Skip to content
2000
image of Ranking Antidiabetic Drugs Using a Multi-criteria Decision-making Approach Based on Domination Distance-Based Topological Indices and QSPR Modeling

Abstract

Introduction

Diabetes is a rapidly increasing metabolic disorder influenced by lifestyle and diet. Therefore, identifying effective therapeutic agents is of great importance. Chemical graph theory, through topological indices, helps relate molecular structures to physicochemical and thermodynamic properties. However, the application of domination distance-based topological indices (DDTIs) for quantitative structure-property relationship (QSPR) modeling and the ranking of antidiabetic drugs remains largely unexplored. This study investigates the relationships between DDTIs and the physicochemical properties of antidiabetic drugs using a QSPR model and ranks the drugs based on these indices integrated with multi-criteria decision-making (MCDM) methods.

Methods

A QSPR approach is employed using DDTIs. Cubic regression is applied to model the relationships between these indices and key physicochemical properties. To identify the most promising drug candidates, MCDM methods, namely, the technique for order preference by similarity to ideal solution (TOPSIS), weighted sum method (WSM), and weighted product method (WPM), are applied based on the calculated DDTIs.

Results

Strong correlations are observed between the DDTIs and the selected physicochemical properties, enabling the development of effective predictive models. Eighteen antidiabetic drugs are ranked using TOPSIS, WSM, and WPM, integrated with DDTIs, with high consistency among the rankings, demonstrating the robustness of the approach.

Discussion

The utility of domination distance-based indices in predicting drug properties and the effectiveness of MCDM methods in drug prioritization is highlighted. While the results align with previous QSPR studies, further validation with larger datasets is recommended.

Conclusion

The findings demonstrate the predictive potential of DDTIs and the effectiveness of MCDM methods for drug prioritization. This framework enables the prediction and ranking of antidiabetic drugs, aiding the discovery of effective therapeutic candidates.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794433844251126044007
2026-01-14
2026-01-31
Loading full text...

Full text loading...

