Skip to content
2000
image of Advances in Chiral Pesticides

Abstract

Chirality is a basic attribute of nature, which is similar to human's right and left hands. It cannot overlap but is a mirror image of each other. In the field of pesticides, the application of chiral pesticides is becoming increasingly widespread, with usage on the rise. Chiral pesticides refer to compounds with one or more chiral centers in pesticide molecules, according to the use, it can be divided into three categories: chiral herbicides, chiral insecticides and chiral fungicides, and according to the chemical structure, it can be divided into six categories: amide, triazole, organophosphorus, organochlorine, phenoxycarboxylic acid and pyrethroid. Although different enantiomers have similar physical and chemical properties, because of characterized by the presence of chiral centers, exhibit significant differences in biological activity, ecological toxicity, and environmental behavior among their enantiomers. This makes the study of chiral pesticide enantiomers crucial for enhancing pesticide efficiency while reducing usage and for promoting sustainable agriculture, it can play an important role in many fields such as life science, medical science, synthetic chemistry and food chemistry. This paper focuses on the current research status of chiral pesticide enantiomers concerning their selective activity, mechanisms, synthesis, and metabolism, aiming to provide reference for the development and application of chiral pesticide optical pure monomer with high efficiency and environmental friendliness, and contributing to the development of green agriculture, the construction of a safer ecological environment and the better promotion of the community of human destiny.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794365671250414051857
2025-05-19
2025-09-14
Loading full text...

Full text loading...

References

  1. Sanganyado E. Munjanja B.K. Nollet L.M.L. Chiral Organic Pollutants: Monitoring and Characterization in Food and the Environment. CRC. Press 2020 396 10.1201/9781003000167
    [Google Scholar]
  2. Testa B. Types of stereoselectivity in drug metabolism: A heuristic approach. Drug Metab. Rev. 2015 47 2 239 251 10.3109/03602532.2014.984814 25410915
    [Google Scholar]
  3. Paluzarl H. Sagiroglu A. Effects of organophosphorus and pyre-throid pesticides on antioxidant enzymes and reactivation effects of pralidoxime: In vitro studies. Kuwait J. Sci. 2022 49 3
    [Google Scholar]
  4. Zhang W. Teng M. Chen L. A review on the enantioselective distribution and toxicity of chiral pesticides in aquatic environment. Environ. Geochem. Health 2024 46 9 317 10.1007/s10653‑024‑02102‑3 39002095
    [Google Scholar]
  5. Jeschke P. Current status of chirality in agrochemicals. Pest Manag. Sci. 2018 74 11 2389 2404 10.1002/ps.5052 29704299
    [Google Scholar]
  6. Wang Z. Tan Y. Li Y. Duan J. Wu Q. Li R. Shi H. Wang M. Comprehensive study of pydiflumetofen in Danio rerio: Enantioselective insight into the toxic mechanism and fate. Environ. Int. 2022 167 0 107406 107406 10.1016/j.envint.2022.107406 35850082
    [Google Scholar]
  7. Li Y. Dong F. Liu X. Xu J. Chen X. Han Y. Cheng Y. Jian Q. Zheng Y. Enantioselective separation and transformation of metalaxyl and its major metabolite metalaxyl acid in tomato and cucumber. Food Chem. 2013 141 1 10 17 10.1016/j.foodchem.2013.02.126 23768319
    [Google Scholar]
  8. Cui N. Xu H. Yao S. He Y. Zhang H. Yu Y. Chiral triazole fungicide tebuconazole: Enantioselective bioaccumulation, bioactivity, acute toxicity, and dissipation in soils. Environ. Sci. Pollut. Res. Int. 2018 25 25 25468 25475 10.1007/s11356‑018‑2587‑9 29951765
    [Google Scholar]
  9. Xu S. Shen F. Song J. Wang Y. Yu S. Zhang L. Fang H. Yu Y. Enantioselectivity of new chiral triazole fungicide mefentrifluconazole: Bioactivity against phytopathogen, and acute toxicity and bioaccumulation in earthworm (Eisenia fetida). Sci. Total Environ. 2022 815 152937 10.1016/j.scitotenv.2022.152937 35007570
