Skip to content
2000
image of Recent Advances in Synthetic Strategies and Agrochemical Activities of Isoxazoline Derivatives

Abstract

Isoxazoline derivatives have garnered significant attention in recent years due to their versatile chemical structures and broad-spectrum biological activities, and various isoxazoline derivatives have been explored as promising fungicides, insecticides, and herbicides. The exploration of isoxazoline derivatives has become a focal point in pesticide research. Based on findings of different researchers working on synthesis and agrochemical activity evaluation of isoxazoline derivatives, this review will comprehensively summarize the recent advances on the synthetic strategies such as cycloaddition and asymmetric dearomatization, as well as the antifungal, insecticidal, and herbicidal activities of isoxazoline derivatives over the past five years. The future development perspectives of isoxazoline derivatives as environmentally friendly agrochemicals will be provided. This review aims to offer a comprehensive understanding of the application potential of isoxazoline derivatives in modern agriculture and to inspire further research in this field, and we believe the continuous exploration and development of isoxazoline derivatives will be expected to make significant contributions to the advancement of innovative and eco-friendly agrochemicals.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794396676251017152816
2026-01-09
2026-01-31
Loading full text...

Full text loading...

References

  1. Gonçalves I.L. Machado das Neves, G.; Porto Kagami, L.; Eifler-Lima, V.L.; Merlo, A.A. Discovery, development, chemical diversity and design of isoxazoline-based insecticides. Bioorg. Med. Chem. 2021 30 115934 10.1016/j.bmc.2020.115934 33360575
    [Google Scholar]
  2. Kong L.J. Cao X.Y. Sun N.B. Min L.J. Duke S.O. Wu H.K. Zhang L.Q. Liu X.H. Isoxazoline: An emerging scaffold in pesticide discovery. J. Agric. Food Chem. 2025 73 15 8678 8693 10.1021/acs.jafc.4c09612 40176756
    [Google Scholar]
  3. Myakala N. Thumma V. Kandula K. Rayala N. Boddu L.S. Anagani K.D.B. Screening for antimicrobial and antioxidant activities of quinazolinone based isoxazole and isoxazoline derivatives, synthesis and In silico studies. Mol. Divers. 2024 10.1007/s11030‑024‑11032‑2 39487898
    [Google Scholar]
  4. Song H. Li Y. Zhang J. Wang Z. Liu Y. Wang Q. Research progress of isoxazoline insecticides. Curr. Org. Synth. 2024 22 10.2174/0115701794353877241213051959
    [Google Scholar]
  5. Yan Y. Bao A. Li M. Xie X. Li W. Zhang X. Highly enantioselective [3+2] annulation of 4-amino-isoxazoles with quinone monoimines to access structurally diverse isoxazoline fused dihydrobenzofurans and antifungal evaluation. J. Mol. Struct. 2023 1294 136277 10.1016/j.molstruc.2023.136277
    [Google Scholar]
  6. Zhang C. Yuan H. Hu Y. Li X. Gao Y. Ma Z. Lei P. Structural diversity design, synthesis, and insecticidal activity analysis of ester-containing isoxazoline derivatives acting on the GABA receptor. J. Agric. Food Chem. 2023 71 7 3184 3191 10.1021/acs.jafc.2c07910 36757129
    [Google Scholar]
  7. Liu B. Peng Q. Sheng M. Ni H. Xiao X. Tao Q. He Q. He J. Isolation and characterization of a topramezone-resistant 4-hydroxyphenylpyruvate dioxygenase from sphingobium sp. TPM-19. J. Agric. Food Chem. 2020 68 4 1022 1029 10.1021/acs.jafc.9b06871 31884791
    [Google Scholar]
  8. Liang X. Su W. Chang A.K. Zhuang C. Pei Y. Ai J. Li H. Liu K. Li J. Fu H. Liu Y. Liu W. Zhang X. Toxicokinetics of two oxathiapiprolin enantiomers in rats and their stereoselective interaction with oxysterol binding protein. J. Agric. Food Chem. 2022 70 38 12180 12188 10.1021/acs.jafc.2c02882 36121774
