. Bekheit M.S. Abdelhameed M.F. Almalki A.J. Ibrahim T.S. Panda S.S. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates. Bioorg. Chem. 2022 119 5 105557 10.1016/j.bioorg.2021.105557 34952242
    [Google Scholar]
  7. Patel K.B. Kumari P. A review: Structure-activity relationship and antibacterial activities of Quinoline based hybrids. J. Mol. Struct. 2022 1268 1 133634 10.1016/j.molstruc.2022.133634
    [Google Scholar]
  8. Razzaghi-Asl N. Sepehri S. Ebadi A. Karami P. Nejatkhah N. Johari-Ahar M. Insights into the current status of privileged N-heterocycles as antileishmanial agents. Mol. Divers. 2020 24 2 525 569 10.1007/s11030‑019‑09953‑4 31028558
    [Google Scholar]
  9. Prasad M.V.V.V. Rao R.H.R. Veeranna V. Chennupalli V.S. Sathish B. Novel quinolone derivatives: Synthesis and antioxidant activity. Russ. J. Gen. Chem. 2021 91 12 2522 2526 10.1134/S1070363221120239 35068916
    [Google Scholar]
  10. Dorababu A. Quinoline: A promising scaffold in recent antiprotozoal drug discovery. ChemistrySelect 2021 6 9 2164 2177 10.1002/slct.202100115
    [Google Scholar]
  11. Ugale V.G. Patel H.M. Surana S.J. Molecular modeling studies of quinoline derivatives as VEGFR-2 tyrosine kinase inhibitors using pharmacophore based 3D QSAR and docking approach. Arab. J. Chem. 2017 10 8 S1980 S2003 10.1016/j.arabjc.2013.07.026
    [Google Scholar]
  12. Kouznetsov V. Mendez L. Gomez C. Recent progress in the synthesis of quinolines. Curr. Org. Chem. 2005 9 2 141 161 10.2174/1385272053369196
    [Google Scholar]
  13. Kalita P.K. Baruah B. Bhuyan P.J. Synthesis of novel pyrano[2,3-b]quinolines from simple acetanilides via intramolecular 1,3-dipolar cycloaddition. Tetrahedron Lett. 2006 47 44 7779 7782 10.1016/j.tetlet.2006.08.086
    [Google Scholar]
  14. Jia P. Liu D. Zhuang Z. Qu L. Liu C. Zhang Y. Li Z. Zhu H. Yu Y. Zhang X. Sheng W. Zhu B. A highly selective ratiometric fluorescence probe for bioimaging of hypobromous acid in living cells and zebrafish. Sens. Actuators B Chem. 2020 320 2 128583 10.1016/j.snb.2020.128583
    [Google Scholar]
  15. Ríos-Malváez Z.G. González-Rivas N. Cuevas-Yañez E. Quinoline hydroxyalkylations from iron-catalyzed, visible-light-driven decarboxylations. Catalysts 2024 14 12 916 10.3390/catal14120916
    [Google Scholar]
  16. Elebiju O.F. Ajani O.O. Oduselu G.O. Ogunnupebi T.A. Adebiyi E. Recent advances in functionalized quinoline scaffolds and hybrids—Exceptional pharmacophore in therapeutic medicine. Front Chem. 2023 10 4 1074331 10.3389/fchem.2022.1074331 36688036
    [Google Scholar]
  17. Ajani O.O. Iyaye K.T. Ademosun O.T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs - a review. RSC Advances 2022 12 29 18594 18614 10.1039/D2RA02896D 35873320
    [Google Scholar]
  18. Kumar V. Sharma S. Vaishali; Singh, D.; Malakar, C.C.; Singh, V. Exploration of synthetic potential of quinoline‐3‐carbaldehydes. Eur. J. Org. Chem. 2024 27 36 202400456 10.1002/ejoc.202400456
    [Google Scholar]
  19. El-Saghier A.M. El-Naggar M. Hussein A.H.M. El-Adasy A.B.A. Olish M. Abdelmonsef A.H. Eco-friendly synthesis, biological evaluation, and in silico molecular docking approach of some new quinoline derivatives as potential antioxidant and antibacterial agents. Front Chem. 2021 9 679967 10.3389/fchem.2021.679967 34178944
