Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

1,4-Dihydropyridines (1,4-DHPs) are highly versatile and bioactive compounds known for their pharmacological properties, including cardiovascular, anticancer, and antioxidant activities. Traditional synthesis methods often involve harsh conditions, such as high temperatures, toxic reagents, and lengthy reaction times, leading to poor yields and environmental concerns. Consequently, there has been a growing focus on developing more sustainable, efficient, and eco-friendly alternatives for their synthesis. Among these, the catalytic one-pot multicomponent reaction (MCR) method has emerged as a promising strategy, offering high efficiency. Catalysts play a crucial role in enhancing reaction efficiency and selectivity, with various systems-metal-based, organocatalysts, polymer-supported catalysts, and enzymatic catalysts-each offering unique advantages. Metal catalysts provide high reactivity and selectivity, organocatalysts are more environmentally benign, polymer-supported catalysts offer improved stability and sustainability, and enzymatic catalysts enable highly specific reactions under mild conditions. However, challenges such as catalyst cost, reusability, scalability, and substrate scope remain. This review examines catalytic strategies for 1,4-DHPs synthesis from 2016 to 2024, highlighting reaction conditions, substrates, and yields. The analysis aims to inspire further exploration of new catalytic methods, expanding the application of 1,4-DHPs in medicinal chemistry.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794374153250307065611
2025-03-21
2025-10-15
Loading full text...

Full text loading...

/deliver/fulltext/cos/22/6/COS-22-6-02.html?itemId=/content/journals/cos/10.2174/0115701794374153250307065611&mimeType=html&fmt=ahah

References

  1. SinghR.K. Key heterocyclic cores for smart anticancer drug-design part I.Bentham Science Publishers202210.2174/97898150400741220101
    [Google Scholar]
  2. VelenaA. ZarkovicN. TroseljG. 1,4-DHP derivatives: Dihydronicotinamide analogues-model compounds targeting oxidative stress.Oxid. Med. Cell. Longev.2016189241210.1155/2016/1892412 26881016
    [Google Scholar]
  3. ChoudharyS. KumariA. KumarR. KumarS. SinghR.K. Progress in nitrogen and oxygen-based heterocyclic compounds for their anticancer activity: An update (2017-2020), Key heterocyclic cores for smart anticancer drug-design part I2022Bentham Science Publishers23225910.2174/9789815040074122010009
    [Google Scholar]
  4. KerruN. GummidiL. MaddilaS. GanguK.K. JonnalagaddaS.B. A review on recent advances in nitrogen-containing molecules and their biological applications.Molecules2020258190910.3390/molecules25081909 32326131
    [Google Scholar]
  5. Villa-ReynaA.L. Perez-VelazquezM. González-FélixM.L. Gálvez-RuizJ.C. Gonzalez-MosqueraD.M. ValenciaD. Ballesteros-MonrealM.G. Aguilar-MartínezM. Leyva-PeraltaM.A. The structure-antiproliferative activity relationship of pyridine derivatives.Int. J. Mol. Sci.20242514764010.3390/ijms25147640 39062883
    [Google Scholar]
  6. SahuD. SreekanthP.S.R. BeheraP.K. PradhanM.K. PatnaikA. SalunkheS. CepR. Advances in synthesis, medicinal properties and biomedical applications of pyridine derivatives: A comprehensive review.Eur. J. Med. Chem. Rep.20241210021010.1016/j.ejmcr.2024.100210
    [Google Scholar]
