Skip to content
2000
image of Synthesis of 2H-Chromenes via Green Catalytic Approaches: A Recent Update

Abstract

The synthesis of heterocyclic molecules is one of the fundamental areas of synthetic organic chemistry. Metal catalyzed synthesis is a widely used chemical tool for the preparation of important heterocycles. Chromene is one of the naturally occurring scaffolds that are highly valued, serving as the core structure for developing a variety of molecules withwith diverse applications.

The aim of this study was to provide an effective method with several applications in the one-pot production of chromene derivatives with green methods and nanocatalyst.

In the current compilation, synthetic methods, which have been cited to use exo and endo cyclization, produces chromene derivatives and provide a high yield of products in a straightforward one-pot operation with mild reaction conditions.

This review will serve as a guiding resource for the researchers in this field. The main benefits of the methodologies are short reaction time, low cost, high atom economy, solvent-free nature, and ease of work-up to give desired chromene derivatives in high yield.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372384171250529120412
2025-06-11
2025-08-13
Loading full text...

Full text loading...

References

  1. Kaushik J. Jain S. Malik P. Kumawat J. Jain P. Kishore D. Dwivedi J. Comprehensive updates on beckmann rearrangement. ChemistrySelect 2024 9 1 e202302853 10.1002/slct.202302853
    [Google Scholar]
  2. Kaushik J. Jain S. Jain P. Kishore D. Iron-catalysed intermolecular and intramolecular cyclization reaction of N-Heterocycles. J. Heterocycle Chemistry 2024 10.1002/jhet.4812
    [Google Scholar]
  3. a Agrawal N. Goswami R. Pathak S. Synthetic methods for various chromeno-fused heterocycles and their potential as antimicrobial agents. Med. Chem. 2024 20 2 115 129 10.2174/0115734064274748231005074100 37855281
    [Google Scholar]
  4. b Majumdar N. Paul N.D. Mandal S. de Bruin B. Wulff W.D. Catalytic synthesis of 2 H-chromenes. ACS Catal. 2015 5 4 2329 2366 10.1021/acscatal.5b00026
    [Google Scholar]
  5. Anand A. Khanapurmath N. Kulkarni M.V. Guru R.T.N. Tayur N. Biheterocyclic coumarins: A simple yet versatile resource for futuristic design and applications in bio-molecular and material chemistry. Curr. Org. Chem. 2022 26 5 444 506 10.2174/1385272826666220301124149
    [Google Scholar]
  6. Attarroshan M. Firuzi O. Iraji A. Sharifi S. Tavakkoli M. Vesal M. Khoshneviszadeh M. Pirhadi S. Edraki N. Imino‐2 H ‐Chromene based derivatives as potential anti‐alzheimer’s agents: Design, synthesis, biological evaluation and in Silico study. Chem. Biodivers. 2022 19 1 e202100599 10.1002/cbdv.202100599 34786830
    [Google Scholar]
  7. Liu X. Song B.A. Shi D. Novel 2 H-chromenes derivatives: Design, synthesis, and anticancer activity. RSC Advances 2014 4 5607 5617 10.1039/c3ra47252c
    [Google Scholar]
  8. Sequeira L. Distinto S. Meleddu R. Gaspari M. Angeli A. Cottiglia F. Secci D. Onali A. Sanna E. Borges F. Uriarte E. Alcaro S. Supuran C.T. Maccioni E. 2H-chromene and 7H-furo-chromene derivatives selectively inhibit tumour associated human carbonic anhydrase IX and XII isoforms. J. Enzyme Inhib. Med. Chem. 2023 38 1 2270183 10.1080/14756366.2023.2270183 37870190