    [Google Scholar]
  10. Liang X. Xu J. Huang X. Zheng Z. Zhang C. Yang Y. Wang M. Zhang Y. Systemic stereoselectivity study of bromothalonil: Stereoselective bioactivity, toxicity, and degradation in vegetables and soil. Pest Manag. Sci. 2020 76 5 1823 1830 10.1002/ps.5711 31828964
    [Google Scholar]
  11. Zhang J. Wu Q. Zhong Y. Wang Z. He Z. Zhang Y. Wang M. Enantioselective bioactivity, toxicity, and degradation in vegetables and soil of chiral fungicide mandipropamid. J. Agric. Food Chem. 2021 69 45 13416 13424 10.1021/acs.jafc.1c04370 34738463
    [Google Scholar]
  12. Devendar P. Yang G.F. Sulfur-containing agrochemicals. Top. Curr. Chem. 2017 375 6 82 10.1007/s41061‑017‑0169‑9 28993992
    [Google Scholar]
  13. Wen Y. Li C. Fang Z. Zhuang S. Liu W. Elucidation of the enantioselective enzymatic hydrolysis of chiral herbicide dichlorprop methyl by chemical modification. J. Agric. Food Chem. 2011 59 5 1924 1930 10.1021/jf104500h 21314180
    [Google Scholar]
  14. Zhao L. Gao Y. Xie J. Zhang Q. Guo F. Liu S. Liu W. A strategy to reduce the dose of multichiral agricultural chemicals: The herbicidal activity of metolachlor against Echinochloa crusgalli. Sci. Total Environ. 2019 690 181 188 10.1016/j.scitotenv.2019.06.521 31288109
    [Google Scholar]
  15. Xie J. Zhao L. Liu K. Guo F. Chen Z. Liu W. Enantiomeric characterization of herbicide lactofen: Enantioseparation, absolute configuration assignment and enantioselective activity and toxicity. Chem 2018 193 351 357 29149711
    [Google Scholar]
  16. Mao Z. Song M. Zhao R. Liu Y. Zhu Y. Liu X. Liang H. Zhang H. Wu X. Wang G. Li F. Zhang L. Characterization of two novel hydrolases from Sphingopyxis sp. DBS4 for enantioselective degradation of chiral herbicide diclofop-methyl. J. Hazard. Mater. 2024 469 133967 10.1016/j.jhazmat.2024.133967 38457978
    [Google Scholar]
  17. Duan J. Dong X. Shen Y. Gao B. Zhang Z. Gao T. Wang M. Simultaneous determination of enantiomers of carfentrazone‐ethyl and its metabolite in eight matrices using high‐performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2018 41 19 3697 3705 10.1002/jssc.201701349 30074302
    [Google Scholar]
  18. Ji C. Song Z. Tian Z. Feng Z. Fan L. Shou C. Zhao M. Enantioselectivity in the toxicological effects of chiral pesticides: A review. Sci. Total Environ. 2023 857 Pt 3 159656 10.1016/j.scitotenv.2022.159656 36280076
    [Google Scholar]
  19. Zhang P. Yang F. Ran L. Yang C. Tang C. Ke X. Chen J. Xiao W. He L. Xu Z. Systemic evaluation of novel acaricide hexythiazox for bioactivity improvement and risk reduction at the enantiomer level. Sci. Total Environ. 2024 926 171907 10.1016/j.scitotenv.2024.171907 38522548
    [Google Scholar]
  20. Lin Q. Deng P. Feng T. Ou G. Mou L. Zhang Y. Enantioselectivity of indoxacarb enantiomers in Bombyx mori larvae: Toxicity, bioaccumulation and biotransformation. Pest Manag. Sci. 2023 79 7 2353 2364 10.1002/ps.7412 36797221
    [Google Scholar]
  21. Wen Y. Zhou L. Li D. Lai Q. Shi H. Wang M. Ecotoxicological effects of the pyrethroid insecticide tefluthrin to the earthworm Eisenia fetida: A chiral view. Environ. Res. 2020 190 109991 10.1016/j.envres.2020.109991 32768725
    [Google Scholar]
  22. Li R. Pan X. Wang Q. Tao Y. Chen Z. Jiang D. Wu C. Dong F. Xu J. Liu X. Wu X. Zheng Y. Development of S-fluxametamide for bioactivity improvement and risk reduction: Systemic evaluation of the novel insecticide fluxametamide at the enantiomeric level. Environ. Sci. Technol. 2019 53 23 13657 13665 10.1021/acs.est.9b03697 31684725
    [Google Scholar]
  23. Zhang Z. Zhou L. Gao Y. Zhang J. Gao B. Shi H. Wang M. Enantioselective detection, bioactivity, and metabolism of the novel chiral insecticide fluralaner. J. Agric. Food Chem. 2020 68 25 6802 6810 10.1021/acs.jafc.9b07907 32323985
    [Google Scholar]