  7. FaizanM. KumarR. MazumderA. Salahuddin; Tyagi, P.K.; Kapoor, B. Synthesis of pyridines/dihydropyridines via hantzsch reaction, structure-activity relationship and interactions with targets: A review.Curr. Org. Chem.20242910.2174/0113852728331961240918115757
    [Google Scholar]
  8. A, P.; Makam, P. 1,4-Dihydropyridine: Synthetic advances, medicinal and insecticidal properties.RSC Advances20221245292532929010.1039/D2RA04589C 36320730
    [Google Scholar]
  9. FrolovN.A. VereshchaginA.N. Piperidine derivatives: Recent advances in synthesis and pharmacological applications.Int. J. Mol. Sci.2023243293710.3390/ijms24032937 36769260
    [Google Scholar]
  10. HantzschA. Condensation products from aldehyde ammonia and ketone-like compounds.Ber. Dtsch. Chem. Ges.18811421637163810.1002/cber.18810140214
    [Google Scholar]
  11. SharmaV.K. SinghS.K. Synthesis, utility and medicinal importance of 1,2- & 1,4-dihydropyridines.RSC Advances2017752682273210.1039/C6RA24823C
    [Google Scholar]
  12. de Fátima Silva LagoA. de BenedictoD.F.C. da SilvaL. ThomasiS.S. 4-dihydropyridine derivatives: An overview of synthesis conditions and biological tests.Curr. Org. Chem.202327181567161010.2174/0113852728264228231013074432
    [Google Scholar]
  13. PathakS. JainS. PratapA. A review on synthesis and biological potential of dihydropyridines.Lett. Drug Des. Discov.2024211153310.2174/1570180820666230508100955
    [Google Scholar]
  14. LoevB. GoodmanM.M. SnaderK.M. TedeschiR. MackoE. Hantzsch-type dihydropyridine hypotensive agents.J. Med. Chem.197417995696510.1021/jm00255a010 4859592
    [Google Scholar]
  15. CormaA. GarcíaH. Lewis acids: From conventional homogeneous to green homogeneous and heterogeneous catalysis.Chem. Rev.2003103114307436610.1021/cr030680z 14611265
    [Google Scholar]
  16. KumarA. DawP. MilsteinD. Homogeneous catalysis for sustainable energy: Hydrogen and methanol economies, fuels from biomass, and related topics.Chem. Rev.2022122138544110.1021/acs.chemrev.1c00412 34727501
    [Google Scholar]
  17. DeryS. FriedmanB. ShemaH. GrossE. Mechanistic insights gained by high spatial resolution reactivity mapping of homogeneous and heterogeneous (Electro) catalysts.Chem. Rev.202312396003603810.1021/acs.chemrev.2c00867 37037476
    [Google Scholar]
  18. SinghR.K. DhimanA. ChaudharyS. PrasadD.N. KumarS. Current progress in the multicomponent catalytic synthesis of amidoalkyl-naphthols: An update.Curr. Org. Chem.202024548751510.2174/1385272822666200217100344
    [Google Scholar]
  19. Sonali AnanthaI.S. KerruN. MaddilaS. JonnalagaddaS.B. Recent progresses in the multicomponent synthesis of dihydropyridines by applying sustainable catalysts under green conditions.Front Chem.2021980023610.3389/fchem.2021.800236 34993177
    [Google Scholar]
  20. SinghR.K. SahoreK. RanaR. PrasadD.N. KumarS. Current development on catalytic synthesis and pharmacological applications of 1, 4-dihydropyridines.Iranian J Catalysis201664389408
    [Google Scholar]
  21. FaizanM. KumarR. MazumderA. Salahuddin; Kukreti, N.; Tyagi, P.K.; Kapoor, B. Hantzsch reaction: The important key for pyridine/dihydropyridine synthesis.Synth. Commun.202454151221124410.1080/00397911.2024.2377738
    [Google Scholar]
  22. LavanyaG. Abdul Khadar Iynoon JariyaS. SasikalaM. KalpanaV. PadmanabanA. WangJ. AliB.M. AliB.M. Recent advances in the synthesis of dihydropyridine and their corresponding fused systems via multi‐component Hantzsch reaction using catalytic nanomaterials.ChemistrySelect2024943e20240366410.1002/slct.202403664