    [Google Scholar]
  9. Peppers J.M. Hwang K.H. Koo S.J. Askew S.D. Dissipation of spring-applied methiozolin in turfgrass systems. Weed Sci. 2024 72 3 296 304 10.1017/wsc.2024.16
    [Google Scholar]
  10. Li Y. Wang Y. Qian C. Tang T. Shen N. Wu W. Wang J. Han Z. Zhao C. Lethal and sublethal effects of fluxametamide on rice-boring pest, rice stem borer Chilo suppressalis. Agronomy 2022 12 10 2429 10.3390/agronomy12102429
    [Google Scholar]
  11. Jiang B. Feng D. Shi J. Wu W. Dong Y. Ren H. Design, synthesis, and insecticidal activity of isoxazoline derivatives incorporating an acylhydrazine moiety. J. Agric. Food Chem. 2024 72 38 20974 20980 10.1021/acs.jafc.4c04005 39283195
    [Google Scholar]
  12. Mermans C. Dermauw W. Geibel S. Van Leeuwen T. Activity, selection response and molecular mode of action of the isoxazoline afoxolaner in Tetranychus urticae. Pest Manag. Sci. 2023 79 1 183 193 10.1002/ps.7187 36116012
    [Google Scholar]
  13. Soré H. Guelbeogo W.M. Zongo S. Bolscher J.M. Ouédraogo N. Gansané A. Bousema T. Collins K.A. Dechering K.J. The mosquitocidal activity of isoxazoline derivatives afoxolaner, lotilaner, and fluralaner are not affected by mosquito sugar or antibiotic treatment. Sci. Rep. 2025 15 1 11830 10.1038/s41598‑025‑90990‑5 40195356
    [Google Scholar]
  14. Fang Z.B. Xiao Y.F. Sun C. Chen X. Zhou L. Chen L. Lu Q. Xiao W.D. Wu S.T. Solubility, crystallization process optimization, and thermal properties of afoxolaner and the single-crystal structure of its hydrate. CrystEngComm 2025 27 6 795 800 10.1039/D4CE00975D
    [Google Scholar]
  15. Hendrickx E. Geurden T. Marsboom C. Model development to assess the impact of a preventive treatment with sarolaner and moxidectin on Dirofilaria immitis infection dynamics in dogs. Parasit. Vectors 2025 18 1 102 10.1186/s13071‑025‑06734‑x 40075468
    [Google Scholar]
  16. Sharma A. Sharma P.K. Kompella U.B. Lotilaner for demodex blepharitis: The journey from veterinary use to human medicine. J. Ocul. Pharmacol. Ther. 2025 41 4 173 186 10.1089/jop.2024.0145 40080410
    [Google Scholar]
  17. Cheng S. Tao K. Lv X. Lai Z. Lv Y. Wang Z. Chen Q. The discovery of oxathiapiprolin as a potential agent for the control of litchi downy blight caused by peronophythora litchii and the study of its mechanism of action. J. Agric. Food Chem. 2025 73 1 329 341 10.1021/acs.jafc.4c09639 39680642
    [Google Scholar]
  18. Panda K.C. Varaha Bera R.K.V. Sahoo B.M. Swain P. Green chemistry approach for the synthesis of isoxazole derivatives and evaluation of their anti-epileptic activity. Curr. Drug Discov. Technol. 2023 20 3 e150223213697 10.2174/1570163820666230215125043 36790007
    [Google Scholar]
  19. Shanbhag G. Naik M. Wagh D. Autkar S. Hagalavadi M.V. Wachendorff U. Pabba J. Klausener A. Synthesis and antifungal activity of novel piperidinyl thiazole derivatives. Pest Manag. Sci. 2025 81 5 2566 2578 10.1002/ps.8431 39320143
    [Google Scholar]
  20. Wright A.A. Spaunhorst D.J. Petrie E. Evaluation of spring herbicide programs during a three-year sugarcane (Saccharum spp. hybrids) cropping cycle. Weed Technol. 2025 39 e44 e44 10.1017/wet.2025.7
    [Google Scholar]
  21. Hou X. Gauthier J.R. Nair P. Fahy W.D. Peng H. Mabury S.A. New sources of very persistent and very mobile (vPvM) substances: A case study of the fluorinated herbicide pyroxasulfone. Environ. Sci. Technol. 2025 59 14 7288 7296 10.1021/acs.est.4c13346 40178808
    [Google Scholar]