    [Google Scholar]
  9. Moorthy J.N. Mandal S. Mukhopadhyay A. Samanta S. Helicity as a steric force: Stabilization and helicity-dependent reversion of colored o-quinonoid intermediates of helical chromenes. J. Am. Chem. Soc. 2013 135 18 6872 6884 10.1021/ja312027c 23574259
    [Google Scholar]
  10. Jain S. Kumawat J. Jain P. Shruti; Malik, P.; Dwivedi, J.; Kishore, D. Metal-catalyzed synthesis of triazine derivatives. Monatsh. Chem. 2022 153 7-8 517 543 10.1007/s00706‑022‑02948‑2
    [Google Scholar]
  11. Panchal J. Jain S. Jain P.K. Kishore D. Dwivedi J. Greener approach toward synthesis of biologically active s ‐Triazine (TCT) derivatives: A recent update. J. Heterocycl. Chem. 2021 58 11 2049 2066 10.1002/jhet.4343
    [Google Scholar]
  12. Gutterres E.L. Anjos T. Santos F.B. Bandeira P.T. Penteado F. Schumacher R.F. Recent approaches in transition metal-catalysed chalcogenative heteroannulation of alkenes and alkynes. Catalysts 2023 13 9 1300
    [Google Scholar]
  13. a Nazeri M.T. Nasiriani T. Torabi S. Shaabani A. Isocyanide-based multicomponent reactions for the synthesis of benzopyran derivatives with biological scaffolds. Org. Biomol. Chem. 2024 22 6 1102 1134 10.1039/D3OB01671D 38251960
    [Google Scholar]
  14. b Chadha M. Garg A. Bhalla A. Berry S. Green methods mediated synthesis of chromene derivatives using magnetic nanoparticles as heterogeneous and reusable nanocatalyst: A review. Tetrahedron 2024 150 133741 10.1016/j.tet.2023.133741
    [Google Scholar]
  15. Panda B. Use of gold nanoparticles in the synthesis of heterocyclic compounds. Lett. Org. Chem. 2023 20 1 18 27 10.2174/1570178619666220826115245
    [Google Scholar]
  16. Naeimi H. Farahnak Z. M. Gold nanoparticles supported on thiol‐functionalized reduced graphene oxide as effective recyclable catalyst for synthesis of tetrahydro‐4H‐chromenes in aqueous media Applied Organometallic Chemistry 2018 32 4 e4225 10.1002/aoc.4225
    [Google Scholar]
  17. Solas M. Renedo L. Suárez-Pantiga S. Sanz R. Synthesis of 4‐Furan‐ and 4‐Pyrrol‐3‐yl‐2 H ‐chromenes from naturally‐occurring compounds by Gold(I)‐catalyed domino reactions. Adv. Synth. Catal. 2023 365 12 2049 2056 10.1002/adsc.202300300
    [Google Scholar]
  18. Lykakis I.N. Efe C. Gryparis C. Stratakis M. Europ. Ph3PAuNTf2 as a superior catalyst for the selective synthesis of 2H‐Chromenes: Application to the concise synthesis of benzopyran natural products. J. Org. Chem. 2011 12 2334 2338
    [Google Scholar]
  19. Mallampudi N.A. Reddy G.S. Maity S. Mohapatra D.K. Gold (I)-catalysed cyclization for the synthesis of 8-hydroxy-3-substituted isocoumarins: Total synthesis of exserolide. Org. Lett. 2017 19 8 2074 2077 10.1021/acs.orglett.7b00673 28383900
    [Google Scholar]
  20. Morán-Poladura P. Suárez-Pantiga S. Piedrafita M. Rubio E. González J.M. Regiocontrolled gold(I)-catalyzed cyclization reactions of N-(3-iodoprop-2-ynyl)-N-tosylanilines. J. Org. Chem. 2011 696 1 12 15 10.1016/j.jorganchem.2010.09.014
