Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Carbodiimides (R-N=C=N-R) are well-known intermediates for the preparation of a variety of N-containing compounds, including heterocycles and amide linkages. Because of their high reactivity and easy availability, carbodiimides have been broadly used as building blocks in the synthesis of structurally complex and diverse heterocyclic compounds in multi-component reactions (MCRs). Recent advances in diversity-oriented synthesis with carbodiimide-based MCRs are discussed in this minireview and are classified into different sections based on the key transformation involved in the reactions, such as heteroannulation and nucleophilic addition reactions which containing metal-catalyzed reactions, multi-component reactions, and catalyst-free reactions subsections.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794353545241204060251
2025-01-13
2025-10-16
Loading full text...

Full text loading...

References

  1. KnoxJ.R. ToiaR.F. CasidaJ.E. Insecticidal thioureas: Preparation of [phenoxy-4-3H]diafenthiuron, the corresponding carbodiimide, and related compounds.J. Agric. Food Chem.199240590991310.1021/jf00017a043
    [Google Scholar]
  2. MolinaP. AlajarinM. VidalA. Sanchez-AndradaP. C=C-conjugated carbodiimides as 2-aza dienes in intramolecular [4+2] cycloadditions. One-pot preparation of quinoline. alpha.-carboline, and quinindoline derivatives.J. Org. Chem.199257392993910.1021/jo00029a026
    [Google Scholar]
  3. JohnsonJ.D. KaplanS.W. TothJ. WangZ. MawM. SheikoS.S. ZhukhovitskiyA.V. Carbodiimide ring-opening metathesis polymerization.ACS Cent. Sci.2023961104111010.1021/acscentsci.3c00032 37396860
    [Google Scholar]
  4. RebekJ. FeitlerD. Peptide synthesis with carbodiimide.Int. J. Pept. Protein Res.19757216716910.1111/j.1399‑3011.1975.tb02428.x 1095505
    [Google Scholar]
  5. KhoranaH.G. 387. Peptides. Part III. Selective degradation from the carboxyl end. The use of carbodi-imides.J. Chem. Soc.195202081208810.1039/jr9520002081
    [Google Scholar]
  6. LinY.H. LiJ. QinY. WangH. GuptaS. Carbodiimide scaffolds: Efficient and versatile reagents in synthesis of heterocycles.Synth. Commun.202151182713273110.1080/00397911.2021.1953533
    [Google Scholar]
  7. WilliamsA. IbrahimI.T. Carbodiimide chemistry: recent advances.Chem. Rev.198181658963610.1021/cr00046a004
    [Google Scholar]
  8. BellucciM.C. VolonterioA. Carbodiimides-mediated multi component synthesis of biologically relevant structures.Organic Chemistry Insights2012412410.4137/OCI.S9112
    [Google Scholar]
  9. WangY. ZhangW.X. XiZ. Carbodiimide-based synthesis of N-heterocycles: moving from two classical reactive sites to chemical bond breaking/forming reaction.Chem. Soc. Rev.202049165810584910.1039/C9CS00478E 32658233
    [Google Scholar]
  10. KurzerF. Douraghi-ZadehK. Advances in the chemistry of carbodiimides.Chem. Rev.196767210715210.1021/cr60246a001 4859920
    [Google Scholar]
  11. PeddaraoT. BaishyaA. BarmanM.K. KumarA. NembennaS. Metal-free access of bulky N,N′-diarylcarbodiimides and their reduction: bulky N,N′-diarylformamidines.New J. Chem.20164097627763610.1039/C6NJ00907G
    [Google Scholar]
  12. PublicationA. 1-ethyl-3-(3-dimethylamino)propylcarbodiimide hydrochloride and methiodide.Org. Synth.196848September8310.15227/orgsyn.048.0083
    [Google Scholar]