    [Google Scholar]
  20. Ceylan Ş. Cebeci Y.U. Demirbaş N. Batur Ö.Ö. Özakpınar Ö.B. Antimicrobial, antioxidant and antiproliferative activities of novel quinolones. ChemistrySelect 2020 5 36 11340 11346 10.1002/slct.202002779
    [Google Scholar]
  21. Ibrahim A. Bala O.F. Al Sharif A.M. Asiri R.M. El-Shishtawy S. Quinoline: A versatile bioactive scaffold and its molecular hybridization. Results Chem. 2024 7 1 101529
    [Google Scholar]
  22. Su W. Zhong W. Lin F. Chen R. A novel procedure for the synthesis of benzo[b][1,8]naphthyridine-3-carboxylate derivatives from morita-baylis-hillman adduct acetates. Synthesis 2009 2009 14 2333 2340 10.1055/s‑0029‑1216853
    [Google Scholar]
  23. Roma G. Di Braccio M. Grossi G. Mattioli F. Ghia M. 1,8-Naphthyridines IV. 9-Substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino) [1,2,4]triazolo[4,3-a][1,8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur. J. Med. Chem. 2000 35 11 1021 1035 10.1016/S0223‑5234(00)01175‑2 11137230
    [Google Scholar]
  24. Chen Y.L. Fang K.C. Sheu J.Y. Hsu S.L. Tzeng C.C. Synthesis and antibacterial evaluation of certain quinolone derivatives. J. Med. Chem. 2001 44 14 2374 2377 10.1021/jm0100335 11428933
    [Google Scholar]
  25. Mrozek-Wilczkiewicz A. Kuczak M. Malarz K. Cieślik W. Spaczyńska E. Musiol R. The synthesis and anticancer activity of 2-styrylquinoline derivatives. A p53 independent mechanism of action. Eur. J. Med. Chem. 2019 177 8 338 349 10.1016/j.ejmech.2019.05.061 31158748
    [Google Scholar]
  26. Wang M. Zhang G. Zhao J. Cheng N. Wang Y. Fu Y. Zheng Y. Wang J. Zhu M. Cen S. He J. Wang Y. Synthesis and antiviral activity of a series of novel quinoline derivatives as anti-RSV or anti-IAV agents. Eur. J. Med. Chem. 2021 214 11 113208 10.1016/j.ejmech.2021.113208 33571829
    [Google Scholar]
  27. Murugan K. Panneerselvam C. Subramaniam J. Paulpandi M. Rajaganesh R. Vasanthakumaran M. Madhavan J. Shafi S.S. Roni M. Portilla-Pulido J.S. Mendez S.C. Duque J.E. Wang L. Aziz A.T. Chandramohan B. Dinesh D. Piramanayagam S. Hwang J.S. Synthesis of new series of quinoline derivatives with insecticidal effects on larval vectors of malaria and dengue diseases. Sci. Rep. 2022 12 1 4765 10.1038/s41598‑022‑08397‑5 35306526
    [Google Scholar]
  28. Nayak N. Ramprasad J. Dalimba U. Synthesis and antitubercular and antibacterial activity of some active fluorine containing quinoline-pyrazole hybrid derivatives. J. Fluor. Chem. 2016 183 22 59 68 10.1016/j.jfluchem.2016.01.011
    [Google Scholar]
  29. Jain S. Chandra V. Kumar Jain P. Pathak K. Pathak D. Vaidya A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem. 2019 12 8 4920 4946 10.1016/j.arabjc.2016.10.009
    [Google Scholar]
  30. Matada B.S. Pattanashettar R. Yernale N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem. 2021 32 3 115973 10.1016/j.bmc.2020.115973 33444846
    [Google Scholar]
  31. Prajapati S.M. Patel K.D. Vekariya R.H. Panchal S.N. Patel H.D. Recent advances in the synthesis of quinolines: A review. RSC Advances 2014 4 47 24463 24476 10.1039/C4RA01814A
    [Google Scholar]
  32. George R.F. Samir E.M. Abdelhamed M.N. Abdel-Aziz H.A. Abbas S.E.S. Synthesis and anti-proliferative activity of some new quinoline based 4,5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors. Bioorg. Chem. 2019 83 2 186 197 10.1016/j.bioorg.2018.10.038 30380447