    [Google Scholar]
  21. Medina-Mercado I. Colin-Molina A. Barquera-Lozada J.E. Rodríguez-Molina B. Porcel S. Gold-catalysed ascorbic acid-induced arylative carbocyclization of alkynes with aryldiazonium tetrafluoroborates. ACS Catal. 2021 11 15 8968 8977 10.1021/acscatal.1c01826
    [Google Scholar]
  22. Gupta M.K. O’Sullivan T.P. Recent applications of gallium and gallium halides as reagents in organic synthesis. RSC Advances 2013 3 48 25498 25522 10.1039/c3ra42316f
    [Google Scholar]
  23. Siyang H.X. Wu X.R. Ji X.Y. Wu X.Y. Liu P.N. A copper(ii) perchlorate-promoted tandem reaction of internal alkynol and salicyl N-tosylhydrazone: Direct access to isochromeno[3,4-b]chromene. Chem. Commun. (Camb.) 2014 50 62 8514 8517 10.1039/C4CC02862G 24947735
    [Google Scholar]
  24. Tanna J.A. Chaudhary R.G. Gandhare N.V. Rai A.R. Yerpude S. Juneja H.D. Copper nanoparticles catalysed an efficient one-pot multicomponents synthesis of chromenes derivatives and its antibacterial activity. J. Exp. Nanosci. 2016 11 11 884 900 10.1080/17458080.2016.1177216
    [Google Scholar]
  25. Wanzheng M.A. Ebadi A.G. Jimenez G. Javahershenas R. One-pot synthesis of 2-amino-4 H-chromene derivatives by MNPs@ Cu as an effective and reusable magnetic nano catalyst. RSC Advances 2019 9 12801 12812 10.1039/C9RA01679A 35520803
    [Google Scholar]
  26. Bera K. Sarkar S. Biswas S. Maiti S. Jana U. Iron-catalyzed synthesis of functionalized 2H-chromenes via intramolecular alkyne-carbonyl metathesis. J. Org. Chem. 2011 76 9 3539 3544 10.1021/jo2000012 21413813
    [Google Scholar]
  27. Wang Z.Q. Lei Y. Zhou M.B. Chen G.X. Song R.J. Xie Y.X. Li J.H. Iron-Mediated [3 + 2] or [3 + 3] Annulation of 2-(2-(Ethynyl)phenoxy)-1-arylethanones: Selective synthesis of Indeno[1,2- c]chromenes and 5 H -Naphtho[1,2- c]chromenes. Org. Lett. 2011 13 1 14 17 10.1021/ol102761m 21121634
    [Google Scholar]
  28. Saranya S. Aneeja T. Neetha M. Anilkumar G. Recent advances in the iron‐catalysed multicomponent reactions. Appl. Organomet. Chem. 2020 34 e5991 10.1002/aoc.5991
    [Google Scholar]
  29. Calmus L. Corbu A. Cossya J. 2H‐chromenes generated by an iron (III) complex‐catalysed allylic cyclization. Adv. Synth. Catal. 2015 357 1381 1386 10.1002/adsc.201500058
    [Google Scholar]
  30. Baral N. Mishra D.R. Mishra N.P. Mohapatra S. Raiguru B.P. Panda P. Nayak S. Nayak M. Kumar P.S. Microwave‐assisted rapid and efficient synthesis of chromene‐fused pyrrole derivatives through multicomponent reaction and evaluation of antibacterial activity with molecular docking investigation. J. Heterocycl. Chem. 2020 57 2 575 589 10.1002/jhet.3773
    [Google Scholar]
  31. Liandi A.R. Yunarti R.T. Nurmawan M.F. Chayana A.H. The Utilization of Fe3O4 nano catalyst in modifying cinnamaldehyde compound to Synthesis 2-amino-4H-chromene derivative. Mater. Today Proc. 2020 22 193 198
    [Google Scholar]
  32. Ghavidel H. Mirza B. Soleimani-Amiri S. A novel, efficient, and recoverable basic Fe3O4@ C nano-catalyst for green synthesis of 4 H-chromenes in water via one-pot three component reactions. Polycycl. Aromat. Compd. 2021 41 3 604 625 10.1080/10406638.2019.1607413
