Skip to content
2000
image of Synthesis of Substituted Benzo[1, 4]oxazine Derivatives from the Reaction of Trichloroacetonitrile-nitro Compound Adduct and 2-Iodophenol

Abstract

Introduction

This study reports a rapid, efficient, and simple ultrasound-assisted protocol for the synthesis of 3-(trichloromethyl)benzo[1,4]oxazine from a one-pot cross-coupling reaction of trichloroacetonitrile-nitro compound adduct and 2-iodophenol in MeCN solvent, by using CuI (10 mol% %) as the catalyst, and KOH as the active base under ultrasonic conditions for 50 minutes at room temperature with optimal efficiency.

Methods

The reaction of nitromethane (or ethane) with trichloroacetonitrile for 10 minutes, with the addition of sodium hydride as base, led to the formation of a nitro compound-trichloroacetonitrile adduct. The reaction of the formed compound with various 2-iodophenol derivatives having electron-donating and electron-withdrawing groups in the presence of the necessary copper iodide catalyst for the coupling reaction further led to the synthesis of new 3-(trichloromethyl) benzo [1,4] oxazine derivatives.

Results

The role of ultrasound is to reduce the reaction time, increase the efficiency of product preparation, and facilitate separation.

Discussion

Considering the potential of the synthesized derivatives, which contain the CCl3 group as a leaving group, these compounds were investigated for reactions with isocyanides in MeCN. Some of the advantages of this method include the use of inexpensive, readily available starting materials and catalysts, performing the reaction at room temperature for a short time using ultrasound, easy purification, and high efficiency.

Conclusions

Finally, 19 new heterocyclic compounds from the benzo[1,4]oxazine family were synthesized in this study under ultrasonic conditions, using a simple, rapid, and efficient method.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794404882251124105618
2026-01-07
2026-01-31
Loading full text...

Full text loading...