    [Google Scholar]
  33. Narasimhamurthy K.H. Guruswamy D.K.M. Chandra N.K. Kallesha N. Basappa; Rangappa, K.S. Synthesis of bioactive quinoline acting as anticancer agents and their mode of action using in silico analysis towards Aurora kinase A inhibitors. Chemical Data Collections 2021 35 5 100768 10.1016/j.cdc.2021.100768
    [Google Scholar]
  34. Franklin Ebenazer A. Saravanabhavan M. Ramesh K.S. Muhammad S. Al-Sehemi A.G. Sampathkumar N. Synthesis, spectral characterization, crystal structure and computational investigation of 2-formyl-6-methoxy-3-carbethoxy quinoline as potential SARS-CoV inhibitor. J. Phys. Chem. Solids 2022 170 5 110886 10.1016/j.jpcs.2022.110886 35847561
    [Google Scholar]
  35. Patel D.B. Darji D.G. Patel K.R. Rajani D.P. Rajani S.D. Patel H.D. Synthesis of novel quinoline-thiosemicarbazide hybrids and evaluation of their biological activities, molecular docking, molecular dynamics, pharmacophore model studies, and ADME-Tox properties. J. Heterocycl. Chem. 2020 57 3 1183 1200 10.1002/jhet.3855 32194685
    [Google Scholar]
  36. Jamshidi H. Naimi-Jamal M.R. Safavi M. Synthesis and biological activity profile of novel triazole/quinoline hybrids. Chem. Biol. Drug Des. 2022 100 6 935 946 10.1111/cbdd.14031 35147277
    [Google Scholar]
  37. Ezzatzadeh E. Hargalani F.Z. Shafaei F. Bio-Fe3O4-MNPs promoted green synthesis of pyrido[2,1-a] isoquinolines and Pyrido[1,2-a] quinolines: Study of antioxidant and antimicrobial activity. Polycycl. Aromat. Compd. 2022 42 7 3908 3923 10.1080/10406638.2021.1879882
    [Google Scholar]
  38. Ammar Y.A. El-Hafez S.M.A.A. Hessein S.A. Ali A.M. Askar A.A. Ragab A. One-pot strategy for thiazole tethered 7-ethoxy quinoline hybrids: Synthesis and potential antimicrobial agents as dihydrofolate reductase (DHFR) inhibitors with molecular docking study. J. Mol. Struct. 2021 1242 1 130748 10.1016/j.molstruc.2021.130748
    [Google Scholar]
  39. Roy D. Anas M. Manhas A. Saha S. Kumar N. Panda G. Synthesis, biological evaluation, Structure − Activity relationship studies of quinoline-imidazole derivatives as potent antimalarial agents. Bioorg. Chem. 2022 121 4 105671 10.1016/j.bioorg.2022.105671 35168120
    [Google Scholar]
  40. Demeunynck M. Moucheron C. Kirsch-De Mesmaeker A. Tetrapyrido[3,2-a:2′,3′-c:3″,2″-h:2‴,3‴-j]acridine (tpac): A new extended polycyclic bis-phenanthroline ligand. Tetrahedron Lett. 2002 43 2 261 264 10.1016/S0040‑4039(01)02131‑1
    [Google Scholar]
  41. Cho C.S. Kim B.T. Kim T.J. Shim S.C. Ruthenium-catalysed oxidative cyclisation of 2-aminobenzyl alcohol with ketones: Modified Friedlaender quinoline synthesis. Chem. Commun. 2001 23 24 2576 2577 10.1039/b109245f
    [Google Scholar]
  42. Wolf C. Lerebours R. Use of highly active palladium-phosphinous acid catalysts in Stille, Heck, amination, and thiation reactions of chloroquinolines. J. Org. Chem. 2003 68 18 7077 7084 10.1021/jo034758n 12946152
    [Google Scholar]
  43. Lin X.F. Cui S.L. Wang Y.G. A highly efficient synthesis of 1,2,3,4-tetrahydroquinolines by molecular iodine-catalyzed domino reaction of anilines with cyclic enol ethers. Tetrahedron Lett. 2006 47 26 4509 4512 10.1016/j.tetlet.2006.03.123
