Skip to content
2000
image of Advances in Chitin Synthesis Inhibitors for Pest Control

Abstract

Chitin, a naturally occurring nitrogen-containing polysaccharide biopolymer, serves as a major structural component of the insect epidermis, the peritrophic membrane of the midgut, and the tracheal system, protecting insects from chemical erosion, physical damage, and pathogen invasion. The synthesis and degradation of chitin maintain a dynamic balance in insects; any disruption to this balance can adversely affect their normal growth, development, and morphology. Chitin synthesis inhibitors (CSIs), by interfering with the biosynthetic pathway of chitin by inhibiting chitin synthase, not only offer a new direction for pest management but also open a new window for understanding complex processes in insect physiology. The mechanism of action of CSIs is fundamentally different from that of traditional insecticides; they exploit vulnerabilities in the insect's physiological processes, thereby overcoming resistance issues induced by conventional chemicals to some extent. and have attracted increasing attention in recent years. The research on CSIs is of great significance to realize efficient and environmentally friendly biological control strategies, which is helpful to promote sustainable agricultural development and reduce environmental pollution. This review summarizes recent advances in chitin synthesis inhibitors (CSIs), highlighting their potential and challenges in pest control, and offers insights for developing next-generation biopesticides with enhanced efficiency, selectivity, and sustainability.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794425292251114071938
2025-12-04
2026-01-31
Loading full text...

Full text loading...

References

  1. Mohan K. Ganesan A.R. Muralisankar T. Jayakumar R. Sathishkumar P. Uthayakumar V. Chandirasekar R. Revathi N. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci. Technol. 2020 105 17 42 10.1016/j.tifs.2020.08.016 32901176
    [Google Scholar]
  2. Dickey B.F. Exoskeletons and exhalation. N. Engl. J. Med. 2007 357 20 2082 2084 10.1056/NEJMe0706634 18003965
    [Google Scholar]
  3. Cohen E. Chitin synthesis and inhibition: A revisit. Pest Manag. Sci. 2001 57 10 946 950 10.1002/ps.363 11695188
    [Google Scholar]
  4. Merzendorfer H. The cellular basis of chitin synthesis in fungi and insects: Common principles and differences. Eur. J. Cell Biol. 2011 90 9 759 769 10.1016/j.ejcb.2011.04.014 21700357
    [Google Scholar]
  5. Doucet D. Retnakaran A. Insect Chitin. Adv. Insect Physiol. 2012 43 437 511 10.1016/B978‑0‑12‑391500‑9.00006‑1
    [Google Scholar]
  6. Elia-Amira N.M.R. Chen C.D. Low V.L. Lau K.W. Haziqah-Rashid A. Amelia-Yap Z.H. Lee H.L. Sofian-Azirun M. Statewide efficacy assessment of insect growth regulators against Aedes albopictus (Diptera: Culicidae) in Sabah, Malaysia: An alternative control strategy? J. Med. Entomol. 2022 59 1 301 307 10.1093/jme/tjab146 34459477
    [Google Scholar]
  7. Eгopoв E.A. Podgornaya M.E. Prah S.V. Technological methods for protecting apple trees from dominant lepidopteran pests. Vestnik of the Rus. Agric. Sci. 2024 3 55 59
    [Google Scholar]
  8. Chen Q. Zhang J.W. Chen L.L. Yang J. Yang X-L. Ling Y. Yang Q. Design and synthesis of chitin synthase inhibitors as potent fungicides. Chin. Chem. Lett. 2017 28 6 1232 1237 10.1016/j.cclet.2017.03.030
    [Google Scholar]
  9. Ji Q. Li B. Chu Y. Wu H. Du C. Xu Y. Shen Y. Deng J. Design, synthesis and biological evaluation of novel diazaspirodecanone derivatives containing piperidine-4-carboxamide as chitin synthase inhibitors and antifungal agents. Bioorg. Chem. 2021 114 105108 10.1016/j.bioorg.2021.105108 34175721