  22. Mi-ichi F. Tsugawa H. Vo T.K. Kurizaki Y. Yoshida H. Arita M. Characterization of Entamoeba fatty acid elongases; validation as targets and provision of promising leads for new drugs against amebiasis. PLoS Pathog. 2024 20 8 e1012435 10.1371/journal.ppat.1012435 39172749
    [Google Scholar]
  23. Peppers J.M. McElroy J.S. Orlinski P.M. Baird J. Petelewicz P. Joseph M.M. Sierra-Augustinus I.A. Schiavon M. Askew S.D. Methiozolin rate and application frequency influence goosegrass (Eleusine indica) and smooth crabgrass (Digitaria ischaemum) control in turf. Weed Technol. 2024 38 e24 e24 10.1017/wet.2024.5
    [Google Scholar]
  24. Nakamura Y. Linden M. Winter J. Hofmann S. Shida N. Atobe M. Waldvogel S.R. Biphasic electrosynthesis of 2-isoxazol(in)e-3-carboxylates: Reaction optimization from milligram to hectogram scale. 2024 12(30), 11369-11376 30 11369 11376 10.1021/acssuschemeng.4c03621
  25. Wang X. Hu, Q.; Tang, H.; Pan, X. H., P.X. Isoxazole/isoxazoline skeleton in the structural modification of natural products: A review. Pharmaceuticals 2023 16 2 228 10.3390/ph16020228 37259376
    [Google Scholar]
  26. Mellaoui M.D. Zaki K. Abbiche K. Imjjad A. Boutiddar R. Sbai A. Jmiai A. Issami S.E. Lamsabhi A.M. Zejli H. In silico anticancer activity of isoxazolidine and isoxazolines derivatives: DFT study, ADMET prediction, and molecular docking. J. Mol. Struct. 2024 1308 138330 10.1016/j.molstruc.2024.138330
    [Google Scholar]
  27. Zhi X.Y. Shi H.C. Yuan X. He M.T. Li H.W. Guo Y.Q. Cao H. Yang C. Natural biphenyl-type neolignans as resources of pesticide candidates: Assembly, insecticidal potency, and cytotoxicity of honokiol/magnolol analogues of isoxazoline hybridization via [3 + 2] dipolar cycloaddition. J. Agric. Food Chem. 2025 73 7 3930 3941 10.1021/acs.jafc.4c09830 39912347
    [Google Scholar]
  28. Fershtat L.L. Teslenko F.E. Five-membered hetarene n-oxides: Recent advances in synthesis and reactivity. Synthesis 2021 53 20 3673 3682 10.1055/a‑1529‑7678
    [Google Scholar]
  29. Zhou X. Hohman A.E. Hsu W.H. Current review of isoxazoline ectoparasiticides used in veterinary medicine. J. Vet. Pharmacol. Ther. 2022 45 1 1 15 10.1111/jvp.12959 33733534
    [Google Scholar]
  30. Mu Y-l. Hu X-t. Ma Z-q. Lei P. Research progress on biological activities of isoxazolines. Agrochemicals 2019 58 12 864 869
    [Google Scholar]
  31. Wang Y. Wang C. Tian Q. Li Y. Recent research progress in oxime insecticides and perspectives for the future. J. Agric. Food Chem. 2024 72 27 15077 15091 10.1021/acs.jafc.4c02096 38920088
    [Google Scholar]
  32. Gülten Ş. Synthesis of fused six-membered lactams to isoxazole and isoxazoline by sequential ugi four-component reaction and intramolecular nitrile oxide cyclization. J. Chem. Educ. 2020 97 10 3839 3846 10.1021/acs.jchemed.9b01169
    [Google Scholar]
  33. Chalkha M. Nour H. Chebbac K. Nakkabi A. Bahsis L. Bakhouch M. Akhazzane M. Bourass M. Chtita S. Bin Jardan Y.A. Augustyniak M. Bourhia M. Aboul-Soud M.A.M. El Yazidi M. Synthesis, characterization, DFT mechanistic study, antimicrobial activity, molecular modeling, and ADMET properties of novel pyrazole-isoxazoline hybrids. ACS Omega 2022 7 50 46731 46744 10.1021/acsomega.2c05788 36570248
    [Google Scholar]
  34. Pandhurnekar C.P. Pandhurnekar H.C. Mungole A.J. Butoliya S.S. Yadao B.G. A review of recent synthetic strategies and biological activities of isoxazole. J. Heterocycl. Chem. 2023 60 4 537 565 10.1002/jhet.4586
    [Google Scholar]
  35. Huisgen R. 1,3-dipolar cycloadditions. Proc. Chem. Soc. 1961 357 369
    [Google Scholar]
  36. Yan Y. Bao A. Wang Y. Xie X. Wang D. Deng Z. Wang X. Cheng W. Li W. Zhang X. Tang X. Design, synthesis, antifungal activity, and molecular docking studies of novel chiral isoxazoline-benzofuran-sulfonamide derivatives. J. Agric. Food. Chem. 2024 72 acs.jafc.3c05730 10.1021/acs.jafc.3c05730 38619015