    [Google Scholar]
  44. Taheri S. Nazifi M. Mansourian M. Hosseinzadeh L. Shokoohinia Y. Ugi efficient synthesis, biological evaluation and molecular docking of coumarin-quinoline hybrids as apoptotic agents through mitochondria-related pathways. Bioorg. Chem. 2019 91 6 103147 10.1016/j.bioorg.2019.103147 31377390
    [Google Scholar]
  45. Vanjare B.D. Seok Eom Y. Raza H. Hassan M. Lee H. K.; Ja Kim, S. Elastase inhibitory activity of quinoline Analogues: Synthesis, kinetic mechanism, cytotoxicity, chemoinformatics and molecular docking studies. Bioorg. Med. Chem. 2022 63 3 116745 10.1016/j.bmc.2022.116745 35421709
    [Google Scholar]
  46. Boualia I. Debache A. Boulcina R. Roisnel T. Berrée F. Vidal J. Carboni B. Synthesis of novel 3-(quinazol-2-yl)-quinolines via SNAr and aluminum chloride-induced (hetero) arylation reactions and biological evaluation as proteasome inhibitors. Tetrahedron Lett. 2020 61 17 151805 10.1016/j.tetlet.2020.151805
    [Google Scholar]
  47. Hamdy R. Elseginy S.A. Ziedan N.I. Jones A.T. Westwell A.D. New quinoline-based heterocycles as anticancer agents targeting Bcl-2. Molecules 2019 24 7 1274 10.3390/molecules24071274 30986908
    [Google Scholar]
  48. Bakale R.D. Bhagat A.N. Mhetre U.V. Londhe S.V. Rathod S.S. Choudhari P.B. Haval K.P. Design, synthesis and molecular docking study of novel quinoline-triazole molecular hybrids as anticancer agents. J. Mol. Struct. 2025 1321 1 140072 10.1016/j.molstruc.2024.140072
    [Google Scholar]
  49. Momoli C. Arcadi A. Chiarini M. Morlacci V. Palombi L. Expanding diversity of fused steroid-quinoline hybrids by sequential amination/annulation/aromatization reactions. J. Org. Chem. 2025 90 11 3951 3963 10.1021/acs.joc.4c02981 40052426
    [Google Scholar]
  50. Albuquerque H.M.T. Da Silva R.N. Pereira M. Maia A. Guieu S. Soares A.R. Santos C.M.M. Vieira S.I. Silva A.M.S. Steroid-quinoline hybrids for disruption and reversion of protein aggregation processes. ACS Med. Chem. Lett. 2022 13 3 443 448 10.1021/acsmedchemlett.1c00604 35300075
    [Google Scholar]
  51. Ilovaisky A.I. Scherbakov A.M. Merkulova V.M. Chernoburova E.I. Shchetinina M.A. Andreeva O.E. Salnikova D.I. Zavarzin I.V. Terent’ev A.O. Secosteroid-quinoline hybrids as new anticancer agents. J. Steroid Biochem. Mol. Biol. 2023 228 2 106245 10.1016/j.jsbmb.2022.106245 36608906
    [Google Scholar]
  52. Costa C.A. Lopes R.M. Ferraz L.S. Esteves G.N.N. Di Iorio J.F. Souza A.A. de Oliveira I.M. Manarin F. Judice W.A.S. Stefani H.A. Rodrigues T. Cytotoxicity of 4-substituted quinoline derivatives: Anticancer and antileishmanial potential. Bioorg. Med. Chem. 2020 28 11 115511 10.1016/j.bmc.2020.115511 32336669
    [Google Scholar]
  53. Maltais R. Roy J. Poirier D. Turning a quinoline-based steroidal anticancer agent into fluorescent dye for its tracking by cell imaging. ACS Med. Chem. Lett. 2021 12 5 822 826 10.1021/acsmedchemlett.1c00111 34055232
    [Google Scholar]
  54. Wu L.Q. Ma X. Zhang C. Liu Z.P. Design, synthesis, and biological evaluation of 4-substituted-3,4-dihydrobenzo[h]quinoline-2,5,6(1H)-triones as NQO1-directed antitumor agents. Eur. J. Med. Chem. 2020 198 5 112396 10.1016/j.ejmech.2020.112396 32464425
    [Google Scholar]