  13. MonagleJ.J. Carbodiimides. III. Conversion of Isocyanates to Carbodiimides. Catalyst Studies.J. Org. Chem.196227113851385510.1021/jo01058a022
    [Google Scholar]
  14. MalviyaB.K. JaiswalP.K. VermaV.P. BadsaraS.S. SharmaS. Electrochemical synthesis of carbodiimides via metal/oxidant-free oxidative cross-coupling of amines and isocyanides.Org. Lett.20202262323232710.1021/acs.orglett.0c00510 32142299
    [Google Scholar]
  15. ZhangZ. TanP. ChangW. ZhangZ. Transition‐metal‐catalyzed cross‐coupling and sequential reactions of azides with isocyanides.Adv. Synth. Catal.2021363245344535910.1002/adsc.202101107
    [Google Scholar]
  16. RooseT.R. VerdoornD.S. MampuysP. RuijterE. MaesB.U.W. OrruR.V.A. Transition metal-catalysed carbene and nitrene transfer to carbon monoxide and isocyanides.Chem. Soc. Rev.202251145842587710.1039/D1CS00305D 35748338
    [Google Scholar]
  17. ChenH. LiuM.G. Synthesis, characterization and crystal structure of heterocyclic tetrahydropyrido[4′,3′:4,5]thieno[2,3-d]pyrimidinone derivatives via sequential aza-Wittig/base catalyzed cyclization.J. Mol. Struct.20191180314010.1016/j.molstruc.2018.11.091
    [Google Scholar]
  18. FangZ.D. WeiX.H. One-pot three-component synthesis of 1,4-bis[thiazolo[4,5-d]pyrimidin-7(6 H)-one]piperazine derivatives.J. Chem. Res.2012361061261410.3184/174751912X13460803277147
    [Google Scholar]
  19. FangZ.D. FangD. ChengQ. Sequential three-component synthesis of 1,4-bis[6,9-dihydro-6-oxo-9-phenyl-1 H -purin-2-yl]piperazines.J. Chem. Res.2012361270370510.3184/174751912X13505755737168
    [Google Scholar]
  20. MengS. JiaZ. WangK. FanY. GuoY. Facile synthesis of Thieno[2,3- d]pyrimidine derivatives using inorganic base catalysis.Synth. Commun.201444101461146510.1080/00397911.2013.859705
    [Google Scholar]
  21. FangD. Z.; Hong Wei, X. Sequential Three-Component Synthesis of 1,4-Bis[triazolo[4,5-d]pyrimidin-7(6H)-one]piperazines.Heterocycles201285112757276310.3987/COM‑12‑12564
    [Google Scholar]
  22. BellucciM.C. VolonterioA. Three-component sequential synthesis of N,N′-disubstituted 5-arylidenedihydropyrimidine-2,4-dione.Tetrahedron Lett.201253354733473710.1016/j.tetlet.2012.06.109
    [Google Scholar]
  23. DuangjanC. RukachaisirikulV. SaithongS. KaeobamrungJ. Copper-catalyzed domino reaction of carbodiimides and benzoic acid derivatives for the synthesis of quinazolinediones.Tetrahedron Lett.201859393537354010.1016/j.tetlet.2018.08.028
    [Google Scholar]
  24. WeischedelH. SchmidtD. ConradJ. BeifussU. Formation of substituted 2-iminooxazolidines via intermolecular 1,2-addition/intramolecular N-vinylation using 3-substituted-2-bromo-2-propen-1-ols as substrates.Tetrahedron201874446426644110.1016/j.tet.2018.08.051
    [Google Scholar]
  25. LiaoP. BiX. YiX. BarryB-D. Synthesis of N-Sulfonylazetidin-2-imines via the Copper(I) oxide catalyzed multicomponent reaction of alkynes, sulfonyl azides and diimines under solvent-free conditions.Synthesis20124491323132810.1055/s‑0031‑1289740
    [Google Scholar]
  26. WangF. CaiS. LiaoQ. XiC. A protocol to 2-aminobenzimidazoles via copper-catalyzed cascade addition and cyclization of o-haloanilines and carbodiimides.J. Org. Chem.20117693174318010.1021/jo200014v 21413745
    [Google Scholar]