References

  1. Zuo H. Meng L. Ghate M. Hwang K.H. Kweon Cho Y. Chandrasekhar S. Raji Reddy C. Shin D.S. Microwave-assisted one-pot synthesis of benzo[b][1,4]oxazin-3(4H)-ones via Smiles rearrangement. Tetrahedron Lett. 2008 49 23 3827 3830 10.1016/j.tetlet.2008.03.120
    [Google Scholar]
  2. Das B.C. Madhukumar A.V. Anguiano J. Mani S. Design, synthesis and biological evaluation of 2H-benzo[b][1,4] oxazine derivatives as hypoxia targeted compounds for cancer therapeutics. Bioorg. Med. Chem. Lett. 2009 19 15 4204 4206 10.1016/j.bmcl.2009.05.110 19515559
    [Google Scholar]
  3. Ilaš J. Anderluh P.Š. Dolenc M.S. Kikelj D. Recent advances in the synthesis of 2H-1,4-benzoxazin-3-(4H)-ones and 3,4-dihydro-2H-1,4-benzoxazines. Tetrahedron 2005 61 31 7325 7348 10.1016/j.tet.2005.05.037
    [Google Scholar]
  4. Mal A. Wani I.A. Goswami G. Ghorai M.K. Synthesis of Nonracemic 1,4-Benzoxazines via Ring Opening/Cyclization of Activated Aziridines with 2-Halophenols: Formal Synthesis of Levofloxacin. J. Org. Chem. 2018 83 15 7907 7918 10.1021/acs.joc.8b00788 29863870
    [Google Scholar]
  5. Kushwaha N.D. Kushwaha B. Karpoormath R. Mahlalela M.C. Shinde S.R. One-Pot, Multicomponent, Diastereoselective, Green Synthesis of 3,4-Dihydro-2 H -benzo[ b][1,4]oxazine Analogues. J. Org. Chem. 2020 85 12 8221 8229 10.1021/acs.joc.0c00463 32406237
    [Google Scholar]
  6. Hajra S. Hazra A. Abu Saleh S.K. One-Pot synthesis of enantiopure spiro[3,4-dihydrobenzo[ b][1,4]oxazine-2,3′-oxindole] via regio- and stereoselective tandem ring opening/cyclization of spiroaziridine oxindoles with bromophenols. J. Org. Chem. 2019 84 16 10412 10421 10.1021/acs.joc.9b01611 31309826
    [Google Scholar]
  7. Li X. Yang J. He Z. Huang W. Yang J. Li H. Xu L. Shi Q. Asymmetric Transfer Hydrogenation of 3‐Substituted 2 H ‐1,4‐Benzoxazines under Tethered Cp*Rh(III)‐Diamine Catalysis with Unexpected Reversal of Enantioselectivity. Adv. Synth. Catal. 2025 367 5 e202401307 10.1002/adsc.202401307
    [Google Scholar]
  8. Roy A. Duari S. Maity S. Biswas S. Mishra A.K. Biswas S. Regioselective Brønsted acid catalyzed ring opening of aziridines by phenols and thiophenols; a gateway to access functionalized indolines, indoles, benzothiazines, dihydrobenzo-thiazines, benzo-oxazines and benzochromenes. Org. Biomol. Chem. 2024 22 27 5653 5664 10.1039/D4OB00196F 38919997
    [Google Scholar]
  9. Reddy G.J. Rao K.S. Synthesis of fused heterocycles derived from 2 H -1,4-benzoxazin-3(4 H )-ones. hc 2013 19 6 387 396 10.1515/hc‑2013‑0124
    [Google Scholar]
  10. Nagavelli V.R. Nukala S.K. Narsimha S. Battula K.S. Tangeda S.J. Reddy Y.N. Synthesis, characterization and biological evaluation of 7-substituted- 4-((1-aryl-1H-1,2,3-triazol-4-yl) methyl)-2H-benzo[b][1,4]oxazin- 3(4H)-ones as anticancer agents. Med. Chem. Res. 2016 25 9 1781 1793 10.1007/s00044‑016‑1616‑9
    [Google Scholar]
  11. Sangani S.R. Yao Y. Dabhi R.C. Kawad M. Parmar J. Afzal M. Alarifi A. Sangani C.B. Kumar Ameta R. Duan Y.T. BSA/ HAS interaction and antioxidant evaluation of newly synthesized benzoxazine Derivatives: Spectrophotometric and molecular docking studies. J. Mol. Liq. 2023 389 122917 10.1016/j.molliq.2023.122917
    [Google Scholar]
  12. Sangani S.R. Dabhi R.C. Kawad M. Parmar J. Arya P.S. Chauhan R.J. Muddassir M. Christy M. Ameta R.K. Buchwald coupling promoted benign synthesis of benzoxazine derivatives supported Cu complexes with their multipurpose potential in antimicrobial and catalytical fields. J. Mol. Struct. 2023 1285 135380 10.1016/j.molstruc.2023.135380
    [Google Scholar]