  55. Yang Y.T. Du S. Wang S. Jia X. Wang X. Zhang X. Synthesis of new steroidal quinolines with antitumor properties. Steroids 2019 151 13 108465 10.1016/j.steroids.2019.108465 31351940
    [Google Scholar]
  56. Gnyawali K.P. Shakenov A. Kirinde Arachchige P.T. Yi C.S. Benzoquinone ligand-enabled ruthenium-catalyzed deaminative coupling of 2-aminoaryl aldehydes and ketones with branched amines for regioselective synthesis of quinoline derivatives. J. Org. Chem. 2024 89 16 11119 11135 10.1021/acs.joc.4c00063 39058560
    [Google Scholar]
  57. Kumaraswamy B. Hemalatha K. Pal R. Matada G.S.P. Hosamani K.R. Aayishamma I. Aishwarya N.V.S.S. An insight into sustainable and green chemistry approaches for the synthesis of quinoline derivatives as anticancer agents. Eur. J. Med. Chem. 2024 275 3 116561 10.1016/j.ejmech.2024.116561 38870832
    [Google Scholar]
  58. Keri R.S. Budagumpi S. Adimule V. Quinoline synthesis: Nanocatalyzed green protocols—an overview. ACS Omega 2024 9 42 42630 42667 10.1021/acsomega.4c07011 39464456
    [Google Scholar]
  59. Mandal A. Khan A.T. Recent advancement in the synthesis of quinoline derivatives via multicomponent reactions. Org. Biomol. Chem. 2024 22 12 2339 2358 10.1039/D4OB00034J 38444342
    [Google Scholar]
  60. Zhao X. Wang G. Hashmi A.S.K. Gold catalysis in quinoline synthesis. Chem. Commun. 2024 60 55 6999 7016 10.1039/D4CC01915F 38904196
    [Google Scholar]
  61. Rahul P. Nitha P.R. Omanakuttan V.K. Babu S.A. Sasikumar P. Praveen V.K. Hopf H. John J. Superbase-mediated indirect friedländer reaction: A transition metal-free oxidative annulation toward functionalized quinolines. Eur. J. Org. Chem. 2020 2020 4 3081 3089 10.1002/ejoc.202000365
    [Google Scholar]
  62. Wang L.E. Zhang S. Jin R.S. Peng Y.Y. Ding Q.P. Zeng X.P. Catalytic asymmetric Friedländer condensation to construct cyclobutanone-fused quinolines with a quaternary stereogenic centre. Org. Chem. Front. 2024 11 19 5363 5367 10.1039/D4QO01177E
    [Google Scholar]
  63. Farajat D. Do J.L. Forgione P. Friščić T. Cuccia L.A. Li C.J. Shaking up the friedländer reaction: Rapid, scalable mechanochemical synthesis of polyaryl‐substituted quinolines. Adv. Synth. Catal. 2024 366 24 5135 5143 10.1002/adsc.202400862
    [Google Scholar]
  64. Deshmukh G. Gharpure S.J. Murugavel R. Dinuclear Ru(II) schiff base complex catalyzed one-pot synthesis of quinolines through acceptorless dehydrogenative coupling of secondary alcohols with 2-nitrobenzyl alcohol. Organometallics 2024 43 10 1190 1202 10.1021/acs.organomet.4c00129
    [Google Scholar]
  65. Keerthana P. Khan F.R.N. Nickel-catalyzed sequential synthesis of alkylated quinolines and their photophysical studies. Asian J. Org. Chem. 2024 13 9 e202400192 10.1002/ajoc.202400192
    [Google Scholar]
  66. Qi C. Shen X. Fang W. Chang J. Wang X.N. TMSOTf-catalyzed [4 + 2] annulation of ynamides and β-(2-Aminophenyl)-α,β-ynones for the synthesis 2-aminoquinolines. Org. Lett. 2024 26 17 3503 3508 10.1021/acs.orglett.4c00763 38661174
    [Google Scholar]
  67. Kushwaha P. Quinoline as a privileged structure: A recent update on synthesis and biological activities. Curr. Top. Med. Chem. 2024 24 27 2377 2419 10.2174/0115680266314303240830074056 39313876
    [Google Scholar]