  27. ShenG. ChenD. ZhangY. SunM. ChenK. JinC. LiK. BaoW. Synthesis of benzoxazine and 1,3-oxazine derivatives via ligand-free copper(I)-catalyzed one-pot cascade addition/cyclization reaction.Tetrahedron201268116617210.1016/j.tet.2011.10.075
    [Google Scholar]
  28. ChiY. YanH. ZhangW.X. XiZ. CuOTf‐catalyzed selective generation of 2‐aminopyrimidines from carbodiimides and diaryliodonium salts by a triple C(sp 3)−H functionalization.Chemistry201723475776110.1002/chem.201604739 27898999
    [Google Scholar]
  29. LiuY. LiZ. JiangL. ZhengA. An efficient synthesis of 3‐alkyl‐2‐alkyliminooxazolidin‐4‐one via a domino reaction.Chin. J. Chem.201129230330810.1002/cjoc.201190082
    [Google Scholar]
  30. DasS. BhattacharjeeJ. PandaT.K. Guanylation/cyclisation of amino acid esters using an imidazolin-2-iminato titanium initiator.Dalton Trans.201948217227723510.1039/C8DT04630A 30688333
    [Google Scholar]
  31. ShenH. ChanH.S. XieZ. Guanylation of amines catalyzed by a half-sandwich titanacarborane amide complex.Organometallics200625235515551710.1021/om060811x
    [Google Scholar]
  32. ShenH. WangY. XieZ. Ti-amide catalyzed synthesis of cyclic guanidines from di-/triamines and carbodiimides.Org. Lett.201113174562456510.1021/ol201752e 21815662
    [Google Scholar]
  33. XieZ. WangY. ShenH. Atom-economical synthesis of 2-aminoimidazoles via [3+2] annulation catalyzed by titanacarborane monoamide.Synlett20112011796997310.1055/s‑0030‑1259713
    [Google Scholar]
  34. AmanH. HuangY.C. LiuY.H. TsaiY.L. KimM. HsiehJ.C. ChuangG.J. Cobalt-catalyzed cyclization of 2-bromobenzamides with carbodiimides: A new route for the synthesis of 3-(imino)isoindolin-1-ones.Molecules20212623721210.3390/molecules26237212 34885794
    [Google Scholar]
  35. TanakaK. MimuraM. HojoD. Synthesis of substituted 6-imino-2-piperidinones by Rh-catalyzed [4+2] annulation of 4-alkynals with carbodiimides.Tetrahedron200965449008901410.1016/j.tet.2009.06.115
    [Google Scholar]
  36. ChiY. XuL. DuS. YanH. ZhangW.X. XiZ. Synthesis and mechanistic study of cyclic oxoguanidines via Zn(OTf) 2 ‐catalyzed guanylation/amidation from readily available amino acid esters and carbodiimides.Chemistry20152129103691037810.1002/chem.201500573 26013660
    [Google Scholar]
  37. LuC. GongC. ZhaoB. HuL. YaoY.R.E. [N(SiMe 3) 2] 3 -catalyzed guanylation/cyclization of amino acid esters and carbodiimides.J. Org. Chem.20188331154115910.1021/acs.joc.7b02550 29337548
    [Google Scholar]
  38. ChiY. YanH. ZhangW.X. XiZ. Synthesis of quinoline derivatives via cu-catalyzed cascade annulation of heterocumulenes, alkynes, and diaryliodonium salts.Org. Lett.201719102694269710.1021/acs.orglett.7b01025 28481555
    [Google Scholar]
  39. Samzadeh-KermaniA. GhasemiS. A catalytic route to pyrrole derivatives via copper‐catalyzed multicomponent reaction.J. Heterocycl. Chem.20195682202220910.1002/jhet.3614
    [Google Scholar]
  40. ZhaoF. LiY. WangY. ZhangW.X. XiZ. Selective synthesis of (Z)-2-enynyl-2-hydroxy-imidazolidine-4,5-diones via Cu(i)-mediated multicomponent coupling of terminal alkynes, carbodiimides and oxalyl chloride.Org. Biomol. Chem.201412213336333910.1039/C4OB00185K 24723221
    [Google Scholar]
  41. QiuG. LuY. WuJ. A concise synthesis of 4-imino-3,4-dihydroquinazolin-2-ylphosphonates via a palladium-catalyzed reaction of carbodiimide, isocyanide, and phosphite.Org. Biomol. Chem.201311579880210.1039/C2OB26979A 23229113
    [Google Scholar]