  13. El Azab I.H. Khaled K.M. Synthesis and reactivity of enaminone of naphtho[b]1,4-oxazine: One pot synthesis of novel isolated and heterocycle-fused derivatives with antimicrobial and antifungal activities. Bioorg. Khim. 2015 41 4 475 490 10.7868/S0132342315040077 26615644
    [Google Scholar]
  14. Sharma R. Yadav L. Lal J. Jaiswal P.K. Mathur M. Swami A.K. Chaudhary S. Synthesis, antimicrobial activity, structure-activity relationship and cytotoxic studies of a new series of functionalized (Z)-3-(2-oxo-2-substituted ethylidene)-3,4-dihydro-2H-benzo[b][1,4]oxazin-2-ones. Bioorg. Med. Chem. Lett. 2017 27 18 4393 4398 10.1016/j.bmcl.2017.08.017 28835348
    [Google Scholar]
  15. Elavarasan S. Bhakiaraj D. Elavarasan T. Gopalakrishnan M. An efficient green procedure for synthesis of some fluorinated curcumin analogues catalyzed by calcium oxide under microwave irradiation and its antibacterial evaluation. J. Chem. 2013 2013 1 640936 10.1155/2013/640936
    [Google Scholar]
  16. Sharma V. Jaiswal P.K. Saran M. Yadav D.K. Saloni B. Mathur M. Swami A.K. Misra S. Kim M. Chaudhary S. Discovery of C-3 tethered 2-oxo-benzo[1,4]oxazines as potent antioxidants: Bio-inspired based design, synthesis, biological evaluation, cytotoxic, and in silico molecular docking studies. Front Chem. 2018 6 56 10.3389/fchem.2018.00056 29629369
    [Google Scholar]
  17. Liu C. Tan J.L. Xiao S.Y. Liao J.F. Zou G.R. Ai X.X. Chen J.B. Xiang Y. Yang Q. Zuo H. 1,4-Benzoxazine-3(4H)-ones as potent inhibitors of platelet aggregation: design, synthesis and structure-activity relations. Chem. Pharm. Bull. (Tokyo) 2014 62 9 915 920 10.1248/cpb.c14‑00330 25007750
    [Google Scholar]
  18. Siddiqui N. Ali R. Arshad M.F. Ahsan W. Ahmed S. Alam M.S. anticonvulsant and toxicity evaluation of newer 4H-benzo[1,4]oxazin-3-ones: The effect of two hydrogen bonding domains. Arch. Pharm. 2010 343 11-12 657 663 10.1002/ardp.201000098 21110342
    [Google Scholar]
  19. Mitscher L.A. Sharma P.N. Chu D.T.W. Shen L.L. Pernet A.G. Chiral DNA gyrase inhibitors. 2. Asymmetric synthesis and biological activity of the enantiomers of 9-fluoro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-2,3-dihydro-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid (ofloxacin). J. Med. Chem. 1987 30 12 2283 2286 10.1021/jm00395a017 2824776
    [Google Scholar]
  20. Hayakawa I. Atarashi S. Yokohama S. Synthesis and antibacterial activities of optically active ofloxacin. Antimicrob. Agents Chemother. 1986 29 1 163 164 10.1128/aac.29.1.163
    [Google Scholar]
  21. Bower J.F. Szeto P. Gallagher T. Enantiopure 1,4-benzoxazines via 1,2-cyclic sulfamidates. Synthesis of levofloxacin. Org. Lett. 2007 9 17 3283 3286 10.1021/ol0712475 17661473
    [Google Scholar]
  22. López-Iglesias M. Busto E. Gotor V. Gotor-Fernández V. Chemoenzymatic asymmetric synthesis of 1,4-benzoxazine derivatives: Application in the synthesis of a levofloxacin precursor. J. Org. Chem. 2015 80 8 3815 3824 10.1021/acs.joc.5b00056 25786159
    [Google Scholar]
  23. Gaonkar S.L. Nagaraj V.U. Nayak S. A review on current synthetic strategies of oxazines. Mini Rev. Org. Chem. 2018 16 1 43 58 10.2174/1570193X15666180531092843
    [Google Scholar]
  24. De S. Chowdhury C. Substrate‐controlled product divergence in iron(III)‐catalyzed reactions of propargylic alcohols: Easy access to spiro‐indenyl 1,4‐benzoxazines and 2‐(2,2‐diarylvinyl)quinoxalines. Chemistry 2023 29 13 e202203993 10.1002/chem.202203993 36651187
    [Google Scholar]
