Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1794
  • E-ISSN: 1875-6271

Abstract

Introduction

The protection of the hydroxyl group as formamides is a crucial initial step in pharmaceutical synthesis.

Methods

In this study, we investigated the -formylation of alcohols using dimethylformamide (DMF) in a mixture with a new magnetic nanocomposite FeO@Chitosan/POCl.

Results

The results demonstrate that this core-shell heterogeneous nanocomposite facilitates the formation of alkylformate, yielding products with high efficiency ranging from 79% to 96% within a remarkably short reaction time of 1 to 12 hours at room temperature, depending on the substrate structure. Significantly, the presence of this nanocomposite exhibits remarkable selectivity, favoring the formylation of less hindered benzylic and aliphatic primary alcohols. However, bulkier alcohols and phenols exhibit lower reactivity under these conditions and thiols do not react. The simplicity of the work-up procedure, combined with the magnetic recyclability, makes it reusable and environmentally friendly.

Conclusion

This study highlights the efficacy of this novel magnetic nanocomposite in facilitating formylation reactions, emphasizing its potential for application in pharmaceutical synthesis and bio compounds. This is due to its attributes of non-toxic nature, stability, and significant advantages over conventional methodologies.

Loading

Article metrics loading...

/content/journals/cos/10.2174/0115701794334114241001055331
2024-11-08
2025-09-08
Loading full text...

Full text loading...