    [Google Scholar]
  37. Iwasaki M. Ikemoto Y. Nishihara Y. Synthesis of 2-isoxazoline n-oxides by copper-mediated radical annulation of alkenes with α-nitrobenzyl bromides. Org. Lett. 2020 22 19 7577 7580 10.1021/acs.orglett.0c02781 32936646
    [Google Scholar]
  38. Huang S. Zhu B. Wang K. Yu M. Wang Z. Li Y. Liu Y. Zhang P. Li S. Li Y. Liu A. Wang Q. Design, synthesis, and insecticidal and fungicidal activities of quaternary ammonium salt derivatives of a triazolyphenyl isoxazoline insecticide. Pest Manag. Sci. 2022 78 5 2011 2021 10.1002/ps.6824 35118797
    [Google Scholar]
  39. Yang S. Tang J. Li B. Yao G. Peng H. Pu C. Zhao C. Xu H. Rational design of insecticidal isoxazolines containing sulfonamide or sulfinamide structure as antagonists of gaba receptors with reduced toxicities to honeybee and zebrafish. J. Agric. Food Chem. 2023 71 39 14211 14220 10.1021/acs.jafc.3c03459 37737111
    [Google Scholar]
  40. Huang S. Ma H. Wang Z. Zhang P. Li S. Li Y. Liu A. Li Y. Liu Y. Wang Q. Design, synthesis, and insecticidal and fungicidal activities of ether/oxime-ether containing isoxazoline derivatives. J. Agric. Food Chem. 2023 71 13 5107 5116 10.1021/acs.jafc.2c08161 36947168
    [Google Scholar]
  41. Mallick S. Baidya M. Mahanty K. Maiti D. De Sarkar S. Electrochemical chalcogenation of β,γ-unsaturated amides and oximes to corresponding oxazolines and isoxazolines. Adv. Synth. Catal. 2020 362 5 1046 1052 10.1002/adsc.201901262
    [Google Scholar]
  42. Gao W. Li B. Zong L. Yu L. Li X. Li Q. Zhang X. Zhang S. Xu K. Electrochemical tandem cyclization of unsaturated oximes with diselenides: A general approach to seleno isoxazolines derivatives with quaternary carbon center. Eur. J. Org. Chem. 2021 2021 17 2431 2435 10.1002/ejoc.202100294
    [Google Scholar]
  43. Wu X.B. Gao Q. Fan J.J. Zhao Z.Y. Tu X.Q. Cao H.Q. Yu J. Anionic chiral Co(III) complexes mediated asymmetric halocyclization horizontal line synthesis of 5-halomethyl pyrazolines and isoxazolines. Org. Lett. 2021 23 23 9134 9139 10.1021/acs.orglett.1c03456 34812643
    [Google Scholar]
  44. Safaei-Ghomi J. Ghasemzadeh A. Synthesis of some 3,5-diarylisoxazoline derivatives in ionic liquids media. J. Serb. Chem. Soc. 2012 77 6 733 739 10.2298/JSC110831001S
    [Google Scholar]
  45. Saber A. Driowya M. Alaoui S. Marzag H. Demange L. Álvarez E. Benhida R. Bougrin K. Solvent-free regioselective synthesis of novel isoxazoline and pyrazoline n-substituted saccharin derivatives under microwave irradiation. Chem. Heterocycl. Compd. 2016 52 1 31 40 10.1007/s10593‑016‑1828‑4
    [Google Scholar]
  46. Latrache M. Lefebvre C. Abe M. Hoffmann N. Photochemically induced hydrogen atom transfer and intramolecular radical cyclization reactions with oxazolones. J. Org. Chem. 2023 88 23 16435 16455 10.1021/acs.joc.3c01951 37983612
    [Google Scholar]
  47. Toker J.D. Tremblay M.R. Yli-Kauhaluoma J. Wentworth A.D. Zhou B. Wentworth P. Janda K.D. Exploring the scope of the 29G12 antibody catalyzed 1,3-dipolar cycloaddition reaction. J. Org. Chem. 2005 70 20 7810 7815 10.1021/jo050410b 16277300
    [Google Scholar]
  48. Chen R. Zhao Y. Fang S. Long W. Sun H. Wan X. Coupling reaction of Cu-based carbene and nitroso radical: A tandem reaction to construct isoxazolines. Org. Lett. 2017 19 21 5896 5899 10.1021/acs.orglett.7b02885 29035056
    [Google Scholar]
  49. Zhao C. Shah B.H. Khan I. Kan Y. Zhang Y.J. Enantioselective synthesis of isoxazoline N-oxides via Pd-catalyzed asymmetric allylic cycloaddition of nitro-containing allylic carbonates. Org. Lett. 2019 21 22 9045 9049 10.1021/acs.orglett.9b03443 31697086
