Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Introduction

The development of efficient and sustainable catalytic methodologies has garnered considerable attention in contemporary organic synthesis.

Methods

Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1-imidazo[4,5-][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs). The catalyst was meticulously characterized through scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), and inductively coupled plasma (ICP) analysis. The catalytic process, exemplified by the synthesis of heterocyclic compounds, demonstrated high isolated yields, attesting to the robust performance of the catalyst.

Results

Furthermore, the reusability of the catalyst was validated through five consecutive reactions without a notable decrease in yield, while structural stability was confirmed by SEM analysis. The methodology combines green reaction conditions, room temperature operation, and facile magnetic catalyst separation, underscoring its potential for sustainable synthesis.

Conclusion

This work highlights the promise of the Cu@DPP-SPION catalyst as an innovative tool in heterogeneous catalysis and its role in advancing efficient and environmentally conscious synthetic methodologies.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794339302241011113823
2025-01-14
2025-10-23
Loading full text...

Full text loading...

References

  1. PrinsenP. LuqueR. Introduction to nanocatalystsRoyal Society and Chemistry: Burlington House, London2019136
    [Google Scholar]
  2. AstrucD. Introduction: Nanoparticles in Catalysis.Chem. Rev.2020120246146310.1021/acs.chemrev.8b00696 31964144
    [Google Scholar]
  3. AfolabiR.O. A comprehensive review of nanosystems’ multifaceted applications in catalysis, energy, and the environment.J. Mol. Liq.202439712419010.1016/j.molliq.2024.124190
    [Google Scholar]
  4. ChaturvediS. DaveP.N. ShahN.K. Applications of nano-catalyst in new era.J. Saudi Chem. Soc.201216330732510.1016/j.jscs.2011.01.015
    [Google Scholar]
  5. MartíG. MallónL. RomeroN. FrancàsL. BofillR. PhilippotK. García-AntónJ. SalaX. Surface‐Functionalized Nanoparticles as Catalysts for Artificial Photosynthesis.Adv. Energy Mater.20231321230028210.1002/aenm.202300282
    [Google Scholar]
  6. StarkW.J. StoesselP.R. WohllebenW. HafnerA. Industrial applications of nanoparticles.Chem. Soc. Rev.201544165793580510.1039/C4CS00362D 25669838
    [Google Scholar]
  7. DeM. GhoshP.S. RotelloV.M. Applications of nanoparticles in biology.Adv. Mater.200820224225424110.1002/adma.200703183
    [Google Scholar]
  8. SchröfelA. KratošováG. ŠafaříkI. ŠafaříkováM. RaškaI. ShorL.M. Applications of biosynthesized metallic nanoparticles – A review.Acta Biomater.201410104023404210.1016/j.actbio.2014.05.022 24925045
    [Google Scholar]
  9. DavoudizadehS. GhasemiM. KhezriK. BahadorikhaliliS. Poly(styrene-co-butyl acrylate)/mesoporous diatomaceous earth mineral nanocomposites by in situ AGET ATRP.J. Therm. Anal. Calorim.201813132513252110.1007/s10973‑017‑6771‑9
    [Google Scholar]
  10. EbrahimiS.M. Karamat IradmousaM. RashedM. FattahiY. Hosseinzadeh ArdakaniY. BahadorikhaliliS. BafkaryR. ErfanM. DinarvandR. MahboubiA. Enzyme and Thermo Dual-stimuli Responsive DOX Carrier Based on PNIPAM Conjugated Mesoporous Silica.Iran. J. Pharm. Res.2022211e13047410.5812/ijpr‑130474 36915404
    [Google Scholar]
  11. DikshitP. KumarJ. DasA. SadhuS. SharmaS. SinghS. GuptaP. KimB. Green synthesis of metallic nanoparticles: Applications and limitations.Catalysts202111890210.3390/catal11080902
    [Google Scholar]