    [Google Scholar]
  10. Wu H. Du C. Xu Y. Liu L. Zhou X. Ji Q. Design, synthesis, and biological evaluation of novel spiro[pyrrolidine-2,3′-quinolin]-2′-one derivatives as potential chitin synthase inhibitors and antifungal agents. Eur. J. Med. Chem. 2022 233 114208 10.1016/j.ejmech.2022.114208 35220015
    [Google Scholar]
  11. Du C. Yang X. Long Y. Lang X. Liu L. Xu Y. Wu H. Chu Y. Hu X. Deng J. Ji Q. Design, synthesis and biological evaluation of novel spiro-quinazolinone derivatives as chitin synthase inhibitors and antifungal agents. Eur. J. Med. Chem. 2023 255 115388 10.1016/j.ejmech.2023.115388 37141707
    [Google Scholar]
  12. Sun R. Liu C. Zhang H. Wang Q. Benzoylurea Chitin Synthesis Inhibitors. J. Agric. Food Chem. 2015 63 31 6847 6865 10.1021/acs.jafc.5b02460 26168369
    [Google Scholar]
  13. Tian X. Zhang C. Xu Q. Li Z. Shao X. Azobenzene-benzoylphenylureas as photoswitchable chitin synthesis inhibitors. Org. Biomol. Chem. 2017 15 15 3320 3323 10.1039/C6OB02813F 28362014
    [Google Scholar]
  14. Assar A. Abo-Elmahasen M. Mahmoud S. Younes A. Biological effects of some chitin synthesis inhibitors on culex pipiens (Diptera: Culicidae). J. Egypt. Soc. Parasitol. 2019 49 1 221 226 10.21608/jesp.2019.68307
    [Google Scholar]
  15. Ahmed E.A. Elsobki A.A. Biochemical effects of some chitin synthesis inhibitors against red palm weevil, Rhynchophorus ferrugineus insect. Egypt Acad. J. Biol. Sci. 2020 12 1 127 139
    [Google Scholar]
  16. Khater K. Toxicological and ultrastructural effects of chitin synthesis inhibitors (lufenuron and chlorfluazuron) on third larval instars integument of Chrysomya albiceps (Diptera: Calliphoridae). Parasitol. United J. 2021 14 1 95 103 10.21608/puj.2021.63371.1108
    [Google Scholar]
  17. Zhao Y. Zhang L. Zou C. Han H. Li C. Li X. Song L. Chlorbenzuron downregulatedHcLCP ‐17 expression by depressing two 20E ‐responsive transcription factors Br‐C and βFTZ ‐ F1 in Hyphantria cunea (Lepidoptera: Erebidae) larvae. Pest Manag. Sci. 2024 80 12 6450 6464 10.1002/ps.8377 39212109
    [Google Scholar]
  18. Joarder J. Khan M.A.M. Das G. Efficacy of chitin synthesis inhibitors in arresting growth and development of okra jassid, amrasca biguttula biguttula (Ishida). Sustainability in Food. and Agriculture 2021 2 2 64 68 10.26480/sfna.02.2021.64.68
    [Google Scholar]
  19. Masetti A. Rathé A. Robertson N. Anderson D. Walker J. Pasqualini E. Depalo L. Effects of three chitin synthesis inhibitors on egg masses, nymphs and adults of Halyomorpha halys (Hemiptera: Pentatomidae). Pest Manag. Sci. 2023 79 8 2882 2890 10.1002/ps.7465 36944039
    [Google Scholar]
  20. Zhang X. Yang Z. Xu H. Liu Y. Yang X. Sun T. Lu X. Shi F. Yang Q. Chen W. Duan H. Ling Y. Synthesis, antifungal activity, and 3D-QASR of novel 1,2,3,4-Tetrahydroquinoline derivatives containing a pyrimidine ether scaffold as chitin synthase inhibitors. J. Agric. Food Chem. 2022 70 30 9262 9275 10.1021/acs.jafc.2c01348 35862625
    [Google Scholar]
  21. Dermauw W. Ilias A. Riga M. Tsagkarakou A. Grbić M. Tirry L. Van Leeuwen T. Vontas J. The cys-loop ligand-gated ion channel gene family of Tetranychus urticae: Implications for acaricide toxicology and a novel mutation associated with abamectin resistance. Insect Biochem. Mol. Biol. 2012 42 7 455 465 10.1016/j.ibmb.2012.03.002 22465149
    [Google Scholar]
  22. Nauen R. Smagghe G. Mode of action of etoxazole. Pest Manag. Sci. 2006 62 5 379 382 10.1002/ps.1192 16555232
    [Google Scholar]