    [Google Scholar]
  33. Chahkamali F.O. Sobhani S. Sansano J.M. A novel base-metal multifunctional catalyst for the synthesis of 2-amino-3-cyano-4H-chromenes by a multicomponent tandem oxidation process. Sci. Rep. 2022 12 1 2867 10.1038/s41598‑022‑06759‑7 35190576
    [Google Scholar]
  34. Khaleghi-Abbasabadi M. Azarifar D. Magnetic Fe3O4-supported sulfonic acid-functionalized graphene oxide (Fe3O4@GO-naphthalene-SO3H): A novel and recyclable nanocatalyst for green one-pot synthesis of 5-oxo-dihydropyrano[3,2-c]chromenes and 2-amino-3-cyano-1,4,5,6-tetrahydropyrano[3,2-c]quinolin-5-ones. Res. Chem. Intermed. 2019 45 4 2095 2118 10.1007/s11164‑018‑03722‑y
    [Google Scholar]
  35. Fadavipoor E. Badri R. Kiasat A. Sanaeishoar H. Copper oxide nanoparticles supported on ionic liquid-modified magnetic nanoparticles: A novel magnetically recyclable catalyst for the synthesis of 3, 4-dihydropyrano [c] chromene derivatives. Polycycl. Aromat. Compd. 2020 40 4 1084 1096 10.1080/10406638.2018.1526809
    [Google Scholar]
  36. Najahi M.Z. Hamidinasab M. Ahadi N. Bodaghifard M.A. A novel hybrid organic-inorganic nanomaterial: Preparation, characterization, and application in synthesis of diverse heterocycles. Polycycl. Aromat. Compd. 2022 42 4 1282 1301 10.1080/10406638.2020.1776346
    [Google Scholar]
  37. Monadi N. Davoodi H. Aghajani M. Oxovanadium(IV) complex supported on the surface of magnetite as a recyclable nanocatalyst for the preparation of 2-amino-4H-benzo[h]chromenes and selective oxidation of sulfides. React. Kinet. Mech. Catal. 2020 129 2 659 677 10.1007/s11144‑020‑01749‑0
    [Google Scholar]
  38. Wang C. Karmakar B. Awwad N.S. Ibrahium H.A. El-kott A.F. Abdel-Daim M.M. Oyouni A.A.A. Al-Amer O. El-Saber Batiha G. Bio-supported of Cu nanoparticles on the surface of Fe3O4 magnetic nanoparticles mediated by Hibiscus sabdariffa extract: Evaluation of its catalytic activity for synthesis of pyrano[3,2-c]chromenes and study of its anti-colon cancer properties. Arab. J. Chem. 2022 15 6 103809 10.1016/j.arabjc.2022.103809
    [Google Scholar]
  39. Rezayati S. Dinmohammadi G. Ramazani A. Sajjadifar S. Mortar–pestle grinding technique as an efficient and green method accelerates the tandem knoevenagel–michael cyclocondensation reaction in the presence of ethylenediamine immobilized on the magnetite nanoparticles. Polycycl. Aromat. Compd. 2023 43 7 5869 5891 10.1080/10406638.2022.2110506
    [Google Scholar]
  40. Paul N.D. Mandal S. Otte M. Cui X. Zhang X.P. de Bruin B. Metalloradical approach to 2H-chromenes. J. Am. Chem. Soc. 2014 136 3 1090 1096 10.1021/ja4111336 24400781
    [Google Scholar]
  41. Hornillos V. van Zijl A.W. Feringa B.L. Catalytic asymmetric synthesis of chromenes and tetrahydroquinolines via sequential allylic alkylation and intramolecular Heck coupling. Chem. Commun. (Camb.) 2012 48 31 3712 3714 10.1039/c2cc30395g 22398654
    [Google Scholar]
  42. Shang X.S. Li N.T. Siyang H.X. Liu P.N. Palladium-catalyzed tandem carbene migratory insertion and intramolecular cyclization: Synthesis of chromeno[4,3-b]chromene Compounds. J. Org. Chem. 2015 80 9 4808 4815 10.1021/acs.joc.5b00500 25880468