References

  1. XieW. LiJ. Magnetic solid catalysts for sustainable and cleaner biodiesel production: A comprehensive review.Renew. Sustain. Energy Rev.202317111301710.1016/j.rser.2022.113017
    [Google Scholar]
  2. GebreS.H. Recent developments of supported and magnetic nanocatalysts for organic transformations: An up-to-date review.Appl. Nanosci.2023131156310.1007/s13204‑021‑01888‑3
    [Google Scholar]
  3. JiW. LiW. WangY. ZhangT.C. YuanS. Fe-MOFs/graphene oxide-derived magnetic nanocomposite for enhanced adsorption of As(V) in aqueous solution.Separ. Purif. Tech.202433412600310.1016/j.seppur.2023.126003
    [Google Scholar]
  4. Aghayi-AnarakiM. SafarifardV. Fe3O4@MOF magnetic nanocomposites: Synthesis and applications.Eur. J. Inorg. Chem.20202020201916193710.1002/ejic.202000012
    [Google Scholar]
  5. (a EbrahimzadehF. BaramakehL. Efficient removal of organic and inorganic pollutants from water using Fe3O4@SiO2@CS@EDTA nanocomposite: Optimization via Response Surface Methodology (RSM).ChemistrySelect2024910e20230252410.1002/slct.202302524
    [Google Scholar]
  6. (b EbrahimzadehF. Synthesis of secondary amines via amination of alcohols with benzylamine using the magnetic nano catalyst Fe3O4@SiO2@CS@EDTA/Cu(II).Int. Res. J. Mod. Eng. Technol202351010.56726/IRJMETS45483
    [Google Scholar]
  7. MoradiP. ZareiB. Abbasi TyulaY. NikoorazmM. Novel neodymium complex on MCM‐41 magnetic nanocomposite as a practical, selective, and returnable nanocatalyst in the synthesis of tetrazoles with antifungal properties in agricultural.Appl. Organomet. Chem.2023374e702010.1002/aoc.7020
    [Google Scholar]
  8. Soleimani-AmiriS. HossainiZ. AziziZ. Synthesis and investigation of biological activity of new oxazinoazepines: application of Fe3O4/CuO/ZnO@ MWCNT magnetic nanocomposite in reduction of 4-nitrophenol in water.Polycycl. Aromat. Compd.20234342938295910.1080/10406638.2022.2058969
    [Google Scholar]
  9. AziziM. MalekiA. HakimpoorF. Firouzi-HajiR. GhassemiM. RahimiJ. Green approach for highly efficient synthesis of polyhydroquinolines using Fe3O4@ PEO-SO3H as a novel and recoverable magnetic nanocomposite catalyst.Lett. Org. Chem.201815975375910.2174/1570178615666180126155204
    [Google Scholar]
  10. GawandeM.B. MongaY. ZborilR. SharmaR.K. Silica-decorated magnetic nanocomposites for catalytic applications.Coord. Chem. Rev.201528811814310.1016/j.ccr.2015.01.001
    [Google Scholar]
  11. MalekiA. AkhlaghiE. PaydarR. Design, synthesis, characterization and catalytic performance of a new cellulose‐based magnetic nanocomposite in the one‐pot three‐component synthesis of α‐aminonitriles.Appl. Organomet. Chem.201630638238610.1002/aoc.3443
    [Google Scholar]
  12. (a EbrahimzadehF. Employment of the magnetic nano-catalyst Fe3O4@SiO2@CS@POCl2-x/Cu(II) for the amination of alcohols.J Chem Reactiv Synth2023133240254
    [Google Scholar]
  13. (b EbrahimzadehF. Utilizing NCP@PO(OH)2 as a core-shell magnetic nano-catalyst for the conversion of β-hydroxy nitrile to α,β-unsaturated carboxylic acid.Lett. Org. Chem.2025221707710.2174/0115701786307956240522081438
    [Google Scholar]
  14. AniaC.O. ParraJ.B. PisJ.J. Influence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds.Fuel Process. Technol.200279326527110.1016/S0378‑3820(02)00184‑4
    [Google Scholar]
  15. LiY. YangB. YanL. GaoW. OmerK.M. FoongL.K. Recent advances in O-formylation of alcohols and phenols using efficient catalysts in eco-friendly media.Synth. Commun.202050142132215510.1080/00397911.2020.1744015
    [Google Scholar]
  16. SonawaneR.B. SonawaneS.R. RasalN.K. JagtapS.V. Chemoselective O -formyl and O -acyl protection of alkanolamines, phenoxyethanols and alcohols catalyzed by nickel(ii) and copper(ii)-catalysts.Green Chem.202022103186319510.1039/D0GC00520G
    [Google Scholar]
  17. SaladinoR. CrestiniC. CicirielloF. CostanzoG. Di MauroE. Formamide chemistry and the origin of informational polymers.Chem. Biodivers.20074469472010.1002/cbdv.200790059 17443884