  68. Moor L.F.E. Vasconcelos T.R.A. da R Reis, R.; Pinto, L.S.S.; da Costa, T.M. Quinoline: An attractive scaffold in drug design. Mini Rev. Med. Chem. 2021 21 16 2209 2226 10.2174/1389557521666210210155908 33568032
    [Google Scholar]
  69. Coles M.P. Application of neutral amidines and guanidines in coordination chemistry. Dalton Trans. 2006 2 8 985 1001 10.1039/b515490a 16474883
    [Google Scholar]
  70. Ikeda M. Tanaka Y. Hasegawa T. Furusho Y. Yashima E. Construction of double-stranded metallosupramolecular polymers with a controlled helicity by combination of salt bridges and metal coordination. J. Am. Chem. Soc. 2006 128 21 6806 6807 10.1021/ja0619096 16719458
    [Google Scholar]
  71. Edwards P.D. Albert J.S. Sylvester M. Aharony D. Andisik D. Callaghan O. Campbell J.B. Carr R.A. Chessari G. Congreve M. Frederickson M. Folmer R.H.A. Geschwindner S. Koether G. Kolmodin K. Krumrine J. Mauger R.C. Murray C.W. Olsson L.L. Patel S. Spear N. Tian G. Application of fragment-based lead generation to the discovery of novel, cyclic amidine β-secretase inhibitors with nanomolar potency, cellular activity, and high ligand efficiency. J. Med. Chem. 2007 50 24 5912 5925 10.1021/jm070829p 17985862
    [Google Scholar]
  72. Peterlin-Mašič L. Kikelj D. Arginine mimetics. Tetrahedron 2001 57 33 7073 7105 10.1016/S0040‑4020(01)00507‑5
    [Google Scholar]
  73. Sienkiewicz P. Bielawski K. Bielawska A. Pałka J. Inhibition of collagen and DNA biosynthesis by a novel amidine analogue of chlorambucil is accompanied by deregulation of β1-integrin and IGF-I receptor signaling in MDA-MB 231 cells. Environ. Toxicol. Pharmacol. 2005 20 1 118 124 10.1016/j.etap.2004.11.001 21783578
    [Google Scholar]
  74. Sudheendran K. Schmidt D. Frey W. Conrad J. Beifuss U. Facile synthesis of 3,5-diaryl-1,2,4-triazoles via copper-catalyzed domino nucleophilic substitution/oxidative cyclization using amidines or imidates as substrates. Tetrahedron 2014 70 8 1635 1645 10.1016/j.tet.2014.01.019
    [Google Scholar]
  75. Quek J.Y. Davis T.P. Lowe A.B. Amidine functionality as a stimulus-responsive building block. Chem. Soc. Rev. 2013 42 17 7326 7334 10.1039/c3cs60065c 23549709
    [Google Scholar]
  76. Kumagai N. Matsunaga S. Shibasaki M. An efficient synthesis of bicyclic amidines by intramolecular cyclization. Angew. Chem. Int. Ed. 2004 43 4 478 482 10.1002/anie.200352750 14735540
    [Google Scholar]
  77. Takuwa T. Minowa T. Onishi J.Y. Mukaiyama T. Facile one-pot syntheses of amidines and enamines from oximes via beckmann rearrangement using trifluoromethanesulfonic anhydride. Bull. Chem. Soc. Jpn. 2004 77 9 1717 1725 10.1246/bcsj.77.1717
    [Google Scholar]
  78. Yavari I. Nematpour M. Sodagar E. Copper-catalyzed tandem synthesis of highly functionalized bisamidines. Synlett 2013 24 2 161 164 10.1055/s‑0032‑1317952
    [Google Scholar]
  79. Nematpour M. Synthesis of substituted 2-aminobenzoxazoles via copper-catalyzed intramolecular N-arylation of iodophenol and amine-trichloroacetonitrile adduct under ultrasound-irradiation. Tetrahedron 2024 163 1 134145 10.1016/j.tet.2024.134145
    [Google Scholar]
  80. Nematpour M. Novel synthesis of functionalized bis(Benzo‐Heterocyclic Amine) derivatives via copper‐catalyzed one‐pot multicomponent reactions. ChemistrySelect 2024 9 27 202400871 10.1002/slct.202400871