  25. Pan M. Tong Y. Qiu X. Zeng X. Xiong B. One-pot synthesis of 3-trifluoromethylbenzo[ b][1,4]oxazines from CF 3 -imidoyl sulfoxonium ylides with 2-bromophenols. Chem. Commun. 2022 58 89 12443 12446 10.1039/D2CC04863A 36278954
    [Google Scholar]
  26. Qi H. Zhao Y. Li W. Chen S. Synthesis of 1,4-benzoxazines via Y(OTf) 3 -catalyzed ring opening/annulation cascade reaction of benzoxazoles with propargylic alcohols. Chem. Commun. 2022 58 65 9120 9123 10.1039/D2CC03080B 35880715
    [Google Scholar]
  27. Sindhu T.J. Arikkatt S.D. Vincent G. Chandran M. Bhat A.R. Khrishnakumar K. Biological activities of oxazine and its derivatives: A review. IJPSR 2013 4 134 143 0975-9492
    [Google Scholar]
  28. Salehzadeh F. Esmkhani M. Noori M. Javanshir S. Iraji A. Mahdavi M. Sustainable synthesis of antibacterial 3-aryl-2H-benzo[b,1,4]oxazin-2-ones via SNAr Csp2-Csp2 coupling. Front Chem. 2024 12 1472342 10.3389/fchem.2024.1472342 39654650
    [Google Scholar]
  29. Zhang B. Huang Z. Si Y. Zhang K. Xu X. Chen J. Zhao Q. Zhang X. A new 1,4-benzoxazine derivative produced by endophytic Colletotrichum gloeosporioides B-142. Nat. Prod. Res. 2024 38 8 1341 1346 10.1080/14786419.2022.2141735 36323318
    [Google Scholar]
  30. Chowdhury C. Achari B. Mandal S. Dutta P. Perspectives on 1,4-benzodioxins, 1,4-benzoxazines and their 2,3-dihydro derivatives. Synlett 2004 2004 14 2449 2467 10.1055/s‑2004‑834816
    [Google Scholar]
  31. Zhimomi B.K. Imchen P. Phucho T. Recent advances in strategies of green synthesis of 1,3-oxazines - A brief review. Tetrahedron 2022 109 132672 10.1016/j.tet.2022.132672
    [Google Scholar]
  32. Ackermann L. Barfüßer S. Potukuchi H.K. Copper‐catalyzed n ‐arylation/hydroamin(d)ation domino synthesis of indoles and its application to the preparation of a Chek1/KDR kinase inhibitor pharmacophore. Adv. Synth. Catal. 2009 351 7-8 1064 1072 10.1002/adsc.200900004
    [Google Scholar]
  33. Lygin A.V. de Meijere A. Synthesis of 1‐substituted benzimidazoles from o ‐bromophenyl isocyanide and amines. Eur. J. Org. Chem. 2009 2009 30 5138 5141 10.1002/ejoc.200900820
    [Google Scholar]
  34. Evindar G. Batey R.A. Copper- and palladium-catalyzed intramolecular aryl guanidinylation: An efficient method for the synthesis of 2-aminobenzimidazoles. Org. Lett. 2003 5 2 133 136 10.1021/ol027061h 12529123
    [Google Scholar]
  35. Kim J. Lee S.Y. Lee J. Do Y. Chang S. Synthetic utility of ammonium salts in a Cu-catalyzed three-component reaction as a facile coupling partner. J. Org. Chem. 2008 73 23 9454 9457 10.1021/jo802014g 18956843
    [Google Scholar]
  36. Campeau L.C. Hazari N. Cross-coupling and related reactions: Connecting past success to the development of new reactions for the future. Organometallics 2019 38 1 3 35 10.1021/acs.organomet.8b00720 31741548
    [Google Scholar]
  37. Lin E. Wang J.Z. Mao E. Tsang S. Carsch K.M. Prieto Kullmer C.N. McNamee R.E. Long J.R. Le C.C. MacMillan D.W.C. Aryl acid-alcohol cross-coupling: C(sp 3)-C(sp 2) bond formation from nontraditional precursors. J. Am. Chem. Soc. 2025 147 18 14905 14914 10.1021/jacs.4c15827 40267410
    [Google Scholar]
  38. Liu H. Jian Z. Zhang M. Hao X. Mou Z. Wang H. Zhai H. Palladium-catalyzed/titanium-promoted Csp3-Csp3 coupling of two alcohols: Generation of an all-carbon quaternary center. Org. Lett. 2025 27 15 3851 3857 10.1021/acs.orglett.5c00527 40207660
    [Google Scholar]
  39. Zhang J. Yang H. Sun L. Guo Y. Zhang G. Wang R. Szostak M. Site-selective copper- N -heterocyclic carbene-catalyzed C(sp 2)-C(sp) Cross-coupling of aryl thianthrenium salts. Org. Lett. 2025 27 13 3440 3445 10.1021/acs.orglett.5c00875 40123084