    [Google Scholar]
  43. Zeng B.S. Yu X. Siu P.W. Scheidt K.A. Catalytic enantioselective synthesis of 2-aryl-chromenes. Chem. Sci. (Camb.) 2014 5 6 2277 2281 10.1039/c4sc00423j 25705366
    [Google Scholar]
  44. Govada G. V. Pal S. Panjacharam P. Bhatt H. S. Kumar S. Lin C. C. Pd(II)-catalyzed site-selective cross coupling reaction: Synthe-sis of highly fluorescent aryl-formyl-chromenes and its iminoantipy-rine analogues as selective AChE inhibitors. Chemistry Biodiversity, 2024 21 8 e202400719 10.1002/cbdv.202400719
    [Google Scholar]
  45. Pan X. Chen M. Yao L. Wu J. Access to 6H-naphtho[2,3-c]chromenes by a palladium-catalyzed reaction of 2-haloaryl allene with 2-alkynylphenol. Chem. Commun. (Camb.) 2014 50 44 5891 5894 10.1039/c4cc00374h 24760106
    [Google Scholar]
  46. Pramanik S. Jash M. Mondal D. Chowdhury C. Palladium‐catalyzed synthesis of 6 H ‐Dibenzo[c,h]chromenes and 5,6‐Dihydrobenzo[c]phenanthridines: Application to the Synthesis of Dibenzo[c,h]chromene‐6‐ones, Benzo[c]phenanthridines, and Arnottin I. Adv. Synth. Catal. 2019 361 22 5223 5238 10.1002/adsc.201900833
    [Google Scholar]
  47. Carral-Menoyo A. Misol A. Gómez-Redondo M. Sotomayor N. Lete E. Palladium(II)-catalyzed intramolecular C–H alkenylation for the synthesis of chromanes. J. Org. Chem. 2019 84 4 2048 2060 10.1021/acs.joc.8b03051 30638024
    [Google Scholar]
  48. Graham T.J.A. Doyle A.G. Nickel-catalyzed cross-coupling of chromene acetals and boronic acids. Org. Lett. 2012 14 6 1616 1619 10.1021/ol300364s 22385385
    [Google Scholar]
  49. Luan Y. Qi Y. Gao H. Ma Q. Schaus S.E. Brønsted Acid/Lewis acid cooperatively catalyzed addition of diazoesters to 2 H ‐Chromene acetals. Eur. J. Org. Chem. 2014 2014 31 6868 6872 10.1002/ejoc.201403043
    [Google Scholar]
  50. Zeng H. Ju J. Hua R. ReCl(CO)5-catalyzed cyclocondensation of phenols with 2-methyl-3-butyn-2-ol to afford 2,2-dimethyl-2H-chromenes. Tetrahedron Lett. 2011 52 30 3926 3928 10.1016/j.tetlet.2011.05.093
    [Google Scholar]
  51. Escande V. Velati A. Grison C. Ecocatalysis for 2H-chromenes synthesis: An integrated approach for phytomanagement of polluted ecosystems. Environ. Sci. Pollut. Res. Int. 2015 22 8 5677 5685 10.1007/s11356‑014‑3433‑3 25131683
    [Google Scholar]
  52. Ramesh K.B. Manjunatha A.S. Srinivas M. Pasha M.A. Eco-friendly synthesis of indole-4-hydroxy-chromen-2-ones using green zinc oxide nanocatalyst and its assessment of anti-cancer studies against A549 cells. Inorg. Chem. Commun. 2024 169 113012 10.1016/j.inoche.2024.113012
    [Google Scholar]
  53. Jain S. Jain S. ZnO–Co3O4 nanocomposite as efficient heterogeneous catalyst for the ultrasound-assisted facile multicomponent synthesis of benzo[g]chromene derivatives. J. Chem. Sci. 2024 136 2 29 10.1007/s12039‑024‑02269‑3
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372384171250529120412
Loading
/content/journals/cocat/10.2174/0122133372384171250529120412
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: organocatalysis ; chromene ; ring-closing reaction ; metal mediated ; eco-zinc ; Heterocycle
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test