Skip to content
2000
Volume 12, Issue 4
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

The synthesis of heterocyclic molecules is one of the fundamental areas of synthetic organic chemistry. Metal catalyzed synthesis is a widely used chemical tool for the preparation of important heterocycles. Chromene is one of the naturally occurring scaffolds that are highly valued, serving as the core structure for developing a variety of molecules withwith diverse applications.

The aim of this study was to provide an effective method with several applications in the one-pot production of chromene derivatives with green methods and nanocatalyst.

In the current compilation, synthetic methods, which have been cited to use exo and endo cyclization, produces chromene derivatives and provide a high yield of products in a straightforward one-pot operation with mild reaction conditions.

This review will serve as a guiding resource for the researchers in this field. The main benefits of the methodologies are short reaction time, low cost, high atom economy, solvent-free nature, and ease of work-up to give desired chromene derivatives in high yield.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372384171250529120412
2025-06-11
2025-12-31
Loading full text...

Full text loading...

References

  1. KaushikJ. JainS. MalikP. KumawatJ. JainP. KishoreD. DwivediJ. Comprehensive updates on beckmann rearrangement.ChemistrySelect202491e20230285310.1002/slct.202302853
    [Google Scholar]
  2. KaushikJ. JainS. JainP. KishoreD. Iron-catalysed intermolecular and intramolecular cyclization reaction of N-Heterocycles.J. Heterocycle Chemistry, 2024202410.1002/jhet.4812
    [Google Scholar]
  3. (a AgrawalN. GoswamiR. PathakS. Synthetic methods for various chromeno-fused heterocycles and their potential as antimicrobial agents.Med. Chem.202420211512910.2174/0115734064274748231005074100 37855281
    [Google Scholar]
  4. (b MajumdarN. PaulN.D. MandalS. de BruinB. WulffW.D. Catalytic synthesis of 2 H-chromenes.ACS Catal.2015542329236610.1021/acscatal.5b00026
    [Google Scholar]
  5. AnandA. KhanapurmathN. KulkarniM.V. GuruR.T.N. TayurN. Biheterocyclic coumarins: A simple yet versatile resource for futuristic design and applications in bio-molecular and material chemistry.Curr. Org. Chem.202226544450610.2174/1385272826666220301124149
    [Google Scholar]
  6. AttarroshanM. FiruziO. IrajiA. SharifiS. TavakkoliM. VesalM. KhoshneviszadehM. PirhadiS. EdrakiN. Imino‐2 H ‐Chromene based derivatives as potential anti‐alzheimer’s agents: Design, synthesis, biological evaluation and in silico study.Chem. Biodivers.2022191e20210059910.1002/cbdv.202100599 34786830
    [Google Scholar]
  7. LiuX. SongB.A. ShiD. Novel 2 H-chromenes derivatives: Design, synthesis, and anticancer activity.RSC Advances201445607561710.1039/c3ra47252c
    [Google Scholar]
  8. SequeiraL. DistintoS. MeledduR. GaspariM. AngeliA. CottigliaF. SecciD. OnaliA. SannaE. BorgesF. UriarteE. AlcaroS. SupuranC.T. MaccioniE. 2H-chromene and 7H-furo-chromene derivatives selectively inhibit tumour associated human carbonic anhydrase IX and XII isoforms.J. Enzyme Inh. Med. Chem.2023381227018310.1080/14756366.2023.2270183 37870190
    [Google Scholar]
  9. MoorthyJ.N. MandalS. MukhopadhyayA. SamantaS. Helicity as a steric force: Stabilization and helicity-dependent reversion of colored o-quinonoid intermediates of helical chromenes.J. Am. Chem. Soc.2013135186872688410.1021/ja312027c 23574259
    [Google Scholar]
  10. JainS. KumawatJ. JainP. Shruti MalikP. DwivediJ. KishoreD. Metal-catalyzed synthesis of triazine derivatives.Monatsh. Chem.20221537-851754310.1007/s00706‑022‑02948‑2
    [Google Scholar]