    [Google Scholar]
  50. Pal G. Paul S. Ghosh P.P. Das A.R. PhIO promoted synthesis of nitrile imines and nitrile oxides within a micellar core in aqueous media: A regiocontrolled approach to synthesizing densely functionalized pyrazole and isoxazoline derivatives. RSC Advances 2014 4 16 8300 8307 10.1039/c3ra46129g
    [Google Scholar]
  51. Zhang Q. Sun J. Zhang F. Yu B. Synthesis of sugar-fused isoxazoline n-oxides from 2-nitroglycals. Eur. J. Org. Chem. 2010 2010 19 3579 3582 10.1002/ejoc.201000397
    [Google Scholar]
  52. Merja B. Joshi A. Parikh K. Parikh A. Synthesis and biological evaluation of pyrido[1,2-a] pyrimidine and isoxazoline derivatives. Indian J. Chem. Sect. B 2004 43 4 909 912
    [Google Scholar]
  53. Chakraborty B. Chhetri E. Green chemistry strategy for the synthesis of functionalized new heterocycles and their anticancer activities. Indian J. Heterocycl. Chem. 2019 29 4 345 352
    [Google Scholar]
  54. Pennicott L. Lindell S. The preparation of 2-isoxazolines from O-propargylic hydroxylamines via a tandem rearrangement-cyclisation reaction. Synlett 2006 3 463 465
    [Google Scholar]
  55. Mboup M.K. Sweigard J.W. Carroll A. Jaworska G. Genet J.L. Genetic mechanism, baseline sensitivity and risk of resistance to oxathiapiprolin in oomycetes. Pest Manag. Sci. 2022 78 3 905 913 10.1002/ps.6700 34716648
    [Google Scholar]
  56. Cohen Y. The novel oomycide oxathiapiprolin inhibits all stages in the asexual life cycle of pseudoperonospora cubensis-causal agent of cucurbit downy mildew. PLoS One 2015 10 10 e0140015 10.1371/journal.pone.0140015 26452052
    [Google Scholar]
  57. Li C. Tian S. Fu Y. Li Y. Miao J. Peng Q. Liu X. Activity of OSBPI fungicide fluoxapiprolin against plant-pathogenic oomycetes and its systemic translocation in plants. Pestic. Biochem. Physiol. 2024 204 106085 10.1016/j.pestbp.2024.106085 39277398
    [Google Scholar]
  58. Unger T.A. Drazoxolon. Pesticide Synthesis Handbook. In: William Andrew 1996 464
    [Google Scholar]
  59. Zhou L.M. Yang J.F. Li H.H. Chen W. Li Y.W. Zhu X.L. Yang G.F. Discovery of novel oxathiapiprolin derivatives as potent fungicide candidates. J. Agric. Food Chem. 2024 72 31 17649 17657 10.1021/acs.jafc.4c03971 39047266
    [Google Scholar]
  60. Sheng C.W. Huang Q.T. Liu G.Y. Ren X.X. Jiang J. Jia Z.Q. Han Z.J. Zhao C.Q. Neurotoxicity and mode of action of fluralaner on honeybee Apis mellifera L. Pest Manag. Sci. 2019 75 11 2901 2909 10.1002/ps.5483 31081291
    [Google Scholar]
  61. Kono M. Ozoe F. Asahi M. Ozoe Y. State-dependent inhibition of GABA receptor channels by the ectoparasiticide fluralaner. Pestic. Biochem. Physiol. 2022 181 105008 10.1016/j.pestbp.2021.105008 35082031
    [Google Scholar]
  62. Asahi M. Yamato K. Ozoe F. Ozoe Y. External amino acid residues of insect GABA receptor channels dictate the action of the isoxazoline ectoparasiticide fluralaner. Pest Manag. Sci. 2023 79 10 4078 4082 10.1002/ps.7606 37288963
    [Google Scholar]
  63. Sioutas G. Papadopoulos E. Madder M. Beugnet F. Tielemans E. Efficacy of afoxolaner or the combination of afoxolaner with milbemycin oxime against Otodectes cynotis in naturally infested dogs. Vet. Parasitol. 2024 326 110108 10.1016/j.vetpar.2023.110108 38154391
    [Google Scholar]
  64. Padivitage N. Adhikari S. Rustum A.M. Assay of afoxolaner and determination of its related substances in commercial bulk batches of afoxolaner by reversed-phase HPLC method based on a short octadecyl column. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021 1184 122984 10.1016/j.jchromb.2021.122984 34644667