  12. KumarP. TomarV. KumarD. JoshiR.K. NemiwalM. Magnetically active iron oxide nanoparticles for catalysis of organic transformations: A review.Tetrahedron2022106-10713264110.1016/j.tet.2022.132641
    [Google Scholar]
  13. VangijzegemT. LecomteV. TernadI. Van LeuvenL. MullerR.N. StanickiD. LaurentS. Superparamagnetic iron oxide nanoparticles (SPION): from fundamentals to state-of-the-art innovative applications for cancer therapy.Pharmaceutics202315123610.3390/pharmaceutics15010236 36678868
    [Google Scholar]
  14. HeydariZ. BahadorikhaliliS. RanjbarP.R. MahdaviM. DABCO‐modified super‐paramagnetic nanoparticles as an efficient and water‐compatible catalyst for the synthesis of pyrano[3,2‐ c:5,6‐ c ']dichromene‐6,8‐dione derivatives under mild reaction conditions.Appl. Organomet. Chem.20183212e456110.1002/aoc.4561
    [Google Scholar]
  15. BahadorikhaliliS. AnsariS. HamedifarH. MahdaviM. The use of magnetic starch as a support for an ionic liquid-β-cyclodextrin based catalyst for the synthesis of imidazothiadiazolamine derivatives.Int. J. Biol. Macromol.201913545346110.1016/j.ijbiomac.2019.05.197 31150668
    [Google Scholar]
  16. NelsonN. PortJ. PandeyM. Use of superparamagnetic iron oxide nanoparticles (SPIONs) via multiple imaging modalities and modifications to reduce cytotoxicity: An educational review.J. Nanotheranostics20201110513510.3390/jnt1010008
    [Google Scholar]
  17. LaurentS. SaeiA.A. BehzadiS. PanahifarA. MahmoudiM. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: Opportunities and challenges.Expert Opin. Drug Deliv.20141191449147010.1517/17425247.2014.924501 24870351
    [Google Scholar]
  18. PalanisamyS. WangY.M. Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer.Dalton Trans.201948269490951510.1039/C9DT00459A 31211303
    [Google Scholar]
  19. UllahS. SeidelK. TürkkanS. WarwasD.P. DubichT. RohdeM. HauserH. BehrensP. KirschningA. KösterM. WirthD. Macrophage entrapped silica coated superparamagnetic iron oxide particles for controlled drug release in a 3D cancer model.J. Control. Release201929432733610.1016/j.jconrel.2018.12.040 30586597
    [Google Scholar]
  20. SamrotA.V. SahithyaC.S. SelvaraniA. J.; Purayil, S.K.; Ponnaiah, P. A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles.Curr. Res. Green Sustain.Chem.2021410004210.1016/j.crgsc.2020.100042
    [Google Scholar]
  21. WuJ. WuC. CaiZ. GuH. LiuL. XiaC. SuL. GongQ. SongB. AiH. Ultra-small superparamagnetic iron oxide nanoparticles for intra-articular targeting of cartilage in early osteoarthritis.Regenerat. Biomater.202310rbad052
    [Google Scholar]
  22. ColbertC.M. MingZ. PogosyanA. FinnJ.P. NguyenK.L. Comparison of three ultrasmall, superparamagnetic iron oxide nanoparticles for MRI at 3.0 T.J. Magn. Reson. Imaging202357618191829
    [Google Scholar]
  23. JiangL. ZhengR. ZengN. WuC. SuH. In situ self-assembly of amphiphilic dextran micelles and superparamagnetic iron oxide nanoparticle-loading as magnetic resonance imaging contrast agents.Regenerat. Biomater.202310rbac096
    [Google Scholar]
  24. HatinogluD. LeeJ. FortnerJ. ApulO. Superparamagnetic iron oxide nanoparticles as additives for microwave-based sludge prehydrolysis: A perspective.Environ. Sci. Technol.20235733121911220010.1021/acs.est.3c00673 37550081
    [Google Scholar]
  25. SayahiM.H. SepahdarA. BazrafkanF. DehghaniF. MahdaviM. BahadorikhaliliS. Ionic liquid modified SPION@Chitosan as a novel and reusable superparamagnetic catalyst for green one-pot synthesis of Pyrido[2,3-d]pyrimidine-dione derivatives in water.Catalysts202313229010.3390/catal13020290
    [Google Scholar]
