Skip to content
2000
Volume 12, Issue 3
  • ISSN: 2213-3372
  • E-ISSN: 2213-3380

Abstract

Introduction

Aromatization of dithioacetal derivatives is essential for the synthesis of bioactive compounds and drug design, playing a key role in pharmaceuticals, agrochemicals, and materials science. This study explores the synthesis and catalytic application of CuO nano hollow arrays in ring-expansion aromatization reactions of cyclic dithioacetal derivatives obtained from cyclohexanones.

Methods

By using CuO nano hollow arrays prepared through molecular templates and a simple hydrothermal process, the electrophilicity of N-bromosaccharin was enhanced, allowing for efficient and selective production of aromatic compounds with yields ranging from 63-96%. Copper acetate is transformed into CuO nano hollow arrays in aqueous media, with polyvinylpyrrolidone acting as a capping agent and (+)-L-tartaric acid as a structure-directing surfactant and multidentate ligand.

Results

The synthesized CuO nano hollow arrays were characterized using transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) to verify their morphology, structure, and composition.

Conclusion

This method not only offers a cost-effective and environmentally friendly approach to synthesizing CuO with unique nano hollow structures, but also demonstrates their efficacy as catalysts in organic synthesis, particularly in the rarely reported ring-expansion aromatization of cyclic dithioacetal derivatives of cyclohexanone, emphasizing their broader applicability in materials science and catalysis.

Loading

Article metrics loading...

/content/journals/cocat/10.2174/0122133372356100250116113708
2025-01-23
2025-09-27
Loading full text...

Full text loading...