  42. WangY. ZhaoF. ZhouY. ChiY. WangZ. ZhangW.X. XiZ. Mechanistic study on the cleavage and reorganization of C(sp3)-H and C=N bonds in carbodiimides: synthesis of 1,2-dihydrothiopyrimidines and 2,3-dihydropyrimidinthiones through four-component coupling.Chemistry20131932106431065410.1002/chem.201301633 23821475
    [Google Scholar]
  43. ZhangX. WangS. LiuY. XiC. Triflates-triggered intermolecular cyclization of carbodiimides leading to 2-aminoquinazolinone and 2,4-diaminoquinazoline derivatives.Org. Lett.20182082148215110.1021/acs.orglett.8b00314 29620371
    [Google Scholar]
  44. AsadiM. EbrahimiM. MahdaviM. SaeediM. RanjbarP.R. YazdaniF. ShafieeA. ForoumadiA. Reaction of isatoic anhydride, amine, and N,N ′-dialkyl carbodiimides under solvent-free conditions: New and efficient synthesis of 3-alkyl-2-(alkylamino)quinazolin-4(3 H)-ones.Synth. Commun.201343172385239210.1080/00397911.2012.714042
    [Google Scholar]
  45. UlrichH. TuckerB. SayighA.A.R. Methyl-tert-butylcarbodiimide. Diagnostic tool in 2 + 2 cycloaddition reactions.J. Am. Chem. Soc.197294103484348710.1021/ja00765a039
    [Google Scholar]
  46. ShainyanB.A. TolstikovaL.L. SterkhovaI.V. Unusual [2+2]-cycloaddition of carbodiimides to N-alkenylidenetriflamides.Tetrahedron Lett.201657394440444210.1016/j.tetlet.2016.08.078
    [Google Scholar]
  47. ShainyanB.A. TolstikovaL.L. Reaction of N-sulfinyltrifluoromethanesulfonamide with carbodiimides: Formation of N-trifluoromethanesulfonyl-2,4-dialkyl-1,2,4-thiadiazetidin-3-imine 1-oxides.J. Fluor. Chem.2012140596110.1016/j.jfluchem.2012.04.016
    [Google Scholar]
  48. SrivastavaV. SinghP.K. SinghP.P. Recent advances of visible-light photocatalysis in the functionalization of organic compounds.J. Photochem. Photobiol. Photochem. Rev.20225010048810.1016/j.jphotochemrev.2022.100488
    [Google Scholar]
  49. Meza-LeónR.L. BernèsS. Cortés-LópezG.N. MastranzoV.M. Sosa-RivadeneyraM. Sartillo-PiscilF. Synthesis of 5-hydroxy hydantoins via a tandem process.Tetrahedron Lett.201657374232423410.1016/j.tetlet.2016.08.022
    [Google Scholar]
  50. KasatkinaS. StepanovaE. DmitrievM. MokrushinI. MaslivetsA. Divergent synthesis of (quinoxalin-2-yl)-1,3-oxazines and pyrimido[1,6-a]quinoxalines via the cycloaddition reaction of acyl(quinoxalinyl)ketenes.Tetrahedron Lett.2019603915108810.1016/j.tetlet.2019.151088
    [Google Scholar]
  51. JohnstonJ.R. WestF.G. Regioselective synthesis of 2-iminooxazinones from dioxinones and carbodiimides.Tetrahedron Lett.201253415479548210.1016/j.tetlet.2012.07.100
    [Google Scholar]
  52. SilvaA. TalhiO. PintoD. Synthesis of 5-(2-hydroxybenzoyl)-1,3-disubstituted uracils.Synlett20132491147114910.1055/s‑0033‑1338932
    [Google Scholar]
  53. SarmahB.K. KonwarM. DasA. Site-selective deoxygenative amination of azine N -oxides with carbodiimides under catalyst-, activator-, base-, and solvent-free conditions.J. Org. Chem.20218615107621077210.1021/acs.joc.1c00741 34260234
    [Google Scholar]
  54. YuQ. YuJ. BaoH. HuX. YingD. WuL. LiuF. JiangH. JinxiaZ. ZhangS. Naturally occurring bioactive 5-ethylidenehydantoins as inspiration for the development of analogues.Synth. Commun.201848151939194410.1080/00397911.2018.1467457
    [Google Scholar]
  55. AlizadehA. RezvanianA. Isoquinoline-catalyzed reaction of phenacyl bromide and N,N-Dialkyl¬carbodiimides: Novel synthesis of azirines.Synlett201223685986210.1055/s‑0031‑1290487