References

  1. Chaudhury A. Duvoor C. Reddy Dendi V.S. Kraleti S. Chada A. Ravilla R. Marco A. Shekhawat N.S. Montales M.T. Kuriakose K. Sasapu A. Beebe A. Patil N. Musham C.K. Lohani G.P. Mirza W. Clinical review of antidiabetic drugs: Implications for type 2 diabetes mellitus management. Front. Endocrinol. 2017 8 6 10.3389/fendo.2017.00006 28167928
    [Google Scholar]
  2. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2020. Diabetes Care 2020 43 Suppl. 1 S98 S110 10.2337/dc20‑S009 31862752
    [Google Scholar]
  3. Nathan D.M. Diabetes: Advances in diagnosis and treatment. JAMA 2015 314 10 1052 1062 10.1001/jama.2015.9536 26348754
    [Google Scholar]
  4. Mathur V. Alam O. Siddiqui N. Jha M. Manaithiya A. Bawa S. Sharma N. Alshehri S. Alam P. Shakeel F. Insight into structure activity relationship of DPP-4 inhibitors for development of antidiabetic agents. Molecules 2023 28 15 5860 10.3390/molecules28155860 37570832
    [Google Scholar]
  5. Gutman I. Trinajstić N. Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 1972 17 4 535 538 10.1016/0009‑2614(72)85099‑1
    [Google Scholar]
  6. Wiener H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947 69 1 17 20 10.1021/ja01193a005 20291038
    [Google Scholar]
  7. Plavšić D. Nikolić S. Trinajstić N. Mihalić Z. On the Harary index for the characterization of chemical graphs. J. Math. Chem. 1993 12 1 235 250 10.1007/BF01164638
    [Google Scholar]
  8. Randić M. Characterization of molecular branching. J. Am. Chem. Soc. 1975 97 23 6609 6615 10.1021/ja00856a001
    [Google Scholar]
  9. Ahmed A.M. Alwardi H. Salestina R.M. On domination topological indices of graphs. Int. J. Anal. Appl. 2021 19 1 47 64 10.28924/2291‑8639‑19‑2021‑47
    [Google Scholar]
  10. Kuriachan G. Parthiban A. Computation of domination degree-based topological indices using python and QSPR analysis of physicochemical and ADMET properties for heart disease drugs. Front Chem. 2025 13 1536199 10.3389/fchem.2025.1536199 40144224
    [Google Scholar]
  11. S, T.P.; Bommahalli Jayaraman, B.; Siddiqui, M.K. Exploring the properties of antituberculosis drugs through QSPR graph models and domination-based topological descriptors. Sci. Rep. 2024 14 1 24387 10.1038/s41598‑024‑73918‑3 39420019
    [Google Scholar]
  12. Vijayalakshmi S. Raji M. Jayalalitha G. Degree based in molecular graph of organic compounds on domination. J. Adv. Res. Dyn. Control. Syst. 2018 10 6 962 966
    [Google Scholar]
  13. Deepa P. Raji M. Wiener index of some special graphs using domination. J. Algebr. Stat. 2022 13 2 2257 2262
    [Google Scholar]
  14. Wazzan S. Ahmed H. Advancing computational insights: Domination topological indices of polysaccharides using special polynomials and QSPR analysis. Contemp. Math. 2024 5 1 26 49
    [Google Scholar]
  15. Shashidhara A.A. Ahmed H. Nandappa S. Cancan M. Domination version: Sombor index of graphs and its significance in predicting physicochemical properties of butane derivatives. Eurasian Chem. Commun. 2023 5 1 91 102
    [Google Scholar]
  16. Javaraju S. Ahmed H. Alsinai A. Soner N.D. Domination topological properties of carbidopa-levodopa used for treatment of Parkinson’s disease by using ϕp-polynomial. Eurasian Chem. Commun. 2021 3 9 614 621
    [Google Scholar]
  17. Murcia-Soler M. Pérez-Giménez F. Nalda-Molina R. Salabert-Salvador M.T. García-March F.J. Cercós-del-Pozo R.A. Garrigues T.M. QSAR analysis of hypoglycemic agents using the topological indices. J. Chem. Inf. Comput. Sci. 2001 41 5 1345 1354 10.1021/ci010281+ 11604036
    [Google Scholar]
  18. Parveen S. Hassan Awan N.U. Mohammed M. Farooq F.B. Iqbal N. Topological indices of novel drugs used in diabetes treatment and their QSPR modeling. J. Math. 2022 2022 1 5209329 10.1155/2022/5209329
    [Google Scholar]
  19. Ullah A. Jabeen S. Zaman S. Hamraz A. Meherban S. Predictive potential of K‐Banhatti and Zagreb type molecular descriptors in structure-property relationship analysis of some novel drug molecules. J. Chin. Chem. Soc. 2024 71 3 250 276 10.1002/jccs.202300450
    [Google Scholar]
  20. Wardecki D. Dołowy M. Bober-Majnusz K. Evaluation of the usefulness of topological indices for predicting selected physicochemical properties of bioactive substances with anti-androgenic and hypouricemic activity. Molecules 2023 28 15 5822 10.3390/molecules28155822 37570792
    [Google Scholar]
  21. Yazdani M. Zarate P. Kazimieras Zavadskas E. Turskis Z. A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Manage. Decis. 2019 57 9 2501 2519 10.1108/MD‑05‑2017‑0458
    [Google Scholar]
  22. Pamučar D. Ćirović G. The selection of transport and handling resources in logistics centers using Multi-Attributive Border Approximation area Comparison (MABAC). Expert Syst. Appl. 2015 42 6 3016 3028 10.1016/j.eswa.2014.11.057
    [Google Scholar]
  23. Biswas S. Measuring performance of healthcare supply chains in India: A comparative analysis of multi-criteria decision making methods. Decis. Mak: Appl. Manag. Eng. 2020 3 2 162 189 10.31181/dmame2003162b