    [Google Scholar]
  23. Vanden EyndeJ.J. MayenceA. Synthesis and aromatization of Hantzsch 1, 4-dihydropyridines under microwave irradiation. An overview.Molecules20038438139110.3390/80400381
    [Google Scholar]
  24. KhrustalevD. YedrissovA. KhrustalevaA. MustafinM. BekishevaK. An efficient method for the synthesis of 1,4-dihydropyridine derivatives in a flow microwave reactor.Mater. Today Proc.2023811204120810.1016/j.matpr.2023.02.225
    [Google Scholar]
  25. ShakibP. DekaminM.G. ValieyE. KaramiS. DohendouM. Ultrasound-Promoted preparation and application of novel bifunctional core/shell Fe3O4@SiO2@PTS-APG as a robust catalyst in the expeditious synthesis of Hantzsch esters.Sci. Rep.2023131801610.1038/s41598‑023‑33990‑7 37198267
    [Google Scholar]
  26. RahmanA. NehemiaP.N. NyambeM.M. An efficient method for the synthesis of dihydropyridine by Hantzsch reaction with Fe/SiO2 nano heterogeneous catalysts.Bull. Chem. React. Eng. Catal.202015361763010.9767/bcrec.15.3.7669.617‑630
    [Google Scholar]
  27. KaurP. SharmaH. RanaR. PrasadD.N. SinghR.K. Comparative study of various green chemistry approaches for the efficient synthesis of 1,4-DHPs.Asian J. Chem.2012241256495651
    [Google Scholar]
  28. JassemA.M. AlmashalF.A.K. MohammedM.Q. JabirH.A.S. A catalytic and green method for one-pot synthesis of new Hantzsch 1,4-dihydropyridines.SN Appl. Sci.2020235910.1007/s42452‑020‑2165‑x
    [Google Scholar]
  29. SabryE. kamel, A.A.; El-Sayed, A.F.; Abdel-aziz, M.S.; Sediek, A.A. Multicomponent reaction for the synthesis of novel nicotinonitrile analogues bearing imidazole or triazole moieties: Synthesis, antioxidant activity, molecular docking, and ADMET studies.J. Mol. Struct.2025132013958310.1016/j.molstruc.2024.139583
    [Google Scholar]
  30. MohlalaR.L. RashamuseT.J. CoyanisE.M. Highlighting multicomponent reactions as an efficient and facile alternative route in the chemical synthesis of organic-based molecules: A tremendous growth in the past 5 years.Front Chem.202412146967710.3389/fchem.2024.1469677 39359421
    [Google Scholar]
  31. MaheswaraM. SiddaiahV. RaoY.K. TzengY.M. SridharC. A simple and efficient one-pot synthesis of 1,4-dihydropyridines using heterogeneous catalyst under solvent-free conditions.J. Mol. Catal. Chem.20062601-217918010.1016/j.molcata.2006.07.024
    [Google Scholar]
  32. IsahakW.N. Al-AmieryA. Catalysts driving efficiency and innovation in thermal reactions: A comprehensive review.Green Technol. Sustain.202422100078
    [Google Scholar]
  33. Sheik MansoorS. AswinK. LogaiyaK. SudhanS.P.N. Bismuth nitrate as an efficient recyclable catalyst for the one-pot multi component synthesis of 1,4-dihydropyridine derivatives through unsymmetrical Hantzsch reaction.J. Saudi Chem. Soc.201620S100S10810.1016/j.jscs.2012.09.010
    [Google Scholar]
  34. NakhaeiA. DavoodniaA. YadegarianS. Metal oxide nanoparticles as reusable heterogeneous catalysts in the synthesis of 1,4-DHP derivatives via solvent-free Hantzsch reaction: A comparative study.Iran. J. Org. Chem.2016819191927
    [Google Scholar]
  35. NaikR.R.T. ShivashankarA.S. Heterogeneous bimetallic ZnFe2O4 nano powder catalyzed synthesis of Hantzsch 1,4-DHPs in water. 2016, Tetrahedron Lett.573640464049
    [Google Scholar]