    [Google Scholar]
  65. McTier T.L. Chubb N. Curtis M.P. Hedges L. Inskeep G.A. Knauer C.S. Menon S. Mills B. Pullins A. Zinser E. Woods D.J. Meeus P. Discovery of sarolaner: A novel, orally administered, broad-spectrum, isoxazoline ectoparasiticide for dogs. Vet. Parasitol. 2016 222 3 11 10.1016/j.vetpar.2016.02.019 26961590
    [Google Scholar]
  66. Cavalleri D. Murphy M. Seewald W. Drake J. Nanchen S. Assessment of the onset of lotilaner (Credelio™) speed of kill of fleas on dogs. Parasit. Vectors 2017 10 1 521 10.1186/s13071‑017‑2474‑0 29089066
    [Google Scholar]
  67. Gupta A.K. Mann A. Vincent K. Abramovits W. XdemvyTM (Lotilaner Ophthalmic Solution) 0.25% topical solution for the treatment of Demodex blepharitis. Skinmed 2024 22 1 61 66 38494618
    [Google Scholar]
  68. Gope A. Chakraborty G. Ghosh S.M. Sau S. Mondal K. Biswas A. Sarkar S. Sarkar P.K. Roy D. Toxicity and sublethal effects of fluxametamide on the key biological parameters and life history traits of diamondback moth plutella xylostella (L.). Agronomy 2022 12 7 1656 10.3390/agronomy12071656
    [Google Scholar]
  69. Roy D. Sau S. Adhikary S. Biswas A. Biswas S. Chakraborty G. Sarkar P.K. Resistance risk assessment in diamondback moth, Plutella xylostella (L.) to fluxametamide. Crop Prot. 2023 163 106101 10.1016/j.cropro.2022.106101
    [Google Scholar]
  70. Asahi M. Kobayashi M. Kagami T. Nakahira K. Furukawa Y. Ozoe Y. Fluxametamide: A novel isoxazoline insecticide that acts via distinctive antagonism of insect ligand-gated chloride channels. Pestic. Biochem. Physiol. 2018 151 67 72 10.1016/j.pestbp.2018.02.002 30704715
    [Google Scholar]
  71. Bernal C.C. Vesga L.C. Mendez-Sánchez S.C. Romero Bohórquez A.R. Synthesis and anticancer activity of new tetrahydroquinoline hybrid derivatives tethered to isoxazoline moiety. Med. Chem. Res. 2020 29 4 675 689 10.1007/s00044‑020‑02513‑8
    [Google Scholar]
  72. Blythe J. Earley F.G.P. Piekarska-Hack K. Firth L. Bristow J. Hirst E.A. Goodchild J.A. Hillesheim E. Crossthwaite A.J. The mode of action of isocycloseram: A novel isoxazoline insecticide. Pestic. Biochem. Physiol. 2022 187 105217 10.1016/j.pestbp.2022.105217 36127059
    [Google Scholar]
  73. Xu H. Zhang K. Lv M. Hao M. Construction of cholesterol oxime ether derivatives containing isoxazoline/isoxazole fragments and their agricultural bioactive properties/control efficiency. J. Agric. Food Chem. 2021 69 29 8098 8109 10.1021/acs.jafc.1c01884 34278787
    [Google Scholar]
  74. Liu Z. Han M. Yan X. Cheng W. Tang Z. Cui L. Yang R. Guo Y. Design, synthesis, and biological evaluation of novel osthole-based isoxazoline derivatives as insecticide candidates. J. Agric. Food Chem. 2022 70 26 7921 7928 10.1021/acs.jafc.2c01925 35731949
    [Google Scholar]
  75. Shan X. Lv M. Wang J. Qin Y. Xu H. Acaricidal and insecticidal efficacy of new esters derivatives of a natural coumarin osthole. Ind. Crops Prod. 2022 182 114855 10.1016/j.indcrop.2022.114855
    [Google Scholar]
  76. Jiang B. Li F. Feng D. Wei W. Luo Y. He S. Dong Y. Hu D. Discovery of novel isoxazoline compounds that incorporate a para-diamide moiety as potential insecticidal agents against fall armyworm (Spodoptera frugiperda). J. Agric. Food Chem. 2023 71 14 5516 5524 10.1021/acs.jafc.3c00351 37000156
    [Google Scholar]
  77. Jiang B. Feng D. Li F. Luo Y. He S. Dong Y. Hu D. Design, synthesis, and insecticidal activity of novel isoxazoline compounds that contain meta-diamides against fall armyworm (Spodoptera frugiperda). J. Agric. Food Chem. 2023 71 2 1091 1099 10.1021/acs.jafc.2c07035 36599080
    [Google Scholar]