    [Google Scholar]
  81. Nematpour M. Fasihi Dastjerdi H. Mahboubi Rabbani S.M.I. Tabatabai S.A. Copper‐catalyzed intramolecular N ‐arylation of dihalobenzene and amine‐trichloroacetonitrile adduct under ultrasound‐irradiation. ChemistrySelect 2019 4 35 10299 10301 10.1002/slct.201902411
    [Google Scholar]
  82. Nematpour M. Rezaee E. Jahani M. Tabatabai S.A. Ultrasound-assisted synthesis of highly functionalized benzo[1,3]thiazine via Cu-catalyzed intramolecular C H activation reaction from isocyanides, aniline-benzoyl(acetyl) isothiocyanate adduct. Ultrason. Sonochem. 2019 50 4 1 5 10.1016/j.ultsonch.2018.08.001 30213458
    [Google Scholar]
  83. Nematpour M. Convenient synthesis of highly functionalized isoxazoles including an amidine skeleton based on trichloroacetamidine, alkynes, and hydroxyimidoyl chloride. Tetrahedron Lett. 2025 155 3 155443 10.1016/j.tetlet.2024.155443
    [Google Scholar]
  84. Nematpour M. A New Route for the Synthesis of (Trichloromethyl)Quinazoline‐4(1 H)‐One and (1,2,3‐Triazole)‐Quinazoline‐4(1 H)‐One Functionalized Derivatives via Copper‐Catalyzed One‐Pot Multicomponent Reactions. J. Heterocycl. Chem. 2024 61 12 1914 1923 10.1002/jhet.4899
    [Google Scholar]
  85. Nematpour M. Abedi E. An efficient synthesis of novel sulfonyl[3.3.3]heteropropellanes from sulfonylacetamidines and ninhydrin-malononitrile adduct. J. Sulfur Chem. 2017 38 3 229 235 10.1080/17415993.2017.1290093
    [Google Scholar]
  86. Nematpour M. Copper-Catalyzed Synthesis of Substituted 2-Amino (or 2-Alkoxy) Benzimidazoles from Amine (or Alcohol)-Trichloroacetonitrile Adduct and 2-Iodoaniline with Ultrasound Assistance. Curr. Org. Chem. 2025 29 17 1363 1370 10.2174/0113852728364626250107082621
    [Google Scholar]
  87. Yavari I. Nematpour M. A novel copper-catalyzed synthesis of functionalized alkynyl imidates and alkynyl thioimidates. Tetrahedron Lett. 2013 54 36 4973 4974 10.1016/j.tetlet.2013.07.029
    [Google Scholar]
  88. Yavari I. Nematpour M. ChemInform abstract: Copper-catalyzed tandem synthesis of functionalized sulfonyl-yn-imines from sodium arylsulfinates, trichloroacetonitrile, and terminal alkynes. Helv. Chim. Acta 2014 97 3 394 10.1002/hlca.201300214
    [Google Scholar]
  89. Dastjerdi H.F. Nematpour M. Rezaee E. Jahani M. Tabatabai S.A. A novel copper-catalyzed synthesis of N-monosubstituted 2-alkynimidamides from 1-alkynes and trichloroacetamidines. Lett. Org. Chem. 2020 17 9 704 708 10.2174/1570178616666191023142821
    [Google Scholar]
  90. Nematpour M. Domino reaction for the synthesis of new highly functionalized pyridine derivatives from alkynes, trichloroacetamidine(imidate), and 2-amino-1,1,3-tricyanopropylene. Monatsh. Chem. 2025 156 11 1191 1198 10.1007/s00706‑025‑03366‑w
    [Google Scholar]
  91. Yavari I. Nematpour M. Askarian-Amiri M. A tandem synthesis of N-(4-hydroxyquinolin-2-yl)sulfonamides from sulfonoketenimides and isatoic anhydride. Tetrahedron Lett. 2014 55 36 4994 4996 10.1016/j.tetlet.2014.05.039
    [Google Scholar]
/content/journals/cos/10.2174/0115701794434227251126053317
Loading
/content/journals/cos/10.2174/0115701794434227251126053317
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test