  11. PanchalJ. JainS. JainP.K. KishoreD. DwivediJ. Greener approach toward synthesis of biologically active s ‐Triazine (TCT) derivatives: A recent update.J. Heterocy. Chem.202158112049206610.1002/jhet.4343
    [Google Scholar]
  12. GutterresE.L. AnjosT. SantosF.B. BandeiraP.T. PenteadoF. SchumacherR.F. Recent approaches in transition metal-catalysed chalcogenative heteroannulation of alkenes and alkynes.Catalysts20231391300
    [Google Scholar]
  13. (a NazeriM.T. NasirianiT. TorabiS. ShaabaniA. Isocyanide-based multicomponent reactions for the synthesis of benzopyran derivatives with biological scaffolds.Org. Biomol. Chem.20242261102113410.1039/D3OB01671D 38251960
    [Google Scholar]
  14. (b ChadhaM. GargA. BhallaA. BerryS. Green methods mediated synthesis of chromene derivatives using magnetic nanoparticles as heterogeneous and reusable nanocatalyst: A review.Tetrahedron202415013374110.1016/j.tet.2023.133741
    [Google Scholar]
  15. PandaB. Use of gold nanoparticles in the synthesis of heterocyclic compounds.Lett. Org. Chem.2023201182710.2174/1570178619666220826115245
    [Google Scholar]
  16. NaeimiH. FarahnakZ.M. Gold nanoparticles supported on thiol‐functionalized reduced graphene oxide as effective recyclable catalyst for synthesis of tetrahydro‐4H‐chromenes in aqueous media.Appl. Organomet. Chem.2018324e422510.1002/aoc.4225
    [Google Scholar]
  17. SolasM. RenedoL. Suárez-PantigaS. SanzR. Synthesis of 4‐Furan‐ and 4‐Pyrrol‐3‐yl‐2 H ‐chromenes from naturally‐occurring compounds by Gold(I)‐catalyed domino reactions.Adv. Synth. Catal.2023365122049205610.1002/adsc.202300300
    [Google Scholar]
  18. LykakisI.N. EfeC. GryparisC. StratakisM. Europ. Ph3PAuNTf2 as a superior catalyst for the selective synthesis of 2H‐Chromenes: Application to the concise synthesis of benzopyran natural products.J. Org. Chem.20111223342338
    [Google Scholar]
  19. MallampudiN.A. ReddyG.S. MaityS. MohapatraD.K. Gold (I)-catalysed cyclization for the synthesis of 8-hydroxy-3-substituted isocoumarins: Total synthesis of exserolide.Org. Lett.20171982074207710.1021/acs.orglett.7b00673 28383900
    [Google Scholar]
  20. Morán-PoladuraP. Suárez-PantigaS. PiedrafitaM. RubioE. GonzálezJ.M. Regiocontrolled gold(I)-catalyzed cyclization reactions of N-(3-iodoprop-2-ynyl)-N-tosylanilines.J. Org. Chem.20116961121510.1016/j.jorganchem.2010.09.014
    [Google Scholar]
  21. Medina-MercadoI. Colin-MolinaA. Barquera-LozadaJ.E. Rodríguez-MolinaB. PorcelS. Gold-catalysed ascorbic acid-induced arylative carbocyclization of alkynes with aryldiazonium tetrafluoroborates.ACS Catal.202111158968897710.1021/acscatal.1c01826
    [Google Scholar]
  22. GuptaM.K. O’SullivanT.P. Recent applications of gallium and gallium halides as reagents in organic synthesis.RSC Advances2013348254982552210.1039/c3ra42316f
    [Google Scholar]
  23. SiyangH.X. WuX.R. JiX.Y. WuX.Y. LiuP.N. A copper (ii) perchlorate-promoted tandem reaction of internal alkynol and salicyl N-tosylhydrazone: Direct access to isochromeno[3,4-b]chromene.Chem. Commun. (Camb.)201450628514851710.1039/C4CC02862G 24947735
    [Google Scholar]
  24. TannaJ.A. ChaudharyR.G. GandhareN.V. RaiA.R. YerpudeS. JunejaH.D. Copper nanoparticles catalysed an efficient one-pot multicomponents synthesis of chromenes derivatives and its antibacterial activity.J. Exp. Nanosci.2016111188490010.1080/17458080.2016.1177216
    [Google Scholar]
  25. WanzhengM.A. EbadiA.G. JimenezG. JavahershenasR. One-pot synthesis of 2-amino-4 H-chromene derivatives by MNPs@ Cu as an effective and reusable magnetic nano catalyst.RSC Advances20199128011281210.1039/C9RA01679A 35520803
    [Google Scholar]
  26. BeraK. SarkarS. BiswasS. MaitiS. JanaU. Iron-catalyzed synthesis of functionalized 2H-chromenes via intramolecular alkyne-carbonyl metathesis.J. Org. Chem.20117693539354410.1021/jo2000012 21413813
    [Google Scholar]