  78. Li Y. Zhang W. Wu Z. Song B. Song R. Design, synthesis, and insecticidal activity of novel isoxazoline diacylhydrazine compounds as GABA receptor inhibitors. J. Agric. Food Chem. 2023 71 17 6561 6569 10.1021/acs.jafc.2c08880 37075263
    [Google Scholar]
  79. Feng D. Wu S. Jiang B. He S. Luo Y. Li F. Song B. Song R. Discovery of novel isoxazoline derivatives containing diaryl ether against fall armyworms. J. Agric. Food Chem. 2023 71 18 6859 6870 10.1021/acs.jafc.3c00824 37126004
    [Google Scholar]
  80. Li F. Jiang B. Luo Y. He S. Feng D. Hu D. Song R. Discovery of a novel class of acylthiourea-containing isoxazoline insecticides against Plutella xylostella. Molecules 2023 28 8 3300 10.3390/molecules28083300 37110534
    [Google Scholar]
  81. Cai D. Zhang J. Wu S. Zhang L. Ma Q. Wu Z. Song B. Song R. Design, synthesis, and insecticidal activity of mesoionic pyrido[1,2-a]pyrimidinone containing isoxazole/isoxazoline moiety as a potential insecticide. J. Agric. Food Chem. 2023 71 22 8381 8390 10.1021/acs.jafc.3c01132 37218999
    [Google Scholar]
  82. Zhong L.K. Sun X.P. Han L. Tan C.X. Weng J.Q. Xu T.M. Shi J.J. Liu X.H. Design, synthesis, insecticidal activity, and SAR of aryl isoxazoline derivatives containing pyrazole-5-carboxamide motif. J. Agric. Food Chem. 2023 71 40 14458 14470 10.1021/acs.jafc.3c01608 37782011
    [Google Scholar]
  83. El Mahmoudi A. Fegrouche R. Tachallait H. Lumaret J.P. Arshad S. Karrouchi K. Bougrin K. Green synthesis, characterization, and biochemical impacts of new bioactive isoxazoline‐sulfonamides as potential insecticidal agents against the Sphodroxia maroccana Ley. Pest Manag. Sci. 2023 79 12 4847 4857 10.1002/ps.7686 37500586
    [Google Scholar]
  84. Li Y. Li S. Yin X. Liu S. Design, synthesis and insecticidal activity of novel Isoxazoline Acylhydrazone compounds. Pest Manag. Sci. 2024 80 3 1654 1662 10.1002/ps.7897 37985394
    [Google Scholar]
  85. Song X. Wang H. Gao Y. Xu K. Sun Z. Zhao C. Yao G. Xu H. Design, synthesis, and evaluation of novel isoxazoline derivatives containing 2-phenyloxazoline moieties as potential insecticides. Pestic. Biochem. Physiol. 2024 204 106109 10.1016/j.pestbp.2024.106109 39277414
    [Google Scholar]
  86. Gao Y.C. Song X. Jia T. Zhao C. Yao G. Xu H. Discovery of new N-Phenylamide Isoxazoline derivatives with high insecticidal activity and reduced honeybee toxicity. Pestic. Biochem. Physiol. 2024 200 105843 10.1016/j.pestbp.2024.105843 38582603
    [Google Scholar]
  87. Wen H. Du J. Wang Y. Lv M. Ding H. Liu H. Xu H. Construction and single-crystal structures of N-isoxazolin-5-ylcarbonylindole derivatives, and their pesticidal activities and toxicology study. J. Agric. Food Chem. 2024 72 13 6913 6920 10.1021/acs.jafc.3c07015 38517181
    [Google Scholar]
  88. Xu J. Dou Z. Zuo S. Lv M. Wang Y. Hao M. Chen L. Xu H. Semi-preparation and X-ray single-crystal structures of sophocarpine-based isoxazoline derivatives and their pesticidal effects and toxicology study. J. Agric. Food Chem. 2024 72 44 24198 24206 10.1021/acs.jafc.3c08101 39460697
    [Google Scholar]
  89. Wang Y. Lv M. Gu S. Hao C. Zhou Y. Chen L. Xu H. Synthesis and pesticidal activities of ester derivatives of the labdane diterpenoid andrographolide at the C-3 position containing the isoxazoline fragment and their toxicology study against Tetranychus cinnabarinus Boisduval. J. Agric. Food Chem. 2024 72 45 25023 25033 10.1021/acs.jafc.4c07412 39447173
    [Google Scholar]
  90. Song X. Wang H. Zou W. Hong H. Gao Y. Zhao C. Xu H. Yao G. New isoxazoline cyclopropyl-picolinamide derivatives as potential insecticides. J. Agric. Food Chem. 2025 73 11 6589 6598 10.1021/acs.jafc.5c00044 40053680
    [Google Scholar]