    [Google Scholar]
  18. FirouzabadiH. IranpoorN. FarahiS. Solid trichlorotitanium(IV) trifluoromethanesulfonate TiCl3(OTf) catalyzed efficient acylation of –OH and –SH: Direct esterification of alcohols with carboxylic acids and transesterification of alcohols with esters under neat conditions.J. Mol. Catal. Chem.20082891-2616810.1016/j.molcata.2008.04.010
    [Google Scholar]
  19. LiangD. ZhouJ. LiD. ZhaoS. GuW. LiuS. WangJ. WuD. ShuR. JiangL. Er(OTf)3-catalyzed glycosylation of tertiary/secondary/primary alcohols with peracetylated glucosyl trichloroacetimidate.Tetrahedron Lett.202413515487510.1016/j.tetlet.2023.154875
    [Google Scholar]
  20. FirouzabadiH. IranpoorN. SobhaniS. GhassamipourS. Aluminum triflate Al(OTf)3 as a recyclable catalyst for the conversion of α-hydroxyphosphonates, alcohols and phenols to their corresponding o-silylated products with hexamethyldisilazane (HMDS).ChemInform20052005459559910.1055/s‑2005‑861789
    [Google Scholar]
  21. (a MöllerM. KångeR. HedrickJ. Sn(OTf)2 and Sc(OTf)3: Efficient and versatile catalysts for the controlled polymerization of lactones.J. Polym. Sci., Part A: Polym. Chem.2000381120672074
    [Google Scholar]
  22. (b DiY. YoshimuraT. NaitoS.I. KimuraY. KondoT. Homogeneous Sc(OTf)3-catalyzed direct allylation reactions of general alcohols with allylsilanes.ACS Omega2018312188851889410.1021/acsomega.8b01627
    [Google Scholar]
  23. ZiyadiH. BaghaliM. HeydariA. The synthesis and characterization of Fe2O3@SiO2–SO3H nanofibers as a novel magnetic core-shell catalyst for formamidine and formamide synthesis.Heliyon202176e0716510.1016/j.heliyon.2021.e07165 34151037
    [Google Scholar]
  24. GilanizadehM. ZeynizadehB. GholamiyanE. Green formylation of alcohols catalyzed by magnetic nanoparticles of the core–shell Fe3O4@SiO2-SO3H.Iran. J. Sci. Technol. Trans. A Sci.201943381982710.1007/s40995‑018‑0594‑9
    [Google Scholar]
  25. Pourhasan-KisomiR. ShiriniF. GolshekanM. Fe3O4@MCM-41@NH-SO3H: An efficient magnetically reusable nano-catalyst for the formylation of amines and alcohols.Silicon2021142911210.1007/s12633‑021‑01000‑y
    [Google Scholar]
  26. TaheriS. VeisiH. HekmatiM. Application of polydopamine sulfamic acid-functionalized magnetic Fe3O4 nanoparticles (Fe3O4@PDA-SO3H) as a heterogeneous and recyclable nanocatalyst for the formylation of alcohols and amines under solvent-free conditions.New J. Chem.201741125075508110.1039/C7NJ00417F
    [Google Scholar]
  27. ZeynizadehB. GholamiyanE. GilanizadehM. Magnetically recoverable CuFe2O4 nanoparticles as an efficient heterogeneous catalyst for green formylation of alcohols.Curr Chem Lett20187412113010.5267/j.ccl.2018.11.001
    [Google Scholar]
  28. KhoroshunovaY.V. MorozovD.A. TarataykoA.I. DobryninS.A. EltsovI.V. RybalovaT.V. SotnikovaY.S. PolovyanenkoD.N. AsanbaevaN.B. KirilyukI.A. The Reactions of 6-(Hydroxymethyl)-2,2-dimethyl-1-azaspiro[4.4]nonanes with methanesulfonyl chloride or PPh3-CBr4.Molecules20212619600010.3390/molecules26196000 34641544
    [Google Scholar]
  29. SuW. WengY. JiangL. YangY. ZhaoL. ChenZ. LiZ. LiJ. Recent progress in the use of Vilsmeier-type reagents.Org. Prep. Proced. Int.201042650355510.1080/00304948.2010.513911
    [Google Scholar]
  30. TayebeeR. CheraviF. Efficient protection of alcohols with carboxylic acids using a variety of heteropolyoxometallates as catalysts, studying effective reaction parameters.Bull. Korean Chem. Soc.200930122899290410.5012/bkcs.2009.30.12.2899
    [Google Scholar]
  31. AlizadehM.H. KermaniT. TayebeeR. A method for the acetylation of alcohols catalyzed by heteropolyoxometallates.Monatsh. Chem.2007138216517010.1007/s00706‑006‑0573‑2
    [Google Scholar]
  32. IlankumaranP. VerkadeJ.G. Highly selective acylation of alcohols using enol esters catalyzed by iminophosphoranes.J. Org. Chem.199964259063906610.1021/jo990928d
    [Google Scholar]