    [Google Scholar]
  24. Diakoulaki D. Mavrotas G. Papayannakis L. Determining objective weights in multiple criteria problems: The critic method. Comput. Oper. Res. 1995 22 7 763 770 10.1016/0305‑0548(94)00059‑H
    [Google Scholar]
  25. Ghorabaee M.K. Amiri M. Zavadskas E. Assessment of third-party logistics providers using a CRITIC-WASPAS approach with interval type-2 fuzzy sets. Transport 2017 32 1 66 78 10.3846/16484142.2017.1282381
    [Google Scholar]
  26. Peng X. Zhang X. Luo Z. Pythagorean fuzzy MCDM method based on CoCoSo and CRITIC with score function for 5G industry evaluation. Artif. Intell. Rev. 2020 53 5 3813 3847 10.1007/s10462‑019‑09780‑x
    [Google Scholar]
  27. Zhang C. Sui R. Kanwal S. Tawfiq F.M. Farooq Y. Aslam A. Study of drug structures using topological descriptors and multi‐criteria decision making. Int. J. Quantum Chem. 2024 124 1 27301 10.1002/qua.27301
    [Google Scholar]
  28. Mahboob A. Amin L. Rasheed M.W. Karamat J. Multi-criteria decision making: Revealing Afinitor as the leading brain tumor drug Using CRITIC, CoCoSo, and MABAC methods combined with QSPR analysis via Banhatti indices. Comput. Biol. Med. 2025 188 109820 10.1016/j.compbiomed.2025.109820 39987696
    [Google Scholar]
  29. Hwang C.L. Yoon K. Methods for Multiple Attribute Decision Making. In: Multiple Attribute Decision Making, Lecture Notes in Economics and Mathematical Systems. Berlin, Heidelberg Springer 1981 186 10.1007/978‑3‑642‑48318‑9_3
    [Google Scholar]
  30. Zanakis S.H. Solomon A. Wishart N. Dublish S. Multi-attribute decision making: A simulation comparison of select methods. Eur. J. Oper. Res. 1998 107 3 507 529 10.1016/S0377‑2217(97)00147‑1
    [Google Scholar]
  31. Triantaphyllou E. Multi-criteria decision-making methods. A comparative study, Applied Optimization. Boston, MA Springer 2000 44 10.1007/978‑1‑4757‑3157‑6_2
    [Google Scholar]
  32. Yoon K. Multiple Attribute Decision Making: An Introduction. Sage Publications 1995 10.4135/9781412985161
    [Google Scholar]
  33. Ashraf T. Idrees N. Topological indices based VIKOR assisted multi-criteria decision technique for lung disorders. Front Chem. 2024 12 1407911 10.3389/fchem.2024.1407911 39380949
    [Google Scholar]
  34. Zhang X. Aslam A. Saeed S. Razzaque A. Kanwal S. Investigation for metallic crystals through chemical invariants, QSPR and fuzzy-TOPSIS. J. Biomol. Struct. Dyn. 2024 42 5 2316 2327 10.1080/07391102.2023.2209656 37154534
    [Google Scholar]
  35. Aslam A. Saeed S. Kanwal S. Tchier F. Investigating hexagonal closed packed crystal lattice through QSPR modeling via linear regression analysis and Topsis. Phys. Scr. 2024 99 2 025201 10.1088/1402‑4896/ad1800
    [Google Scholar]
  36. Saeed F. Idrees N. Integrating structural modeling and decision-making for anti-psychotic drugs through topological indices. Bionanoscience 2025 15 1 59 10.1007/s12668‑024‑01732‑2
    [Google Scholar]
  37. Farooq F.B. Idrees N. Noor E. Alqahtani N.A. Imran M. A computational approach to drug design for multiple sclerosis via QSPR modeling, chemical graph theory, and multi-criteria decision analysis. BMC Chem. 2025 19 1 1 10.1186/s13065‑024‑01374‑1 39748369
    [Google Scholar]
  38. Idrees N. Noor E. Rashid S. Agama F.T. Role of topological indices in predictive modeling and ranking of drugs treating eye disorders. Sci. Rep. 2025 15 1 1271 10.1038/s41598‑024‑81482‑z 39779776
    [Google Scholar]
  39. Haynes T.W. Hedetniemi S.T. Henning M.A. Models of domination in graphs. In: Topics in Domination in Graphs; Springer: Cham 2020 64 13 3 10.1007/978‑3‑030‑51117‑3_2
    [Google Scholar]
  40. Jayalalitha G. Raji M. Schultz polynomial, modified Schultz polynomial and indices of molecular graph of anthracene based on domination. Int. J. Res. Advent Technol 2019 7 1 136 140 10.32622/ijrat.71201944
    [Google Scholar]
  41. Jayalalitha G. Raji M. Senthil S. Hyper wiener index of molecular graph of naphthalene using domination. Int. J. Anal. Exp. Modal Anal. 2019 XI 10 126 129
    [Google Scholar]
  42. Vavrek R. Evaluation of the impact of selected weighting methods on the results of the TOPSIS technique. Int. J. Inf. Technol. Decis. Mak 2019 18 6 1821 1843 10.1142/S021962201950041X
    [Google Scholar]
  43. Nguyen H.Q. Nguyen V.T. Phan D.P. Tran Q.H. Vu N.P. Multi-criteria decision making in the PMEDM process by using MARCOS, TOPSIS, and MAIRCA methods. Appl. Sci. 2022 12 8 3720 10.3390/app12083720
    [Google Scholar]
  44. Chourabi Z. Khedher F. Babay A. Cheikhrouhou M. Multi-criteria decision making in workforce choice using AHP, WSM and WPM. J. Text. Inst. 2019 110 7 1092 1101 10.1080/00405000.2018.1541434
    [Google Scholar]
/content/journals/cos/10.2174/0115701794433844251126044007
Loading
/content/journals/cos/10.2174/0115701794433844251126044007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test