References

  1. (a SwagerT.M. EtkindS.I. The properties, synthesis, and materials applications of 1, 4-dithiins and thianthrenes.Synthesis202254224843486310.1055/s‑0042‑1751368
    [Google Scholar]
  2. (b RyckaertB. DemeyereE. DegrooteF. JanssensH. WinneJ.M. 1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures.Beilstein J. Org. Chem.202319111513210.3762/bjoc.19.12 36761474
    [Google Scholar]
  3. (c XuC. WangM. LiuQ. Recent advances in metal‐catalyzed bond‐forming reactions of ketene S,S‐acetals.Adv. Synth. Catal.201936161208122910.1002/adsc.201801070
    [Google Scholar]
  4. (a GroszekG. LejaD.T. DepaW.J. Guńka, P.A.; Zachara, J.; Lechowicz, J.B. New heterocyclic organosulfur compounds derived from dithioacetals.Synlett202435161932193610.1055/a‑2259‑3689
    [Google Scholar]
  5. (bPuvača, N. Bioactive compounds in dietary spices and medicinal plants. J. Agron.Technol. Enginee. Manage. (JATEM)20225270471110.55817/UHFO5592
    [Google Scholar]
  6. (c RagabA. AbusaifM.S. GoharN.A. Aboul-MagdD.S. FayedE.A. AmmarY.A. Development of new spiro[1,3]dithiine-4,11′-indeno[1,2-b]quinoxaline derivatives as S. aureus Sortase A inhibitors and radiosterilization with molecular modeling simulation.Bioorg. Chem.202313110630710.1016/j.bioorg.2022.106307 36481380
    [Google Scholar]
  7. (d El-GabyM.S.A. AmmarY.A. IsmailM.A. RagabA. AbusaifM.S. Synthesis, characterization, and biological target prediction of novel 1,3-dithiolo[4,5-b]quinoxaline and thiazolo[4,5-b]quinoxaline derivatives.Heterocycl. Commun.20232912022017010.1515/hc‑2022‑0170
    [Google Scholar]
  8. (aGołebiewski, W.; Gucma, M. Applications of N-chlorosuccinimide in organic synthesis.Synthesis20072007233599361910.1055/s‑2007‑990871
    [Google Scholar]
  9. (b YanJ. PozzoJ.L. HamzeA. ProvotO. Recent progress on the mild deprotection of dithioketals, dithioacetals, and oxathiolanes.Eur. J. Org. Chem.202220227e20210146010.1002/ejoc.202101460
    [Google Scholar]
  10. CaputoR. FerreriC. PalumboG. RussoF. Reactivity of ethanediyl S,S-acetals - 3. Ring aromatization in cyclohexanone derivatives: A novelty synthesis of 1,4-benzodithians.Tetrahedron199147244187419410.1016/S0040‑4020(01)86455‑3
    [Google Scholar]
  11. Božić B.; Čebular, K.; Stavber, S. Metal-free and acid-free activation of carbonyl moiety using molecular halogens or N-halamines.Biol. Univer. Belgr.2021159719710.2174/9789814998482121150003
    [Google Scholar]
  12. (a TaniH. InamasuT. MasumotoK. TamuraR. ShimizuH. SuzukiH. Tellurium tetrachloride as a mild deprotection reagent for acetals and thioacetals.Phosphorus Sulfur Silicon Relat. Elem.1992671-426126610.1080/10426509208045846
    [Google Scholar]
  13. (b McFarlaneM.T. Metal-catalyzed cross-coupling reactions with dithiolanes and dithianes. Thesis.Winnipeg, (MB) University of Manitoba2012http://hdl.handle.net/1993/13706
    [Google Scholar]
  14. KadamS.S. MahajanN.S. JadhavP.A. DhawaleS.C. Sulfoxides and sulfones:review Ind.IDrugs202360271410.53879/id.60.02.12267
    [Google Scholar]
  15. (a SatohJ.Y. HarutaA.M. SatohT. SatohK. TakahashiT.T. Dienone–phenol rearrangement of sulphur-containing derivatives of steroids.J. Chem. Soc. Chem. Commun.1986241765176610.1039/C39860001765
    [Google Scholar]
  16. (b PanL. BiX. LiuQ. Recent developments of ketene dithioacetal chemistry.Chem. Soc. Rev.20134231251128610.1039/C2CS35329F 23147066
    [Google Scholar]
  17. Abdel-WahabB.F. ShaabanS. El-HitiG.A. Synthesis of sulfur-containing heterocycles via ring enlargement.Mol. Divers.201822251754210.1007/s11030‑017‑9810‑3 29388031
    [Google Scholar]
  18. Majid; Heravi, M.; Moghimi, S. Solid-supported reagents in organic synthesis using microwave irradiation.Curr. Org. Chem.201317550452710.2174/1385272811317050007
    [Google Scholar]
  19. (a ZhouL. ZhuangZ. ZhaoH. LinM. ZhaoD. MaiL. Intricate hollow structures: controlled synthesis and applications in energy storage and conversion.Adv. Mater.20172920160291410.1002/adma.201602914 28169464
    [Google Scholar]
  20. (b LiuD. WanJ. PangG. TangZ. Hollow metal–organic‐framework micro/nanostructures and their derivatives: emerging multifunctional materials.Adv. Mater.20193138180329110.1002/adma.201803291 30548351
    [Google Scholar]
  21. (c NaderiN. GanjaliF. Eivazzadeh-KeihanR. MalekiA. SillanpääM. Applications of hollow nanostructures in water treatment considering organic, inorganic, and bacterial pollutants.J. Environ. Manage.202435612067010.1016/j.jenvman.2024.12067038531142
    [Google Scholar]
  22. (dYang, M.; Li, N.W.; Yu, L. Hollow metal-organic frameworks and derivatives. In: Metal Organic Frameworks and Their Derivatives for Energy Conversion and Storage; Elsevier,202413516210.1016/B978‑0‑443‑18847‑3.00015‑8