  26. GeorgeJ. K AlanaziA. Senthil Kumar, P.; Venkataraman, S.; Rajendran, D.S.; Athilakshmi, J.K.; Singh, I.; Singh, I.; Sen, P.; Purushothaman, M.; Balakumaran, P.A.; Vaidyanathan, V.K.; M Abo-Dief, H. Laccase-immobilized on superparamagnetic iron oxide nanoparticles incorporated polymeric ultrafiltration membrane for the removal of toxic pentachlorophenol.Chemosphere202333113873410.1016/j.chemosphere.2023.138734 37088205
    [Google Scholar]
  27. NeheA.D. KulkarniA.D. Fundamentals of superparamagnetic iron oxide nanoparticles: Recent update.J. Micro. Ultrastruct.2023202317
    [Google Scholar]
  28. YangP.P. ZhangX.L. LiuP. KellyD.J. NiuZ.Z. KongY. ShiL. ZhengY.R. FanM.H. WangH.J. GaoM.R. Highly Enhanced Chloride Adsorption Mediates Efficient Neutral CO 2 Electroreduction over a Dual-Phase Copper Catalyst.J. Am. Chem. Soc.2023145158714872510.1021/jacs.3c02130 37021910
    [Google Scholar]
  29. GhasemiN. MoazzamA. BahadorikhaliliS. YavariA. HosseiniS. SayahiM.H. LarijaniB. HamedifarH. AnsariS. MahdaviM. N-Arylation Reaction of 2-Amino-N-phenylbenzamide with Phenyl Boronic Acid via Chan–Evans–Lam (CEL) Type Reaction Using Cu@Phen@MGO Catalyst.Catal. Lett.2023153380581310.1007/s10562‑022‑04010‑6
    [Google Scholar]
  30. GhasemiN. YavariA. BahadorikhaliliS. MoazzamA. HosseiniS. LarijaniB. IrajiA. MoradiS. MahdaviM. Copper Catalyst-Supported Modified Magnetic Chitosan for the Synthesis of Novel 2-Arylthio-2,3-dihydroquinazolin-4(1H)-one Derivatives via Chan–Lam Coupling.Inorganics (Basel)2022101223110.3390/inorganics10120231
    [Google Scholar]
  31. SayahiM.H. AfrouzandehZ. BahadorikhaliliS. Cu (OAc) 2 catalyzed synthesis of novel chromeno [4, 3-b] pyrano [3, 4-e] pyridine-6, 8-dione derivatives via a one-pot multicomponent reaction in water under mild reaction conditions.Polycycl. Aromat. Compd.20224263391340010.1080/10406638.2020.1866037
    [Google Scholar]
  32. ChenY.X. ZhangM. ZhangS.Z. HaoZ.Q. ZhangZ.H. Copper-decorated covalent organic framework as a heterogeneous photocatalyst for phosphorylation of terminal alkynes.Green Chem.202224104071408110.1039/D2GC00754A
    [Google Scholar]
  33. LiuH. LiX. MaZ. SunM. LiM. ZhangZ. ZhangL. TangZ. YaoY. HuangB. GuoS. Atomically dispersed Cu catalyst for efficient chemoselective hydrogenation reaction.Nano Lett.20212124102841029110.1021/acs.nanolett.1c03381 34882416
    [Google Scholar]
  34. LashanizadeganM. GorgannejadZ. SarkheilM. Cu(II) Schiff base complex on magnetic support: An efficient nano-catalyst for oxidation of olefins using H2O2 as an eco-friendly oxidant.Inorg. Chem. Commun.202112510837310.1016/j.inoche.2020.108373
    [Google Scholar]
  35. MomeniS. Ghorbani-VagheiR. Green synthesis of quinazoline derivatives using a novel recyclable nano-catalyst of magnetic modified graphene oxide supported with copper.Sci. Rep.20231312095810.1038/s41598‑023‑48120‑6 38017065
    [Google Scholar]
  36. MotahharifarN. NasrollahzadehM. Taheri-KafraniA. VarmaR.S. ShokouhimehrM. Magnetic chitosan-copper nanocomposite: A plant assembled catalyst for the synthesis of amino- and N-sulfonyl tetrazoles in eco-friendly media.Carbohydr. Polym.202023211581910.1016/j.carbpol.2019.115819 31952615
    [Google Scholar]
  37. LeeH. KimK.T. KimM. KimC. Recent advances in catalytic [3, 3]-sigmatropic rearrangements.Catalysts202212222710.3390/catal12020227
    [Google Scholar]
  38. WangF. ChenP. LiuG. Copper-catalysed asymmetric radical cyanation.Nat. Synth.20221210711610.1038/s44160‑021‑00016‑x
    [Google Scholar]