  27. WangZ.Q. LeiY. ZhouM.B. ChenG.X. SongR.J. XieY.X. LiJ.H. Iron-Mediated [3 + 2] or [3 + 3] Annulation of 2-(2-(Ethynyl)phenoxy)-1-arylethanones: Selective synthesis of Indeno[1,2- c]chromenes and 5 H -Naphtho[1,2- c]chromenes.Org. Lett.2011131141710.1021/ol102761m 21121634
    [Google Scholar]
  28. SaranyaS. AneejaT. NeethaM. AnilkumarG. Recent advances in the iron‐catalysed multicomponent reactions.Appl. Organomet. Chem.202034e599110.1002/aoc.5991
    [Google Scholar]
  29. CalmusL. CorbuA. CossyaJ. 2H‐chromenes generated by an iron (III) complex‐catalysed allylic cyclization.Adv. Synth. Catal.20153571381138610.1002/adsc.201500058
    [Google Scholar]
  30. BaralN. MishraD.R. MishraN.P. MohapatraS. RaiguruB.P. PandaP. NayakS. NayakM. KumarP.S. Microwave‐assisted rapid and efficient synthesis of chromene‐fused pyrrole derivatives through multicomponent reaction and evaluation of antibacterial activity with molecular docking investigation.J. Heterocycl. Chem.202057257558910.1002/jhet.3773
    [Google Scholar]
  31. LiandiA.R. YunartiR.T. NurmawanM.F. ChayanaA.H. The Utilization of Fe3O4 nano catalyst in modifying cinnamaldehyde compound to Synthesis 2-amino-4H-chromene derivative.Mater. Today Proc.202022193198
    [Google Scholar]
  32. GhavidelH. MirzaB. Soleimani-AmiriS. A novel, efficient, and recoverable basic Fe3O4@ C nano-catalyst for green synthesis of 4 H-chromenes in water via one-pot three component reactions.Polycycl. Aromat. Compd.202141360462510.1080/10406638.2019.1607413
    [Google Scholar]
  33. ChahkamaliF.O. SobhaniS. SansanoJ.M. A novel base-metal multifunctional catalyst for the synthesis of 2-amino-3-cyano-4H-chromenes by a multicomponent tandem oxidation process.Sci. Rep.2022121286710.1038/s41598‑022‑06759‑7 35190576
    [Google Scholar]
  34. Khaleghi-AbbasabadiM. AzarifarD. Magnetic Fe3O4-supported sulfonic acid-functionalized graphene oxide (Fe3O4@GO-naphthalene-SO3H): A novel and recyclable nanocatalyst for green one-pot synthesis of 5-oxo-dihydropyrano[3,2-c]chromenes and 2-amino-3-cyano-1,4,5,6-tetrahydropyrano[3,2-c]quinolin-5-ones.Res. Chem. Intermed.20194542095211810.1007/s11164‑018‑03722‑y
    [Google Scholar]
  35. FadavipoorE. BadriR. KiasatA. SanaeishoarH. Copper oxide nanoparticles supported on ionic liquid-modified magnetic nanoparticles: A novel magnetically recyclable catalyst for the synthesis of 3, 4-dihydropyrano [c] chromene derivatives.Polycycl. Aromat. Compd.20204041084109610.1080/10406638.2018.1526809
    [Google Scholar]
  36. NajahiM.Z. HamidinasabM. AhadiN. BodaghifardM.A. A novel hybrid organic-inorganic nanomaterial: Preparation, characterization, and application in synthesis of diverse heterocycles.Polycycl. Aromat. Compd.20224241282130110.1080/10406638.2020.1776346
    [Google Scholar]
  37. MonadiN. DavoodiH. AghajaniM. Oxovanadium(IV) complex supported on the surface of magnetite as a recyclable nanocatalyst for the preparation of 2-amino-4H-benzo[h]chromenes and selective oxidation of sulfides.React. Kinet. Mech. Catal.2020129265967710.1007/s11144‑020‑01749‑0
    [Google Scholar]
  38. WangC. KarmakarB. AwwadN.S. IbrahiumH.A. El-kottA.F. Abdel-DaimM.M. OyouniA.A.A. Al-AmerO. El-Saber BatihaG. Bio-supported of Cu nanoparticles on the surface of Fe3O4 magnetic nanoparticles mediated by Hibiscus sabdariffa extract: Evaluation of its catalytic activity for synthesis of pyrano[3,2-c]chromenes and study of its anti-colon cancer properties.Arab. J. Chem.202215610380910.1016/j.arabjc.2022.103809
    [Google Scholar]
  39. RezayatiS. DinmohammadiG. RamazaniA. SajjadifarS. Mortar–pestle grinding technique as an efficient and green method accelerates the tandem knoevenagel–michael cyclocondensation reaction in the presence of ethylenediamine immobilized on the magnetite nanoparticles.Polycycl. Aromat. Compd.20234375869589110.1080/10406638.2022.2110506