    [Google Scholar]
  40. Yerbulekova A. Moshood Y. Griego L. Shafaat H.S. Mirica L.M. Spectroscopic and computational interrogation of a high-valent nickel-dialkyl complex indicates electronic structure asymmetry drives C-C bond formation reactivity. J. Am. Chem. Soc. 2025 147 9 7317 7324 10.1021/jacs.4c14104 39991977
    [Google Scholar]
  41. Jackson O.D. Reyes A. Stein C.D. Larson N.G. Andrews C.T. Neufeldt S.R. C2-selective palladium-catalyzed C-S cross-coupling of 2,4-dihalopyrimidines. J. Am. Chem. Soc. 2025 147 4 3017 3022 10.1021/jacs.4c17020 39829005
    [Google Scholar]
  42. Villalba F. Albéniz A.C. Understanding the ligand influence in the multistep reaction of diazoalkanes with palladium complexes leading to carbene-aryl coupling. Organometallics 2025 44 2 394 402 10.1021/acs.organomet.4c00439 39886028
    [Google Scholar]
  43. Schulz L. Kockmann N. Röder T. Model-based scale-up of a homogeneously catalyzed sonogashira coupling reaction in a 3D printed continuous-flow reactor. ACS Eng. Au 2024 4 6 519 523 10.1021/acsengineeringau.4c00027 39990647
    [Google Scholar]
  44. Wesenberg L.J. Sivo A. Vilé G. Noël T. Ni-Catalyzed Electro-Reductive Cross-Electrophile Couplings of Alkyl Amine-Derived Radical Precursors with Aryl Iodides. J. Org. Chem. 2024 89 22 16121 16125 10.1021/acs.joc.3c00859 37220023
    [Google Scholar]
  45. Mahjour B. Flynn K.M. Stahl S.S. Cernak T. Impact of C-H Cross-Coupling Reactions in the One-Step Retrosynthesis of Drug Molecules. J. Org. Chem. 2024 89 21 15387 15392 10.1021/acs.joc.4c01567 39401427
    [Google Scholar]
  46. Thomas G.T. Litman J.Z. Ho D.B. Huang J. Blonska K. Schley N.D. Leitch D.C. Alkene-coordinated palladium(0) cross-coupling precatalysts: Comparing oxidative addition and catalytic reactivity for dimethyl fumarate and maleic anhydride stabilizing ligands. Organometallics 2024 43 20 2413 2426 10.1021/acs.organomet.4c00065
    [Google Scholar]
  47. Dongbang S. Activation Strategies for Alkyl Precursors in Achieving C(sp 3)-C(sp 3) Cross-Coupling via Metallaphotoredox Catalysis. Organometallics 2024 43 16 1662 1681 10.1021/acs.organomet.3c00537
    [Google Scholar]
  48. Odena C. Santiago T.G. Linares M.L. Castellanos-Blanco N. McGuire R.T. Chaves-Arquero B. Alonso J.M. Diéguez-Vázquez A. Tan E. Alcázar J. Buijnsters P. Cañellas S. Martin R. Late-stage C(sp2)-C(sp3) diversification via nickel oxidative addition complexes. J. Am. Chem. Soc. 2024 146 31 21264 21270 10.1021/jacs.4c08404 39052124
    [Google Scholar]
  49. Cai Q. McWhinnie I.M. Dow N.W. Chan A.Y. MacMillan D.W.C. Engaging alkenes in metallaphotoredox: A triple catalytic, radical sorting approach to olefin-alcohol cross-coupling. J. Am. Chem. Soc. 2024 146 18 12300 12309 10.1021/jacs.4c02316 38657210
    [Google Scholar]
  50. Huang H. Alvarez-Hernandez J.L. Hazari N. Mercado B.Q. Uehling M.R. Effect of 6,6′-Substituents on Bipyridine-Ligated Ni Catalysts for Cross-Electrophile Coupling. ACS Catal. 2024 14 9 6897 6914 10.1021/acscatal.4c00827 38737398
    [Google Scholar]
  51. Fier P.S. Kim S. Transition-metal-free C-N cross-coupling enabled by a multifunctional reagent. J. Am. Chem. Soc. 2024 146 10 6476 6480 10.1021/jacs.4c00871 38437454
    [Google Scholar]
  52. Krasnyakova T.V. Nikitenko D.V. Gogil’chin A.S. Krasniakova I.O. Guda A.A. Bugaev A.L. Mitchenko S.A. Reductive cross-electrophile C(sp 2)-C(sp 3) coupling catalyzed by PtI 2: In situ structural determination of the intermediates by X-ray absorption spectroscopy and multinuclear NMR. Organometallics 2024 43 1 55 67 10.1021/acs.organomet.3c00400