  33. ThomasA.D. AsokanC.V. Vilsmeier–Haack reaction of tertiary alcohols: Formation of functionalised pyridines and naphthyridines.J. Chem. Soc., Perkin Trans. 12001202583258710.1039/b105634b
    [Google Scholar]
  34. Al-ThakafyN.T. Al-EnizziM.S. SalehM.Y. Synthesis of new Organic reagent by Vilsmeier–Haack reaction and estimation of pharmaceutical compounds (Mesalazine) containing aromatic amine groups.Egypt. J. Chem.202265668569710.21608/ejchem.2021.101851.4729
    [Google Scholar]
  35. ThomasA.D. AsokanC.V. Vilsmeier–Haack reactions of α-hydroxyketenedithioacetals: A facile synthesis of substituted pyridines.Tetrahedron Lett.200243122273227510.1016/S0040‑4039(02)00174‑0
    [Google Scholar]
  36. García-CarrilloM.A. GuzmánÁ. DíazE. Metal free coupling of heteroaryl N -tosylhydrazones and thiols: Efficient synthesis of sulfides.Tetrahedron Lett.201758201952195610.1016/j.tetlet.2017.04.021
    [Google Scholar]
  37. AneesaF. RajannaK.C. Arun KumarY. ArifuddinM. Transition metal ions as efficient catalysts for facile ortho-formylation of phenols under Vilsmeier–Haack conditions.Org. Chem. Int.201220121710.1155/2012/289023
    [Google Scholar]
  38. RajannaK.C. KumarM.S. VenkannaP. RamgopalS. VenkateswarluM. Vilsmeier Haack adducts as effective reagents for regioselective nitration of aromatic compounds under conventional and non-conventional conditions.Int. J. Org. Chem. (Irvine)20111425025610.4236/ijoc.2011.14036
    [Google Scholar]
  39. YadavA. PatilV. AsrondkarA. NaikA. AnsulkarP. BobadeA. ChowdharyA. Anti-oxidant and anti-microbial activities of pyrazolyl-benzothiazole derivatives using Vilsmeier-Haack reaction.Rayazan J. Chem20125117120
    [Google Scholar]
  40. (a TyagiS. MishraR. MazumderA. JindaniyaV. 202410.2174/1570178620666230911152937
  41. (bVilsmeier Haack Reaction: An exemplary tool for synthesis of different heterocycles.Lett Organic Chem202421213114810.2174/1570178620666230911152937
    [Google Scholar]
  42. (c FaratO.K. AnanyevI.V. VarenichenkoS.A. ZaliznayaE.V. MarkovV.I. A facile approach for the synthesis of novel xanthene derivatives with Vilsmeier–Haack reagent.Chem Heterocycl Comp201955384610.1007/s10593‑019‑02416‑6
    [Google Scholar]
  43. EbrahimzadehF. JamalainA. ZareeS. Core-shell magnetic nanocomposite Fe3O4@SiO2@CS@POCl2-x for alcohols to alkyl halides transformation.Phosphorus Sulfur Silicon Relat. Elem.2023199216917710.1080/10426507.2023.2279614
    [Google Scholar]
  44. EsmaeilpourM. SardarianA. Dodecylbenzenesulfonic acid as an efficient, chemoselective, and reusable catalyst in the acetylation and formylation of alcohols and phenols under solvent-free conditions at room temperature.Iranian Journal of Science201438217518610.22099/ijsts.2014.1998
    [Google Scholar]
  45. PolatE. CakiciM. Deoxygenative Chlorination of Aldehydes and Alcohols with Dichloromethyl Methyl Ether and TiCl 4.Eur. J. Org. Chem.2022202245e20220110610.1002/ejoc.202201106
    [Google Scholar]
  46. Ghorbani-VagheiR. VeisiH. AmiriM. CheginiM. KarimiM. DadamahalehS.A. SedrpoushanA. 2009, Highly efficient formylation of alcohols, thiols and aniline derivatives by a heterogeneous (HCOOH/SiO2) system under microwave irradiation and solvent-free conditions.South African J Chem2009623943
    [Google Scholar]
  47. IranpoorN. ShekarrizM. Catalytic esterification of alcohols, carboxylic acids and transesterification reactions with cerium (IV) triflate.Bull. Chem. Soc. Jpn.199972345545810.1246/bcsj.72.455
    [Google Scholar]
  48. KhodaeiM.M. AlizadehA. HezarkhaniH.A. Simple formylation of aromatic compounds using a sodium formate/triphenylphosphine ditriflate system.Chem. Lett.201746684084310.1246/cl.170152
    [Google Scholar]
  49. ZareiM. JarrahpourA. Silphos as an efficient heterogeneous reagent for the synthesis of 2-azetidinones.Heterocyclic Communications201420635535910.1515/hc‑2014‑0177
    [Google Scholar]
/content/journals/cos/10.2174/0115701794334114241001055331
Loading
/content/journals/cos/10.2174/0115701794334114241001055331
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test