  36. BitarafM. AmoozadehA. OtokeshS. A simple and efficient one pot synthesis of 1,4-DHPs Using nano-WO3-supported sulfonic acid as a heterogeneous catalyst under solvent-free conditions. jnl Chin.Chem201663336344
    [Google Scholar]
  37. DekaminM.G. KazemiE. KarimiZ. MohammadalipoorM. Naimi-JamalM.R. Chitosan: An efficient biomacromolecule support for synergic catalyzing of Hantzsch esters by CuSO4.Int. J. Biol. Macromol.201693Pt A76777410.1016/j.ijbiomac.2016.09.012 27608546
    [Google Scholar]
  38. BhaskaruniS.V.H.S. MaddilaS. van ZylW.E. JonnalagaddaS.B. V2O5/ZrO2 as an efficient reusable catalyst for the facile, green, one-pot synthesis of novel functionalized 1,4-DHP derivatives.Catal. Today2017276281
    [Google Scholar]
  39. RekungeD.S. KhatriC.K. ChaturbhujG.U. Sulfated polyborate: An efficient and reusable catalyst for one pot synthesis of Hantzsch 1,4-dihydropyridines derivatives using ammonium carbonate under solvent free conditions.Tetrahedron Lett.201758121240124410.1016/j.tetlet.2017.02.038
    [Google Scholar]
  40. SharmaM.G. RajaniD.P. PatelH.M. Green approach for synthesis of bioactive Hantzsch 1,4-dihydropyridine derivatives based on thiophene moiety via multicomponent reaction.R. Soc. Open Sci.20174617000610.1098/rsos.170006 28680664
    [Google Scholar]
  41. SanchezL.M. SathicqÁ.G. RomanelliG.P. GonzálezL.M. VillaA.L. Activity of immobilized metallic phthalocyanines in the multicomponent synthesis of dihydropyridine derivatives and their subsequent aromatization.Molecular Catalysis201743511210.1016/j.mcat.2017.03.010
    [Google Scholar]
  42. MoradiL. ZareM. Ultrasound-promoted green synthesis of 1,4-DHPs using functionalized MWCNTs as a highly efficient heterogeneous catalyst.Green Chem. Rev.2018113197208
    [Google Scholar]
  43. MahinpourR. MoradiL. ZahraeiZ. PahlevanzadehN. New synthetic method for the synthesis of 1,4-dihydropyridine using aminated multiwalled carbon nanotubes as high efficient catalyst and investigation of their antimicrobial properties.J. Saudi Chem. Soc.201822787688510.1016/j.jscs.2017.11.001
    [Google Scholar]
  44. GoelV. BajwanA. ChauhanS. GoelS. An efficient and versatile method for synthesis of 1,4-DHPs at mild reaction conditions.Chem. Sci. Trans.201872343347
    [Google Scholar]
  45. SafaieeM. EbrahimghasriB. ZolfigolM.A. BagheryS. KhoshnoodA. AlonsoD.A. Synthesis and application of chitosan supported vanadium oxo in the synthesis of 1,4-dihydropyridines and 2,4,6-triarylpyridines via anomeric based oxidation.New J. Chem.20184215125391254810.1039/C8NJ02062K
    [Google Scholar]
  46. HeW. FangZ. ZhangK. TuT. LvN. QiuC. GuoK. A novel micro-flow system under microwave irradiation for continuous synthesis of 1,4-dihydropyridines in the absence of solvents via Hantzsch reaction.Chem. Eng. J.201833116116810.1016/j.cej.2017.08.103
    [Google Scholar]
  47. LavanyaG. VenkatapathyK. MageshC.J. PerumalP.T. SathishkumarR. AmudhaP. The first recyclable, nanocrystalline CdS thin film mediated eco-benign synthesis of Hantzsch 1, 4- dihydropyridines, 1, 8-dioxodecahydroacridine and polyhydroquinolines derivatives.Appl. Organomet. Chem.2019339e502610.1002/aoc.5026
    [Google Scholar]
  48. ZeynizadehB. RahmaniS. EghbaliE. Anchored sulfonic acid on silica-layered NiFe2O4: A magnetically reusable nanocatalyst for Hantzsch synthesis of 1,4-dihydropyridines.Polyhedron2019168576610.1016/j.poly.2019.04.035