  39. SagadevanA. GhoshA. MaityP. MohammedO.F. BakrO.M. RuepingM. Visible-light copper nanocluster catalysis for the C–N coupling of aryl chlorides at room temperature.J. Am. Chem. Soc.202214427120521206110.1021/jacs.2c02218 35766900
    [Google Scholar]
  40. DingY. FuL. PengX. LeiM. WangC. JiangJ. Copper catalysts for radical and nonradical persulfate based advanced oxidation processes: Certainties and uncertainties.Chem. Eng. J.202242713177610.1016/j.cej.2021.131776
    [Google Scholar]
  41. GuF. QinX. LiM. XuY. HongS. OuyangM. GiannakakisG. CaoS. PengM. XieJ. WangM. HanD. XiaoD. WangX. WangZ. MaD. Selective catalytic oxidation of methane to methanol in aqueous medium over copper cations promoted by atomically dispersed rhodium on TiO2.Angew. Chem. Int. Ed.20226118e20220154010.1002/anie.202201540 35199428
    [Google Scholar]
  42. ChenW. JinH. HeF. CuiP. CaoC. SongW. Dynamic evolution of nitrogen and oxygen dual-coordinated single atomic copper catalyst during partial oxidation of benzene to phenol.Nano Res.20221543017302510.1007/s12274‑021‑3936‑4
    [Google Scholar]
  43. WangJ. GaoF. DangP. TangX. LuM. DuY. ZhouY. YiH. DuanE. Recent advances in NO reduction with CO over copper-based catalysts: reaction mechanisms, optimization strategies, and anti-inactivation measures.Chem. Eng. J.202245013737410.1016/j.cej.2022.137374
    [Google Scholar]
  44. BahadorikhaliliS. MalekK. MahdaviM. Efficient One Pot Synthesis of Phenylimidazo[1,2‐ a]pyridine Derivatives using Multifunctional Copper Catalyst Supported on β‐Cyclodextrin Functionalized Magnetic Graphene oxide.Appl. Organomet. Chem.20203411e591310.1002/aoc.5913
    [Google Scholar]
  45. SinghR. SinghG. GeorgeN. SinghG. GuptaS. SinghH. KaurG. SinghJ. Copper-Based Metal–Organic Frameworks (MOFs) as an Emerging Catalytic Framework for Click Chemistry.Catalysts202313113010.3390/catal13010130
    [Google Scholar]
  46. Sadat-EbrahimiS.E. Haghayegh-ZavarehS.M. BahadorikhaliliS. Yahya-MeymandiA. MahdaviM. SaeediM. Cu(II)- β -cyclodextrin-catalyzed synthesis of spiro[indoline-3,4′-pyrano[3,2- c]chromene]-3′-carbonitrile derivatives.Synth. Commun.201747242324232910.1080/00397911.2017.1373822
    [Google Scholar]
  47. AsgariM.S. BahadorikhaliliS. GhaempanahA. Rashidi RanjbarP. RahimiR. AbbasiA. LarijaniB. MahdaviM. Copper-catalyzed one-pot synthesis of amide linked 1,2,3-triazoles bearing aryloxy skeletons.Tetrahedron Lett.20216515276510.1016/j.tetlet.2020.152765
    [Google Scholar]
  48. Sadegh AsgariM. BahadorikhaliliS. RahimiR. MahdaviM. Copper Supported onto Magnetic Nanoparticles as an Efficient Catalyst for the Synthesis of Triazolobenzodiazepino[7,1‐b] quinazolin‐11(9 H)‐ones via Click N ‐Arylation Reactions.ChemistrySelect2021661385139210.1002/slct.202003724
    [Google Scholar]
  49. AsgariM.S. SepehriS. BahadorikhaliliS. RanjbarP.R. RahimiR. GholamiA. KazemiA. KhoshneviszadehM. LarijaniB. MahdaviM. Magnetic silica nanoparticle-supported copper complex as an efficient catalyst for the synthesis of novel triazolopyrazinylacetamides with improved antibacterial activity.Chem. Heterocycl. Compd.202056448849410.1007/s10593‑020‑02685‑6
    [Google Scholar]
  50. LiuY. BaiY. Design and engineering of metal catalysts for bio-orthogonal catalysis in living systems.ACS Appl. Bio Mater.2020384717474610.1021/acsabm.0c00581 35021720
    [Google Scholar]
  51. NgoA.H. BoseS. DoL.H. Intracellular chemistry: Integrating molecular inorganic catalysts with living systems.Chemistry20182442105841059410.1002/chem.201800504 29572980
    [Google Scholar]
  52. AlonsoF. MoglieY. RadivoyG. Copper nanoparticles in click chemistry.Acc. Chem. Res.20154892516252810.1021/acs.accounts.5b00293 26332570
    [Google Scholar]