  23. Merzendorfer H. Chitin synthesis inhibitors: Old molecules and new developments. Insect Sci. 2013 20 2 121 138 10.1111/j.1744‑7917.2012.01535.x 23955853
    [Google Scholar]
  24. Dhadialla T.S. Carlson G.R. Le D.P. New insecticides with ecdysteroidal and juvenile hormone activity. Annu. Rev. Entomol. 1998 43 1 545 569 10.1146/annurev.ento.43.1.545 9444757
    [Google Scholar]
  25. Davey R.B. Ahrens E.H. George J.E. Hunter J.S. Jeannin P. Therapeutic and persistent efficacy of fipronil against Boophilus microplus (Acari: Ixodidae) on cattle. Vet. Parasitol. 1998 74 2-4 261 276 10.1016/S0304‑4017(97)00152‑0 9561711
    [Google Scholar]
  26. Wu Y. Zhang M. Yang Y. Ding X. Yang P. Huang K. Hu X. Zhang M. Liu X. Yu H. Structures and mechanism of chitin synthase and its inhibition by antifungal drug Nikkomycin Z. Cell Discov. 2022 8 1 129 10.1038/s41421‑022‑00495‑y 36473834
    [Google Scholar]
  27. Moussian B. Letizia A. Martínez-Corrales G. Rotstein B. Casali A. Llimargas M. Deciphering the genetic programme triggering timely and spatially-regulated chitin deposition. PLoS Genet. 2015 11 1 e1004939 10.1371/journal.pgen.1004939 25617778
    [Google Scholar]
  28. Jiang L.H. Mu L.L. Jin L. Anjum A.A. Li G.Q. RNAi for chitin synthase 1 rather than 2 causes growth delay and molting defect in Henosepilachna vigintioctopunctata. Pestic. Biochem. Physiol. 2021 178 104934 104934 10.1016/j.pestbp.2021.104934 34446203
    [Google Scholar]
  29. Wang Y. Fan H.W. Huang H.J. Xue J. Wu W.J. Bao Y.Y. Xu H.J. Zhu Z.R. Cheng J.A. Zhang C.X. Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae). Insect Biochem. Mol. Biol. 2012 42 9 637 646 10.1016/j.ibmb.2012.04.009 22634163
    [Google Scholar]
  30. Ostrowski S. Dierick H.A. Bejsovec A. Genetic control of cuticle formation during embryonic development of Drosophila melanogaster. Genetics 2002 161 1 171 182 10.1093/genetics/161.1.171 12019232
    [Google Scholar]
  31. Moussian B. Schwarz H. Bartoszewski S. Nüsslein-Volhard C. Involvement of chitin in exoskeleton morphogenesis in Drosophila melanogaster. J. Morphol. 2005 264 1 117 130 10.1002/jmor.10324 15747378
    [Google Scholar]
  32. Arakane Y. Muthukrishnan S. Kramer K.J. Specht C.A. Tomoyasu Y. Lorenzen M.D. Kanost M. Beeman R.W. The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol. Biol. 2005 14 5 453 463 10.1111/j.1365‑2583.2005.00576.x 16164601
    [Google Scholar]
  33. Qu M. Yang Q. Physiological significance of alternatively spliced exon combinations of the single‐copy gene class A chitin synthase in the insect Ostrinia furnacalis (Lepidoptera). Insect Mol. Biol. 2012 21 4 395 404 10.1111/j.1365‑2583.2012.01145.x 22607200
    [Google Scholar]
  34. Zhang J. Zhu K.Y. Characterization of a chitin synthase cDNA and its increased mRNA level associated with decreased chitin synthesis in Anopheles quadrimaculatus exposed to diflubenzuron. Insect Biochem. Mol. Biol. 2006 36 9 712 725 10.1016/j.ibmb.2006.06.002 16935220
    [Google Scholar]
  35. Lu Z.J. Huang Y.L. Yu H.Z. Li N.Y. Xie Y.X. Zhang Q. Zeng X.D. Hu H. Huang A.J. Yi L. Su H.N. Silencing of the Chitin Synthase Gene Is Lethal to the Asian Citrus Psyllid, Diaphorina citri. Int. J. Mol. Sci. 2019 20 15 3734 10.3390/ijms20153734 31370145
    [Google Scholar]
  36. Zhang C. Hu W. Yu Z. Liu X. Wang J. Xin T. Zou Z. Xia B. Characterization of Chitin Synthase A cDNA from Diaphorina citri (Hemiptera: Liviidae) and Its Response to Diflubenzuron. Insects 2022 13 8 728 10.3390/insects13080728 36005353
    [Google Scholar]
  37. Yao Q. Quan L.F. Xu S. Dong Y.Z. Li W.J. Chen B.X. Effect of diflubenzuron on the chitin biosynthesis pathway in Conopomorpha sinensis eggs. Insect Sci. 2021 28 4 1061 1075 10.1111/1744‑7917.12848 32686293