    [Google Scholar]
  49. BhaskaruniS.V.H.S. MaddilaS. van ZylW.E. JonnalagaddaS.B. Four-component fusion protocol with NiO/ZrO2 as a robust recyclable catalyst for novel 1,4-DHPs.ACS Omega2019425211872119610.1021/acsomega.9b02608 31867512
    [Google Scholar]
  50. DavarpanahJ. GhahremaniM. NajafiO. Synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives via Hantzsch reaction using nicotinic acid as a green and reusable catalyst.J. Mol. Struct.2019117752553510.1016/j.molstruc.2018.10.002
    [Google Scholar]
  51. AllahresaniA. SanganiM.M. NasseriA.M. CoFe2O4@SiO2- NH2-CoII NPs catalyzed Hantzsch reaction as an efficient, reusable catalyst for the facile, green, one-pot synthesis of novel functionalized 1,4-DHP derivatives. Applied Oragan. Chem,202010.1002/aoc.575
  52. KusampallyU. DhachapallyN. KolaR. KamatalaC.R. Zeolite anchored Zr-ZSM-5 as an eco-friendly, green, and reusable catalyst in Hantzsch synthesis of dihydropyridine derivatives.Mater. Chem. Phys.202024212249710.1016/j.matchemphys.2019.122497
    [Google Scholar]
  53. BosicaG. DemanueleK. PadrónJ.M. PuertaA. One-pot multicomponent green Hantzsch synthesis of 1,2-dihydropyridine derivatives with antiproliferative activity.Beilstein J. Org. Chem.2020162862286910.3762/bjoc.16.235 33299484
    [Google Scholar]
  54. TiwariS.K. ShivhareK.N. PatelM.K. YadavV. NazeefM. SiddiquiI.R. A metal free, Hantzsch synthesis for privileged scaffold 1, 4-dihydropyridines: A glycerol promoted sustainable protocol.Polycycl. Aromat. Compd.202010.1080/10406638.2020.1764988
    [Google Scholar]
  55. ValadiK. GharibiS. Taheri-LedariR. MalekiA. Ultrasound-assisted synthesis of 1,4-dihydropyridine derivatives by an efficient volcanic-based hybrid nanocomposite.Solid State Sci.202010110614110.1016/j.solidstatesciences.2020.106141
    [Google Scholar]
  56. SayahiM.H. SaghanezhadS.J. Mostafa-ShehniL. One-pot preparation of novel 1,4-DHPs in the presence of SBA-15-SO3H.Org. Prep. Proced. Int.202052546847310.1080/00304948.2020.1785810
    [Google Scholar]
  57. GhoshA. KavithaC.S. KeriR.S. Fe3O4@cysteine nanocomposite: An efficient and reusable catalyst for the facile, green, one-pot synthesis of 1,4-DHP via Hantzsch reaction.Chemical Data Collections202110.1016/j.cdc.2021.100688
    [Google Scholar]
  58. ZargarzadehR. One-pot synthesis of 1,4-DHP derivatives using the Fe2ZnAl2O7 catalyzed Hantzsch three-component reaction.J. Chin. Chem. Soc.202110.1002/jccs.202000322
    [Google Scholar]
  59. Ali El-RemailyM.A.E.A.A. HamadH.A. SolimanA.M.M. ElhadyO.M. Boosting the catalytic performance of manganese (III)‐porphyrin complex MnTSPP for facile one‐pot green synthesis of 1,4‐dihydropyridine derivatives under mild conditions.Appl. Organomet. Chem.2021357e623810.1002/aoc.6238
    [Google Scholar]
  60. ErşatırM. TürkM. GirayE.S. An efficient and green synthesis of 1,4-dihydropyridine derivatives through multi-component reaction in subcritical EtOH.J. Supercrit. Fluids202117610530310.1016/j.supflu.2021.105303
    [Google Scholar]
  61. MoradiS. MoradianM. NaeimiH. Efficient one-pot synthesis of 1,4-DHPs catalyzed by magnetic MnFe2O4 nanoparticles.Acta Chim. Slov.202269234935810.17344/acsi.2021.7238 35861082
    [Google Scholar]
  62. MokhtarM. SalehT.S. NarasimharaoK. Al-MutairiE. New green perspective to dihydropyridines synthesis utilizing modified heteropoly acid catalysts.Catal. Today2022397-39948449610.1016/j.cattod.2021.07.006