  24. Zhang Z. Gao B. He Z. Li L. Zhang Q. Kaziem A.E. Wang M. Stereoselective bioactivity of the chiral triazole fungicide prothioconazole and its metabolite. Pestic. Biochem. Physiol. 2019 160 112 118 10.1016/j.pestbp.2019.07.012 31519245
    [Google Scholar]
  25. Burden R.S. Carter G.A. Clark T. Cooke D.T. Croker S.J. Deas A.H.B. Hedden P. James C.S. Lenton J.R. Comparative activity of the enantiomers of triadimenol and paclobutrazol as inhibitors of fungal growth and plant sterol and gibberellin biosynthesis. Pestic. Sci. 1987 21 4 253 267 10.1002/ps.2780210403
    [Google Scholar]
  26. Li Y. Nie J. Zhang J. Xu G. Zhang H. Liu M. Gao X. Shah B.S.A. Yin N. Chiral fungicide penconazole: Absolute configuration, bioactivity, toxicity, and stereoselective degradation in apples. Sci. Total Environ. 2022 808 152061 10.1016/j.scitotenv.2021.152061 34861299
    [Google Scholar]
  27. Fang K. Fang J. Han L. Yin J. Liu T. Wang X. Systematic evaluation of chiral fungicide penflufen for the bioactivity improvement and input reduction using alphafold2 models and transcriptome sequencing. J. Hazard. Mater. 2022 440 129729 10.1016/j.jhazmat.2022.129729 35963089
    [Google Scholar]
  28. An X. Pan X. Li R. Dong F. Zhu W. Xu J. Wu X. Zheng Y. Comprehensive evaluation of novel fungicide benzovindiflupyr at the enantiomeric level: Bioactivity, toxicity, mechanism, and dissipation behavior. Sci. Total Environ. 2023 860 160535 10.1016/j.scitotenv.2022.160535 36574547
    [Google Scholar]
  29. Roman D.L. Matica M.A. Ciorsac A. Boros B.V. Isvoran A. The Effects of the Fungicide myclobutanil on soil enzyme activity. Agriculture 2023 13 10 1956 1956 10.3390/agriculture13101956
    [Google Scholar]
  30. Vashistha V.K. Sethi S. Mittal A. Stereoselective analysis of chiral pesticides: A review. Environ. Monit. Assess. 2024 196 2 10.1007/s10661‑024‑12310‑0
    [Google Scholar]
  31. Duan J. Sun M. Shen Y. Gao B. Zhang Z. Gao T. Wang M. Enantioselective acute toxicity and bioactivity of carfentrazone-ethyl enantiomers. Bull. Environ. Contam. Toxicol. 2018 101 5 651 656 10.1007/s00128‑018‑2474‑6 30361749
    [Google Scholar]
  32. Xie J. Zhao L. Liu K. Guo F. Gao L. Liu W. Activity, toxicity, molecular docking, and environmental effects of three imidazolinone herbicides enantiomers. Sci. Total Environ. 2018 622-623 594 602 10.1016/j.scitotenv.2017.11.333 29223083
    [Google Scholar]
  33. Caboni P. Sammelson R.E. Casida J.E. Phenylpyrazole insecticide photochemistry, metabolism, and GABAergic action: Ethiprole compared with fipronil. J. Agric. Food Chem. 2003 51 24 7055 7061 10.1021/jf030439l 14611171
    [Google Scholar]
  34. Tian M. Zhang Q. Hua X. Tang B. Gao B. Wang M. Systemic stereoselectivity study of flufiprole: Stereoselective bioactivity, acute toxicity and environmental fate. J. Hazard. Mater. 2016 320 487 494 10.1016/j.jhazmat.2016.08.045 27585281
    [Google Scholar]
  35. Siswina T. Miranti Rustama M. Sumiarsa D. Kurnia D. Phytochemical profiling of Piper crocatum and its antifungal activity as Lanosterol 14 alpha demethylase CYP51 inhibitor: A review. F1000 Res. 2022 11 0 1115 1115 10.12688/f1000research.125645.1 37151610
    [Google Scholar]
  36. Li L. Sun X. Zhao X. Xiong Y. Gao B. Zhang J. Shi H. Wang M. Absolute configuration, enantioselective bioactivity, and degradation of the novel chiral triazole fungicide mefentrifluconazole. J. Agric. Food Chem. 2021 69 17 4960 4967 10.1021/acs.jafc.0c07947 33877830
    [Google Scholar]
  37. Zhou J. Liang S.L. Xiang T.T. Advances in chiral pesticides. Jiangxi Nongye Daxue Xuebao 2021 33 07 75 80
    [Google Scholar]
  38. Yang X. Jiang S. Jin Z. Li T. Application of asymmetric catalysis in chiral pesticide active molecule synthesis. J. Agric. Food Chem. 2024 72 31 17153 17165 10.1021/acs.jafc.4c02343 39051451
    [Google Scholar]
  39. Zhou L. Zhang X. Wang Q. Liu M. Wang W. Wu Y. Chen L. Guo H. Phosphine-catalyzed asymmetric tandem isomerization/annulation of allyl amines with allenoates: Enantioselective annulation of a saturated C–N bond. Org. Lett. 2021 23 23 9173 9178 10.1021/acs.orglett.1c03483 34784228