  53. JabbariA. MoradiP. HajjamiM. TahmasbiB. Tetradentate copper complex supported on boehmite nanoparticles as an efficient and heterogeneous reusable nanocatalyst for the synthesis of diaryl ethers.Sci. Rep.20221211166010.1038/s41598‑022‑15921‑0 35804003
    [Google Scholar]
  54. LourensA. FalchA. OttoD. Malgas-EnusR. Magnetic styrene polymers obtained via coordination polymerization of styrene by Ni and Cu nanoparticles.Inorg. Chem. Commun.202214210958610.1016/j.inoche.2022.109586
    [Google Scholar]
  55. BahadorikhaliliS. AshtariA. Ma’maniL. RanjbarP.R. MahdaviM. Copper‐supported β‐cyclodextrin‐functionalized magnetic nanoparticles: Efficient multifunctional catalyst for one‐pot ‘green’ synthesis of 1,2,3‐triazolylquinazolinone derivatives.Appl. Organomet. Chem.2018324e421210.1002/aoc.4212
    [Google Scholar]
  56. RakhtshahJ. A comprehensive review on the synthesis, characterization, and catalytic application of transition-metal Schiff-base complexes immobilized on magnetic Fe3O4 nanoparticles.Coord. Chem. Rev.202246721461410.1016/j.ccr.2022.214614
    [Google Scholar]
  57. BenzekriZ. SibousS. El hajri, F.; Hsissou, R.; Boukhris, S.; Souizi, A. Investigation of snail shell waste as potential and eco-friendly heterogeneous catalyst for synthesis of 1-(benzothiazolylamino) methyl-2-naphthols derivatives.Chemical Data Collections20213110059910.1016/j.cdc.2020.100599
    [Google Scholar]
  58. MiceliM. FronteraP. MacarioA. MalaraA. Recovery/reuse of heterogeneous supported spent catalysts.Catalysts202111559110.3390/catal11050591
    [Google Scholar]
  59. LaldinpuiiZ. LalhmangaihzualaS. PachuauZ. VanlaldinpuiaK. Depolymerization of poly(ethylene terephthalate) waste with biomass-waste derived recyclable heterogeneous catalyst.Waste Manag.202112611010.1016/j.wasman.2021.02.056 33730654
    [Google Scholar]
  60. MelchiorreM. CucciolitoM.E. Di SerioM. RuffoF. TaralloO. TrifuoggiM. EspositoR. Homogeneous catalysis and heterogeneous recycling: A simple Zn (ii) catalyst for green fatty acid esterification.ACS Sustain. Chem.& Eng.20219176001601110.1021/acssuschemeng.1c01140 34306834
    [Google Scholar]
  61. KoreR. SawantA.D. RogersR.D. Recyclable magnetic Fe3O4 nanoparticle-supported chloroaluminate ionic liquids for heterogeneous lewis acid catalysis.ACS Sustain. Chem.& Eng.20219268797880210.1021/acssuschemeng.1c01803
    [Google Scholar]
  62. Vásquez-CéspedesS. BetoriR.C. CismesiaM.A. KirschJ.K. YangQ. Heterogeneous catalysis for cross-coupling reactions: An underutilized powerful and sustainable tool in the fine chemical industry?Org. Process Res. Dev.202125474075310.1021/acs.oprd.1c00041
    [Google Scholar]
  63. GhasemiN. MoradiS. IrajiA. MahdaviM. Thiazolopyrimidine derivatives as novel class of small molecule tyrosinase inhibitor.BMC Chem.202317115610.1186/s13065‑023‑01077‑z 37981674
    [Google Scholar]
  64. DurgaraoB. GowdS. ReddyB. RaoN.S. RaoN.K. One pot synthesis, characterization and antimicrobial activity of methyl-6-methyl-4-phenyl-2-thioxo-1, 2, 3, 4-tetrahydropyrimidine-5-carboxylate.World J. Pharm. Res.202211117684
    [Google Scholar]
  65. DarandaleS.N. PansareD.N. MullaN.A. ShindeD.B. Green synthesis of tetrahydropyrimidine analogues and evaluation of their antimicrobial activity.Bioorg. Med. Chem. Lett.20132392632263510.1016/j.bmcl.2013.02.099 23522562
    [Google Scholar]
  66. MahmoudN.F.H. GhareebE.A. Synthesis of novel substituted tetrahydropyrimidine derivatives and evaluation of their pharmacological and antimicrobial activities.J. Heterocycl. Chem.2019561819110.1002/jhet.3374
    [Google Scholar]