    [Google Scholar]
  63. SinghR.K. SinghB. DuvediR. KumarS. Sulfanilic acid: A versatile and efficient catalyst among various organoacids screened for the synthesis of 1-amidoalkyl-2-naphthols under solvent-free condition.Res. Chem. Intermed.20154174083409910.1007/s11164‑013‑1513‑5
    [Google Scholar]
  64. AnchanH.N. NaikC.P. BhatN.S. KumariM. DuttaS. Efficient synthesis of novel biginelli and Hantzsch products sourced from bio renewable furfurals using gluconic acid aqueous solution as the green organocatalyst.ACS Omega2023837340773408310.1021/acsomega.3c05106 37744814
    [Google Scholar]
  65. WillongL. GangshinS. Eco-friendly synthesis of 1,4-DHP derivatives by using Fe3O4@Phen@Cu magnetic catalyst.J. Synth. Chem20232252264
    [Google Scholar]
  66. IchieS. SolerF. Magnetic nanoparticles functionalized with benzo[d]oxazole as an efficient and Recyclable.J. Synth. Chem2023227528710.22034/jsc.2023.431708.1061
    [Google Scholar]
  67. ZhangH.F. JialonR. A suitable method for the synthesis of 1,4-DHP in the presence of MnFe2O4Catalyst.Biol. Mol. Chem202318293
    [Google Scholar]
  68. ShindeS.T. KanadeK.G. GawadeR.B. HingeV.B. ShindeM.D. BankarD.B. ThoratN.M. AmalnerkarD.P. AlCl 3 @ZnO nanostructured material: An efficient green catalyst for the one-pot solvent-free synthesis of 1,4-dihydropyridines.RSC Advances20231335247672477610.1039/D3RA04277D 37601590
    [Google Scholar]
  69. PhasageD.B. SharmaS.K. TripathiB. SrivastavaS.C. One-pot green synthesis of 1,4-DHP derivatives using polyindole TiO2 Nano catalyst by Solvent Free Method, Open.J. Compos. Mater.202414109123
    [Google Scholar]
  70. PachipulusuS. MeruguK.S. BhonsleR.R. KurnoolA. A facile microwave‐mediated method of 1,4‐dihydropyridine carboxylates synthesis by multicomponent reaction.J. Heterocycl. Chem.20246161009101410.1002/jhet.4817
    [Google Scholar]
  71. DolatyariK. KhodaeiM.M. Synthesis and application of an effective magnetic catalyst immobilized copper oxide for the one-pot ultrasound-assisted synthesis of 1,4-dihydropyridines.J. Organomet. Chem.2024102112335210.1016/j.jorganchem.2024.123352
    [Google Scholar]
  72. MotamedN.K. LarijaniK. PournamdariE. SaeidianH. HargalaniF.Z. One pot multicomponent reaction of curcumin: Green synthesis of novel 1,4‐dihydropyridine‐2,3‐dicarboxylates.J. Heterocycl. Chem.20246181306131310.1002/jhet.4857
    [Google Scholar]
  73. GhoderaoS. BandivadekarP. ChaturbhujG.U. Efficient and eco-friendly synthesis of Hantzsch’s 1,4-dihydropyridines by recyclable organocatalyst N-(phenylsulfonyl)benzene sulfonamide.Results Chem.2024710140710.1016/j.rechem.2024.101407
    [Google Scholar]
  74. SinghV. RajputK. SinghS. SrivastavaV. Montmorillonite K-10 catalyzed synthesis of Hantzsch dihydropyridine derivatives from methyl arenes via in situ generated ammonia under microwave irradiation in neat conditions.RSC Advances20241437270862709110.1039/D4RA04990J 39193309
    [Google Scholar]
  75. XuY.Y. JinM.L. GaoZ.H. YeS. Synthesis of 1,4‐Dihydropyridines via addition of furfural‐derived trienolates to pyridiniums under NHC catalysis.Adv. Synth. Catal.202436661315131910.1002/adsc.202301333
    [Google Scholar]
/content/journals/cos/10.2174/0115701794374153250307065611
Loading
/content/journals/cos/10.2174/0115701794374153250307065611
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test