    [Google Scholar]
  40. Förster S. Roos J. Effenberger F. Wajant H. Sprauer A. The first recombinant hydroxynitrile lyase and its application in the synthesis of (S)‐cyanohydrins. Angew. Chem. Int. Ed. Engl. 1996 35 4 437 439 10.1002/anie.199604371
    [Google Scholar]
  41. Bodák B. Breveglieri F. Mazzotti M. Crystallization-induced deracemization: Experiments and modeling. Cryst. Growth Des. 2022 22 2 1427 1436 10.1021/acs.cgd.1c01374 35140549
    [Google Scholar]
  42. Pollard D.J. Woodley J.M. Biocatalysis for pharmaceutical intermediates: The future is now. Trends Biotechnol. 2007 25 2 66 73 10.1016/j.tibtech.2006.12.005 17184862
    [Google Scholar]
  43. Ren-Qi W. Teng-Teng O. Siu-Choon N. Weihua T. Recent advances in pharmaceutical separations with supercritical fluid chromatography using chiral stationary phases. Trends Analyt. Chem. 2012 37 83 100 10.1016/j.trac.2012.02.012
    [Google Scholar]
  44. Zhao P. Dong X. Chen X. Guo X. Zhao L. Stereoselective analysis of chiral pyrethroid insecticides tetramethrin and α-cypermethrin in fruits, vegetables, and cereals. J. Agric. Food Chem. 2019 67 33 9362 9370 10.1021/acs.jafc.9b01850 31368700
    [Google Scholar]
  45. Wang I.H. Moorman R. Liu Y. Development and validation of chiral reversed-phase HPLC method for the determination of enantiomeric purity of (s)-methoprene. Chromatographia 2022 85 10-11 959 968 10.1007/s10337‑022‑04194‑4
    [Google Scholar]
  46. Ma Y. Gan J. Liu W. Chiral pesticides and environmental safety. ACS Symp. Ser. 2011 1085 6 97 106 10.1021/bk‑2011‑1085.ch006
    [Google Scholar]
  47. Ai J. Li J. Chang A.K. Pei Y. Li H. Liu K. Li R. Xu L. Wang N. Liu Y. Su W. Liu W. Wang T. Jiang Z. Chen L. Liang X. Toxicokinetics and bioavailability of indoxacarb enantiomers and their new metabolites in rats. Pestic. Biochem. Physiol. 2024 203 0 106024 106024 10.1016/j.pestbp.2024.106024 39084783
    [Google Scholar]
  48. Gu J. Ji C. Yue S. Shu D. Su F. Zhang Y. Xie Y. Zhang Y. Liu W. Zhao M. Enantioselective effects of metalaxyl enantiomers in adolescent rat metabolic profiles using NMR-based metabolomics. Environ. Sci. Technol. 2018 52 9 5438 5447 10.1021/acs.est.7b06540 29683314
    [Google Scholar]
  49. Zhang Z. Gao B. He Z. Li L. Shi H. Wang M. Enantioselective metabolism of four chiral triazole fungicides in rat liver microsomes. Chemosphere 2019 224 77 84 10.1016/j.chemosphere.2019.02.119 30818197
    [Google Scholar]
  50. Zhang Z. Wang Z. Li Q.X. Hua R. Wu X. Enantioselective metabolism of phenylpyrazole insecticides by rat liver microsomal CYP3A1, CYP2E1 and CYP2D2. Pestic. Biochem. Physiol. 2021 176 104861 104869 10.1016/j.pestbp.2021.104861 34119225
    [Google Scholar]
  51. Li L. Shi H. Hua X. Wang M. Wang H. Intrinsic clearance and metabolism pathway of fosthiazate in rat and cock liver microsomes: From chiral assessment view. J. Agric. Food Chem. 2021 69 43 12654 12660 10.1021/acs.jafc.1c05217 34695356
    [Google Scholar]
  52. Ma S. Ma L. Lu Y. Zhang J. Xin H. Zhou Y. Feng S. Jin G. Du X. Zhang H. Yin S. Stereoselective in vitro metabolism, hepatotoxicity, and cytotoxic effects of four enantiomers of the fungicide propiconazole. J. Agric. Food Chem. 2024 72 50 27775 27786 10.1021/acs.jafc.4c06923 39654444
    [Google Scholar]
  53. Guo D. He R. Su W. Zheng C. Zhang W. Fan J. Stereochemistry of chiral pesticide uniconazole and enantioselective metabolism in rat liver microsomes. Pestic. Biochem. Physiol. 2021 179 0 104964 104964 10.1016/j.pestbp.2021.104964 34802514
    [Google Scholar]
/content/journals/cos/10.2174/0115701794365671250414051857
Loading
/content/journals/cos/10.2174/0115701794365671250414051857
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: enantiomers ; promoting ; Chiral pesticides ; selective activity ; synthesis ; metabolism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test