    [Google Scholar]
  40. PaulN.D. MandalS. OtteM. CuiX. ZhangX.P. de BruinB. Metalloradical approach to 2H-chromenes.J. Am. Chem. Soc.201413631090109610.1021/ja4111336 24400781
    [Google Scholar]
  41. HornillosV. van ZijlA.W. FeringaB.L. Catalytic asymmetric synthesis of chromenes and tetrahydroquinolines via sequential allylic alkylation and intramolecular Heck coupling.Chem. Commun. (Camb.)201248313712371410.1039/c2cc30395g 22398654
    [Google Scholar]
  42. ShangX.S. LiN.T. SiyangH.X. LiuP.N. Palladium-catalyzed tandem carbene migratory insertion and intramolecular cyclization: Synthesis of chromeno[4,3-b]chromene compounds.J. Org. Chem.20158094808481510.1021/acs.joc.5b00500 25880468
    [Google Scholar]
  43. ZengB.S. YuX. SiuP.W. ScheidtK.A. Catalytic enantioselective synthesis of 2-aryl-chromenes.Chem. Sci. (Camb.)2014562277228110.1039/c4sc00423j 25705366
    [Google Scholar]
  44. GovadaG. V. PalS. PanjacharamP. BhattH. S. KumarS. LinC. C. Pd(II)-catalyzed site-selective cross coupling reaction: Synthesis of highly fluorescent aryl-formyl-chromenes and its iminoantipyrine analogues as selective AChE inhibitors.Chemistry Biodiversity2024218e20240071910.1002/cbdv.202400719
    [Google Scholar]
  45. PanX. ChenM. YaoL. WuJ. Access to 6H-naphtho[2,3-c]chromenes by a palladium-catalyzed reaction of 2-haloaryl allene with 2-alkynylphenol.Chem. Commun. (Camb.)201450445891589410.1039/c4cc00374h 24760106
    [Google Scholar]
  46. PramanikS. JashM. MondalD. ChowdhuryC. Palladium‐catalyzed synthesis of 6 H ‐Dibenzo[c,h]chromenes and 5,6‐Dihydrobenzo[c]phenanthridines: Application to the synthesis of Dibenzo[c,h]chromene‐6‐ones, Benzo[c]phenanthridines, and Arnottin I.Adv. Synth. Catal.2019361225223523810.1002/adsc.201900833
    [Google Scholar]
  47. Carral-MenoyoA. MisolA. Gómez-RedondoM. SotomayorN. LeteE. Palladium(II)-catalyzed intramolecular C–H alkenylation for the synthesis of chromanes.J. Org. Chem.20198442048206010.1021/acs.joc.8b03051 30638024
    [Google Scholar]
  48. GrahamT.J.A. DoyleA.G. Nickel-catalyzed cross-coupling of chromene acetals and boronic acids.Org. Lett.20121461616161910.1021/ol300364s 22385385
    [Google Scholar]
  49. LuanY. QiY. GaoH. MaQ. SchausS.E. Brønsted Acid/Lewis acid cooperatively catalyzed addition of diazoesters to 2 H ‐Chromene acetals.Eur. J. Org. Chem.20142014316868687210.1002/ejoc.201403043
    [Google Scholar]
  50. ZengH. JuJ. HuaR. ReCl(CO)5-catalyzed cyclocondensation of phenols with 2-methyl-3-butyn-2-ol to afford 2,2-dimethyl-2H-chromenes.Tetrahedron Lett.201152303926392810.1016/j.tetlet.2011.05.093
    [Google Scholar]
  51. EscandeV. VelatiA. GrisonC. Ecocatalysis for 2H-chromenes synthesis: An integrated approach for phytomanagement of polluted ecosystems.Environ. Sci. Pollut. Res. Int.20152285677568510.1007/s11356‑014‑3433‑3 25131683
    [Google Scholar]
  52. RameshK.B. ManjunathaA.S. SrinivasM. PashaM.A. Eco-friendly synthesis of indole-4-hydroxy-chromen-2-ones using green zinc oxide nanocatalyst and its assessment of anti-cancer studies against A549 cells.Inorg. Chem. Commun.202416911301210.1016/j.inoche.2024.113012
    [Google Scholar]
  53. JainS. JainS. ZnO–Co3O4 nanocomposite as efficient heterogeneous catalyst for the ultrasound-assisted facile multicomponent synthesis of benzo[g]chromene derivatives.J. Chem. Sci.202413622910.1007/s12039‑024‑02269‑3
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372384171250529120412
Loading
/content/journals/cocat/10.2174/0122133372384171250529120412
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): chromene; eco-zinc; Heterocycle; metal mediated; organocatalysis; ring-closing reaction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test