    [Google Scholar]
  38. Chang C.L. Geib S. Cho I.K. Li Q.X. Stanley D. Dietary lufenuron reduces egg hatch and influences protein expression in the fruit fly Bactrocera latifrons (HENDEL). Arch. Insect Biochem. Physiol. 2014 86 4 193 208 10.1002/arch.21169 24753137
    [Google Scholar]
  39. Cohen E. Chitin biochemistry: Synthesis and inhibition. Annu. Rev. Entomol. 1987 32 1 71 93 10.1146/annurev.en.32.010187.000443
    [Google Scholar]
  40. Zhuo W. Chu F. Kong L. Tao H. Sima Y. Xu S. Chitin synthase B: A midgut‐specific gene induced by insect hormones and involved in food intake in B ombyx mori LARVAE. Arch. Insect Biochem. Physiol. 2014 85 1 36 47 10.1002/arch.21141 24338669
    [Google Scholar]
  41. Ullah F. Gul H. Yousaf H.K. Xiu W. Qian D. Gao X. Tariq K. Han P. Desneux N. Song D. Author Correction: Impact of low lethal concentrations of buprofezin on biological traits and expression profile of chitin synthase 1 gene (CHS1) in melon aphid, Aphis gossypii. Sci. Rep. 2020 10 1 18158 10.1038/s41598‑020‑74318‑z 33082363
    [Google Scholar]
  42. Kaur R. Choudhary D. Bali S. Bandral S.S. Singh V. Ahmad M.A. Rani N. Singh T.G. Chandrasekaran B. Pesticides: An alarming detrimental to health and environment. Sci. Total Environ. 2024 915 170113 10.1016/j.scitotenv.2024.170113 38232846
    [Google Scholar]
  43. Hirata K. Studies on the mode of action of neurotoxic insecticides. J. Pestic. Sci. 2016 41 3 87 94 10.1584/jpestics.J16‑01 30363149
    [Google Scholar]
  44. Shahid M. Jain P. De A. Angel B. Angel A. Mallick S. Joshi V. Synthesis, DFT study, molecular docking and larvicidal activity of Chitin inhibitor alanine derived compounds. Polyhedron 2023 245 116629 10.1016/j.poly.2023.116629
    [Google Scholar]
  45. Lu Y. Wang G. Zhong L. Zhang F. Bai Q. Zheng X. Lu Z. Resistance monitoring of Chilo suppressalis (Walker) (Lepidoptera: Crambidae) to chlorantraniliprole in eight field populations from east and central China. Crop Prot. 2017 100 196 202 10.1016/j.cropro.2017.07.006
    [Google Scholar]
  46. Antônio R.B.D.N. Vitor A.C.P. Juliana G.R. There is more than chitin synthase in insect resistance to benzoylureas: Molecular markers associated with teflubenzuron resistance in Spodoptera frugiperda. J. Pest Sci. 2021 95 1 129 144
    [Google Scholar]
  47. Ahmed A. Mohammed E. Abdel-Aziz K. Disruptive effects of selected chitin synthesis inhibitors on cotton leaf worm Spodoptera littoralis (Boisd.). Aust. J. Basic Appl. Sci. 2018 12 1 4 8
    [Google Scholar]
  48. Gad H.A. Al-Ayat A.A. Abdelgaleil S.A.M. Management of khapra beetle, Trogoderma granarium Everts, using binary combinations of chitin synthesis inhibitors and inert dusts. J. Stored Prod. Res. 2023 104 102194 10.1016/j.jspr.2023.102194
    [Google Scholar]
  49. Sankar M. Kumar S. A systematic review on the eco-safe management of mosquitoes with diflubenzuron: An effective growth regulatory agent. Acta Ecol. Sin. 2023 43 1 11 19 10.1016/j.chnaes.2021.09.019
    [Google Scholar]
  50. Michael O. SS21-04 Historical vs. current insecticide and nematicide use in california: Changing modes of action (MOA). Occup. Med. (Lond.) 2024 74 1 i68
    [Google Scholar]
  51. Selim M.T. Almutari M.M. Shehab H.I. EL-Saeid, M.H. Risk assessment of pesticide residues by GC-MSMS and UPLC-MSMS in edible vegetables. Molecules 2023 28 3 1343 10.3390/molecules28031343 36771010
    [Google Scholar]
/content/journals/cos/10.2174/0115701794425292251114071938
Loading
/content/journals/cos/10.2174/0115701794425292251114071938
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test