    [Google Scholar]
  53. Gao M.Y. Gosmini C. Cobalt-Catalyzed Reductive Cross-Coupling To Construct Csp3-Csp3 Bonds via Csp3-S and Csp3-X Bonds Activation. Org. Lett. 2023 25 42 7689 7693 10.1021/acs.orglett.3c02993 37851934
    [Google Scholar]
  54. Chen M. Ventura A.M. Das S. Ibrahim A.F. Zimmerman P.M. Montgomery J. Oxidative Cross Dehydrogenative Coupling of N -Heterocycles with Aldehydes through C(sp3)-H Functionalization. J. Am. Chem. Soc. 2023 145 37 20176 20181 10.1021/jacs.3c06532 37672664
    [Google Scholar]
  55. Cui C.X. Peng J. Jiang J. Theoretical study on the mechanism of cobalt-catalyzed C-O silylation and stannylation. ACS Omega 2023 8 26 23791 23798 10.1021/acsomega.3c02177 37426225
    [Google Scholar]
  56. Docherty J.H. Lister T.M. Mcarthur G. Findlay M.T. Domingo-Legarda P. Kenyon J. Choudhary S. Larrosa I. Transition-Metal-Catalyzed C-H Bond Activation for the Formation of C-C Bonds in Complex Molecules. Chem. Rev. 2023 123 12 7692 7760 10.1021/acs.chemrev.2c00888 37163671
    [Google Scholar]
  57. Borowski J.E. Newman-Stonebraker S.H. Doyle A.G. Comparison of monophosphine and bisphosphine precatalysts for ni-catalyzed suzuki-miyaura cross-coupling: Understanding the role of the ligation state in catalysis. ACS Catal. 2023 13 12 7966 7977 10.1021/acscatal.3c01331 38037565
    [Google Scholar]
  58. Kiran I.N.C. Kranthikumar R. Nickel-catalyzed deaminative ketone synthesis: Coupling of alkylpyridinium salts with thiopyridine esters via C-N bond activation. Org. Lett. 2023 25 20 3623 3627 10.1021/acs.orglett.3c00943 37184214
    [Google Scholar]
  59. Karna P. Finfrock Z. Li J. Hu Y. Yang D.S. Water-soluble copper(I) hydroxide catalyst and its formation in ligand-free suzuki-miyaura cross-coupling reactions. J. Phys. Chem. C 2023 127 12 5791 5799 10.1021/acs.jpcc.3c00268
    [Google Scholar]
  60. Peterson P.O. Joannou M.V. Simmons E.M. Wisniewski S.R. Kim J. Chirik P.J. Iron-catalyzed C(sp 2)-C(sp 3) suzuki-miyaura cross-coupling using an alkoxide base. ACS Catal. 2023 13 4 2443 2448 10.1021/acscatal.2c05838
    [Google Scholar]
  61. Tsymbal A.V. Bizzini L.D. MacMillan D.W.C. Nickel catalysis via S H 2 homolytic substitution: The double decarboxylative cross-coupling of aliphatic acids. J. Am. Chem. Soc. 2022 144 46 21278 21286 10.1021/jacs.2c08989 36375080
    [Google Scholar]
  62. Yang S. Li H. Yu X. An J. Szostak M. Suzuki-miyaura cross-coupling of aryl fluorosulfonates mediated by air- and moisture-stable [Pd(NHC)(μ-Cl)Cl] 2 precatalysts: Broad platform for c-o cross-coupling of stable phenolic electrophiles. J. Org. Chem. 2022 87 22 15250 15260 10.1021/acs.joc.2c01778 36305513
    [Google Scholar]
  63. Xu G. Gao P. Colacot T.G. Tunable unsymmetrical ferrocene ligands bearing a bulky Di-1-adamantylphosphino motif for many kinds of Csp2-Csp3 couplings. ACS Catal. 2022 12 5123 5135 10.1021/acscatal.2c00352
    [Google Scholar]
  64. Dow N.W. Pedersen P.S. Chen T.Q. Blakemore D.C. Dechert-Schmitt A.M. Knauber T. MacMillan D.W.C. Decarboxylative borylation and cross-coupling of (hetero)aryl acids enabled by copper charge transfer catalysis. J. Am. Chem. Soc. 2022 144 14 6163 6172 10.1021/jacs.2c01630 35377627
    [Google Scholar]
  65. Zhao X. Zhang D. Wang X. Unraveling the mechanism of palladium-catalyzed base-free cross-coupling of vinyl carboxylates: Dual role of arylboronic acids as a reducing agent and a coupling partner. ACS Catal. 2022 12 3 1809 1817 10.1021/acscatal.1c00247
    [Google Scholar]