  67. MilovićE. PetronijevićJ. JoksimovićN. BeljkašM. RužićD. NikolićK. VranešM. TotA. CrnogoracM.Đ. StanojkovićT. JankovićN. Anticancer evaluation of the selected tetrahydropyrimidines: 3D-QSAR, cytotoxic activities, mechanism of action, DNA, and BSA interactions.J. Mol. Struct.2022125713262110.1016/j.molstruc.2022.132621
    [Google Scholar]
  68. HorishnyV.Y. ZadorozhniiP.V. HorishniaI.V. MatiychukV.S. Synthesis, Anti-Inflammatory Activity and Molecular Docking Studies of 1,4,5,6-Tetrahydropyrimidine-2-Carboxamides.Ulum-i Daruyi202027335336510.34172/PS.2020.100
    [Google Scholar]
  69. BeyzaeiH. KooshkiS. AryanR. ZahediM.M. Samzadeh-KermaniA. GhasemiB. Moghaddam-ManeshM. MgO nanoparticle-catalyzed synthesis and broad-spectrum antibacterial activity of imidazolidine-and tetrahydropyrimidine-2-thione derivatives.Appl. Biochem. Biotechnol.2018184129130210.1007/s12010‑017‑2544‑y 28676962
    [Google Scholar]
  70. SepehriS. Razzaghi-AslN. Kamrani-MoghadamM. FarhangiB. VahabpourR. ZabihollahiR. Design, synthesis and evaluation of cytotoxic, antimicrobial, and anti-HIV-1 activities of new 1,2,3,4-tetrahydropyrimidine derivatives.Res. Pharm. Sci.201914215516610.4103/1735‑5362.253363 31620192
    [Google Scholar]
  71. XuT. LiW. ZhangR. GuoS. YuB. CongH. ShenY. Synthesis of poly-tetrahydropyrimidine antibacterial polymers and research of their basic properties.Biomater. Sci.20221041026104010.1039/D1BM01465J 35024701
    [Google Scholar]
  72. AmbatwarR. KumarS. AgarwalD. ChandrakarL. KhatikG.L. Cobalt perchlorate hexahydrate catalyzed ONE‐POT synthesis of dihydropyrimidin‐ones/‐thiones through sonochemistry and its mechanistic study using density functional theory calculations.J. Heterocycl. Chem.202461116317710.1002/jhet.4756
    [Google Scholar]
  73. RamyaM. ShivakumarP. NagarajuD. LalithambaH. NagendraG. Heterogeneous catalysts NiCoSe 2 and NiCo 2 S 4 for the effective synthesis of dihydropyrimidine-2-ones/thiones.New J. Chem.202448188164817110.1039/D4NJ00285G
    [Google Scholar]
  74. NayakS.K. VenugopalaK.N. ChopraD. Vasu; Row, T.N.G. Effect of substitution on molecular conformation and packing features in a series of aryl substituted ethyl-6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates.CrystEngComm20101241205121610.1039/b919648j
    [Google Scholar]
  75. ChadotraS.N. BaldaniyaB. Synthesis and Characterizations of ethyl (2Z)-2-(Aryl)-5-(4-hydroxy-3-methoxyphenyl)-7-methyl-3-oxo-2, 3, 8, 8a-tetrahydro-5H-[1, 3] thiazolo [3, 2-a] pyrimidine-6-carboxylate Derivatives as Biological and Antifungal Active Agents.Sci. Technol.201733366370
    [Google Scholar]
  76. MekkiS. LaichiY. BenourradF. LaghaN. CheboutR. BachariK. Saidi-BesbesS. Copper triazole complex supported on Fe 3 O 4 @SiO 2 nanoparticles as eco‐friendly nanocatalysts in solvent‐free Biginelli reaction.Appl. Organomet. Chem.2023378e710310.1002/aoc.7103
    [Google Scholar]
  77. BajajS.D. TekadeP.V. Study of Density, Viscosity and Ultrasonic properties of Ethyl/methyl-4-(aryl)-6-methyl-2-oxo/thioxo-1, 2, 3, 4-tetrahydropyridimidine-5-carboxylate.Orbital: Electron. J. Chem.2014642052014
    [Google Scholar]
  78. DarehkordiA. GhaziS. An efficient ultrasonic-assisted synthesis of ethyl-5-(aryl)-2-(2-alkokxy-2-oxoethylidene)-7-methyl-3-oxo-3, 5-dihydro-2H-thiazolo [3, 2-a] pyrimidine-6-carboxylate derivatives.Arab. J. Chem.20191282175218210.1016/j.arabjc.2015.01.010
    [Google Scholar]
/content/journals/cos/10.2174/0115701794339302241011113823
Loading
/content/journals/cos/10.2174/0115701794339302241011113823
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test