  91. Li S. Wang G. Zhang Y. Zhao W. Yang H. Yin X. Li Y. Discovery of novel isoxazoline derivatives containing pyrazolamide fragment as insecticidal candidates. J. Agric. Food Chem. 2025 73 11 6580 6588 10.1021/acs.jafc.4c13106 40053670
    [Google Scholar]
  92. Grossmann K. Ehrhardt T. On the mechanism of action and selectivity of the corn herbicide topramezone: A new inhibitor of 4‐hydroxyphenylpyruvate dioxygenase. Pest Manag. Sci. 2007 63 5 429 439 10.1002/ps.1341 17340675
    [Google Scholar]
  93. Zhao F. Xiang Q. Zhou Y. Xu X. Qiu X. Yu Y. Ahmad F. Evaluation of the toxicity of herbicide topramezone to Chlorella vulgaris: Oxidative stress, cell morphology and photosynthetic activity. Ecotoxicol. Environ. Saf. 2017 143 129 135 10.1016/j.ecoenv.2017.05.022 28525816
    [Google Scholar]
  94. Ma Y. Guo C. Wang Y. Gao Y. Qin J. Wei J. Herbicidal activity evaluation of topramezone and its safety to sugarcane. Sugar Tech 2023 25 3 698 704 10.1007/s12355‑022‑01226‑z
    [Google Scholar]
  95. Busi R. Porri A. Gaines T.A. Powles S.B. Pyroxasulfone resistance in Lolium rigidum is metabolism-based. Pestic. Biochem. Physiol. 2018 148 74 80 10.1016/j.pestbp.2018.03.017 29891380
    [Google Scholar]
  96. Yu H. Ma X. Cui H. Chen J. Li X. Responses of soil enzymes, bacterial communities and soil nitrification to the pre-emergence herbicide pyroxasulfone. Ecotoxicol. Environ. Saf. 2024 285 117141 10.1016/j.ecoenv.2024.117141 39368151
    [Google Scholar]
  97. Yamaji Y. Honda H. Hanai R. Inoue J. Soil and environmental factors affecting the efficacy of pyroxasulfone for weed control. J. Pestic. Sci. 2016 41 1 1 5 10.1584/jpestics.D15‑047 30364756
    [Google Scholar]
  98. Fujinami M. Takahashi Y. Tanetani Y. Ito M. Nasu M. Development of a rice herbicide, fenoxasulfone. J. Pestic. Sci. 2019 44 4 282 289 10.1584/jpestics.J19‑04 31777448
    [Google Scholar]
  99. Tanetani Y. Fujioka T. Horita J. Kaku K. Shimizu T. Action mechanism of a novel herbicide, fenoxasulfone. J. Pestic. Sci. 2011 36 3 357 362 10.1584/jpestics.G10‑97
    [Google Scholar]
  100. Rana S.S. Askew S.D. Long-term roughstalk bluegrass control in creeping bentgrass fairways. Weed Technol. 2017 31 5 714 723 10.1017/wet.2017.72
    [Google Scholar]
  101. Brabham C. Johnen P. Hendriks J. Betz M. Zimmermann A. Gollihue J. Serson W. Kempinski C. Barrett M. Herbicide symptomology and the mechanism of action of methiozolin. Weed Sci. 2021 69 1 18 30 10.1017/wsc.2020.87
    [Google Scholar]
  102. Comont D. Crook L. Hull R. Sievernich B. Kevis S. Neve P. The role of interspecific variability and herbicide pre‐adaptation in the cinmethylin response of Alopecurus myosuroides. Pest Manag. Sci. 2024 80 7 3172 3181 10.1002/ps.8021 38345468
    [Google Scholar]
  103. Sun L. Xu H. Su W. Xue F. An S. Lu C. Wu R. The expression of detoxification genes in two maize cultivars by interaction of isoxadifen-ethyl and nicosulfuron. Plant Physiol. Biochem. 2018 129 101 108 10.1016/j.plaphy.2018.05.025 29870861
    [Google Scholar]
  104. Haugrud N.H. Friskop A. Ikley J.T. Herbicide safener isoxadifen‐ethyl associated with increased Goss’s wilt severity in corn (Zea mays). Pest Manag. Sci. 2024 80 9 4516 4522 10.1002/ps.8157 38717312
    [Google Scholar]
  105. Yang J. Guan A. Wu Q. Cui D. Liu C. Design, synthesis and herbicidal evaluation of novel uracil derivatives containing an isoxazoline moiety. Pest Manag. Sci. 2020 76 10 3395 3402 10.1002/ps.5970 32578296
    [Google Scholar]
/content/journals/cos/10.2174/0115701794396676251017152816
Loading
/content/journals/cos/10.2174/0115701794396676251017152816
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test