    [Google Scholar]
  56. YenW.P. KungF.C. WongF.F. 1,3‐dipolar cycloaddition of carbodiimides and nitrilimines: Synthesis and mechanistic study of 5‐amino‐1,2,4‐triazoles.Eur. J. Org. Chem.20162016132328233510.1002/ejoc.201600240
    [Google Scholar]
  57. OlimpieriF. BellucciM.C. MarcelliT. VolonterioA. Regioselective multicomponent sequential synthesis of hydantoins.Org. Biomol. Chem.201210489538955510.1039/c2ob26498f 23075991
    [Google Scholar]
  58. TalhiO. FernandesJ.A. PintoD.C.G.A. Almeida PazF.A. SilvaA.S.M. Diastereoselective synthesis of benzofuran-3(2H)-one-hydantoin dyads.Tetrahedron201369265413542010.1016/j.tet.2013.04.111
    [Google Scholar]
  59. HeX. YangC. WuY. XieM. LiR. DuanJ. ShangY. Synthesis of unsymmetrical urea derivatives via one-pot sequential three-component reactions of cyclic 2-diazo-1,3-diketones, carbodiimides, and 1,2-dihaloethanes.Org. Biomol. Chem.202018224178418210.1039/D0OB00683A 32441722
    [Google Scholar]
  60. WangH. YeS. JinH. LiuJ. WuJ. An expeditious approach to 1-(isoquinolin-1-yl)guanidines via a three-component reaction of 2-alkynylbenzaldehyde, sulfonohydrazide, with carbodiimide.Tetrahedron201167335871587710.1016/j.tet.2011.06.056
    [Google Scholar]
  61. PanahiF. JamediF. IranpoorN. Nickel‐catalyzed reductive addition of aryl/benzyl halides and pseudohalides to carbodiimides for the synthesis of amides.Eur. J. Org. Chem.20162016478078810.1002/ejoc.201501349
    [Google Scholar]
  62. WangS. ZhangY. LiuG. XuH. SongL. ChenJ. LiJ. ZhangZ. Transition-metal-free synthesis of 5-amino-1,2,3-triazoles via nucleophilic addition/cyclization of carbodiimides with diazo compounds.Org. Chem. Front.20218359960410.1039/D0QO01288B
    [Google Scholar]
  63. YeS. WangH. WuJ. 1-(isoquinolin-1-yl)urea library generation via three-component reaction of 2-alkynylbenzaldoxime, carbodiimide, with electrophile.ACS Comb. Sci.201113212012510.1021/co100026y 21395340
    [Google Scholar]
  64. YeS. WangH. WuJ. An expeditious approach to 1-aminoisoquinolines via an unexpected reaction of 2-alkynylbenzaldoxime, carbodiimide, with bromine.Tetrahedron201167254628463210.1016/j.tet.2011.04.063
    [Google Scholar]
  65. ShiJ. LiL. LiY. o -silylaryl triflates: A journey of kobayashi aryne precursors.Chem. Rev.202112173892404410.1021/acs.chemrev.0c01011 33599472
    [Google Scholar]
  66. LiR. TangH. FuH. RenH. WangX. WuC. WuC. ShiF. Arynes double bond insertion/nucleophilic addition with vinylogous amides and carbodiimides.J. Org. Chem.20147931344135510.1021/jo402754d 24433159
    [Google Scholar]
  67. ThirupathiA. JanniM. PeruncheralathanS. Copper catalyzed intramolecular N-arylation of ketene aminals at room temperature: Synthesis of 2-amino-3-cyanoindoles.J. Org. Chem.201883158668867810.1021/acs.joc.8b00816 29847946
    [Google Scholar]
  68. WangY. ChiY. ZhaoF. ZhangW.X. XiZ. ChemInform Abstract: Synthesis, characterization, and reactivity of N‐Acyl Chloroformamidines: Useful building blocks for the construction of N‐Acyl substituted 1,1‐diaminoethylenes, amidines, ureas, and thioureas. ChemInform,20134421chin.20132107710.1002/chin.201321077
/content/journals/cos/10.2174/0115701794353545241204060251
Loading
/content/journals/cos/10.2174/0115701794353545241204060251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test