  66. Zhang Z. Górski B. Leonori D. Merging Halogen-Atom Transfer (XAT) and copper catalysis for the modular suzuki-miyaura-type cross-coupling of alkyl iodides and organoborons. J. Am. Chem. Soc. 2022 144 4 1986 1992 10.1021/jacs.1c12649 35061390
    [Google Scholar]
  67. Boudreault P.L.T. Esteruelas M.A. Mora E. Oñate E. Tsai J.Y. Bromination and C-C cross-coupling reactions for the C-H functionalization of iridium(III) emitters. Organometallics 2021 40 18 3211 3222 10.1021/acs.organomet.1c00408
    [Google Scholar]
  68. Fostvedt J.I. Boreen M.A. Bergman R.G. Arnold J. A diverse array of C-C bonds formed at a tantalum metal center. Inorg. Chem. 2021 60 13 9912 9931 10.1021/acs.inorgchem.1c01159 34125521
    [Google Scholar]
  69. So C.M. Yuen O.Y. Ng S.S. Chen Z. General chemoselective suzuki-miyaura coupling of polyhalogenated aryl triflates enabled by an alkyl-heteroaryl-based phosphine ligand. ACS Catal. 2021 11 13 7820 7827 10.1021/acscatal.1c02146
    [Google Scholar]
  70. Ludwig J.R. Simmons E.M. Wisniewski S.R. Chirik P.J. Cobalt-Catalyzed C(sp 2)-C(sp 3) Suzuki-Miyaura Cross Coupling. Org. Lett. 2021 23 3 625 630 10.1021/acs.orglett.0c02934 32996312
    [Google Scholar]
  71. Golding W.A. Schmitt H.L. Phipps R.J. Systematic variation of ligand and cation parameters enables site-selective C-C and C-N cross-coupling of multiply chlorinated arenes through substrate-ligand electrostatic interactions. J. Am. Chem. Soc. 2020 142 52 21891 21898 10.1021/jacs.0c11056 33332114
    [Google Scholar]
  72. Charboneau D.J. Barth E.L. Hazari N. Uehling M.R. Zultanski S.L. A widely applicable dual catalytic system for cross-electrophile coupling enabled by mechanistic studies. ACS Catal. 2020 10 21 12642 12656 10.1021/acscatal.0c03237 33628617
    [Google Scholar]
  73. Yavari I. Nematpour M. Damghani T. Copper-catalyzed S-arylation of tetramethylguanidine-heterocumulene adducts. Tetrahedron Lett. 2014 55 7 1323 1325 10.1016/j.tetlet.2014.01.006
    [Google Scholar]
  74. Yavari I. Nematpour M. Copper‐catalyzed n ‐arylation of 1,1,3,3‐tetramethylguanidine-phenyl isocyanate adduct. Helv. Chim. Acta 2014 97 8 1132 1135 10.1002/hlca.201300418
    [Google Scholar]
  75. Seyed-Talebi S.M. Kazeminezhad I. Nematpour M. Synthesis and characterization of Ag@Carbon core-shell spheres as a novel catalyst for room temperature N-arylation reaction. J. Catal. 2018 361 339 346 10.1016/j.jcat.2018.02.029
    [Google Scholar]
  76. Nematpour M. Synthesis of substituted 2-aminobenzoxazoles via copper-catalyzed intramolecular N-arylation of iodophenol and amine-trichloroacetonitrile adduct under ultrasound-irradiation. Tetrahedron 2024 163 134145 10.1016/j.tet.2024.134145
    [Google Scholar]
  77. Nematpour M. Ultrasonic assisted Cu‐catalyzed intermolecular O ‐arylation of N ‐hydroxyimidoyl chloride and 2‐iodophenol: New substituted benzo[1,4,2]dioxazine derivatives. J. Heterocycl. Chem. 2025 62 2 192 201 10.1002/jhet.4930
    [Google Scholar]
  78. Nematpour M. New synthesis of substituted quinoxaline derivatives from the Cu-catalyzed reactions of 2-iodoaniline and trichloroacetonitrile-nitro compound adducts. Monatsh. Chem. 2025 156 875 884 10.1007/s00706‑025‑03347‑z
    [Google Scholar]
  79. Yavari I. Ghazanfarpour-Darjani M. Nematpour M. Copper-catalyzed tandem synthesis of 2-(sulfonylimino)alkanamides from N-sulfonylketenimines and alkyl isocyanides. Tetrahedron Lett. 2015 56 19 2416 2417 10.1016/j.tetlet.2015.03.050
    [Google Scholar]
/content/journals/cos/10.2174/0115701794404882251124105618
Loading
/content/journals/cos/10.2174/0115701794404882251124105618
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test