    [Google Scholar]
  23. El MelA.A. NakamuraR. BittencourtC. The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes.Beilstein J. Nanotechnol.201561348136110.3762/bjnano.6.139 26199838
    [Google Scholar]
  24. ZhangY. TengX-A. MaZ-Q. WangR-M. LauW-M. ShanA-X. Synthesis of FeOOH scaly hollow tubes based on Cu2O wire templates toward high-efficiency oxygen evolution reaction.Rare Met.2023421836184610.1007/s12598‑023‑02284‑2
    [Google Scholar]
  25. XuJ. BianY. TianW. PanC. WuC. XuL. WuM. ChenM. The structures and compositions design of the hollow micro–nano-structured metal oxides for environmental catalysis.Nanomaterials20241414119010.3390/nano14141190 39057867
    [Google Scholar]
  26. TangC. RaoH. LiS. SheP. QinJ. A review of metal–organic frameworks derived hollow‐structured photocatalysts: synthesis and applications.Small20242048240553310.1002/smll.202405533 39212632
    [Google Scholar]
  27. JiangY. XuY. ZhangQ. ZhaoX. XiaoF. WangX. MaG. Templated synthesis of Cu2S hollow structures for highly active ozone decomposition.Catalysts202414215310.3390/catal14020153
    [Google Scholar]
  28. ToroC. BuriakJ.M. Template synthesis approach to nanomaterials: charles martin.Chem. Mater.202126174889489010.1021/cm5030662
    [Google Scholar]
  29. ZhangS. ChenS. Surfactant-template preparation of polyaniline semi-tubes for oxygen reduction.Catalysts2015531202121010.3390/catal5031202
    [Google Scholar]
  30. ZhongK. LiJ. LiuL. BrullotW. BloemenM. VolodinA. SongK. Van DorpeP. VerellenN. ClaysK. Direct fabrication of monodisperse silica nanorings from hollow spheres – a template for core–shell nanorings.ACS Appl. Mater. Interfaces2016816104511045810.1021/acsami.6b00733 27031364
    [Google Scholar]
  31. XieY. KocaefeD. ChenC. KocaefeY. Review of research on template methods in preparation of nanomaterials.J. Nanomater.2016201611010.1155/2016/2302595
    [Google Scholar]
  32. BellR.V. RochfordL.A. de RosalesR.T.M. StevensM. WeaverJ.V.M. BonS.A.F. Fabrication of calcium phosphate microcapsules using emulsion droplets stabilized with branched copolymers as templates.J. Mater. Chem. B Mater. Biol. Med.20153275544555210.1039/C5TB00893J 32262525
    [Google Scholar]
  33. (a PalN. BhaumikA. Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic–inorganic hybrid and purely organic solids.Adv. Colloid Interface Sci.2013189-190214110.1016/j.cis.2012.12.002 23337774
    [Google Scholar]
  34. (b BhaumikA. PalN. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.Adv. Colloid Interface Sci.2018190214110.1016/j.cis.2012.12.002 23337774
    [Google Scholar]
  35. (a LiY. LiuJ. McClementsD.J. ZhangX. ZhangT. DuZ. Recent advances in hollow nanostructures: synthesis methods, structural characteristics, and applications in food and biomedicine.J. Agric. Food Chem.20247237202412026010.1021/acs.jafc.4c05910 39253980
    [Google Scholar]
  36. (b ZhuM. TangJ. WeiW. LiS. Recent progress in the syntheses and applications of multishelled hollow nanostructures.Mater. Chem. Front.2020441105114910.1039/C9QM00700H
    [Google Scholar]
  37. (a LiuJ. XueD. Thermal oxidation strategy towards porous metal oxide hollow architectures.Adv. Mater.200820132622262710.1002/adma.200800208
    [Google Scholar]
  38. (b ZhongJ.H. LiG.R. WangZ.L. OuY.N. TongY.X. Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application.Inorg. Chem.201150375776310.1021/ic1017664 21182331
    [Google Scholar]
  39. (a WalkerA.V. YatesJ.T. Does cuprous oxide photosplit water?J. Phys. Chem. B2000104389038904310.1021/jp001568x
    [Google Scholar]
  40. (b TangN. ChenB. XiaY. ChenD. JiaoX. Facile synthesis of Cu2O nanocages and gas sensing performance towards gasoline.RSC Advances2015567544335443810.1039/C5RA07638B
    [Google Scholar]
  41. (c ZhangJ. LiuJ. PengQ. WangX. LiY. Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors.Chem. Mater.200618486787110.1021/cm052256f
    [Google Scholar]
  42. (a WangB. ZhangW. ZhangZ. LiR. WuY. HuZ. WuX. GuoC. ChengG. ZhengR. Cu2O hollow structures—microstructural evolution and photocatalytic properties.RSC Advances2016610510370010370610.1039/C6RA22474A
    [Google Scholar]
  43. (b EbrahimzadehF. Synthesis of secondary amines via amination of alcohols with benzylamine using the magnetic nano-catalyst Fe3O4@SiO2@CS@EDTA/Cu(II).Iranian J. Org. Chem.202341536673673
    [Google Scholar]
  44. (c EbrahimzadehF. Employment of the magnetic nano-catalyst Fe3O4@SiO2@CS@POCl2-x/Cu (II) for the amination of alcohols.J. Chem. React. Syn.2023133240254
    [Google Scholar]
  45. (d EbrahimzadehF. BaramakehL. Efficient removal of organic and inorganic pollutants from water using Fe3O4@SiO2@CS@EDTA nanocomposite: optimization via response surface methodology (RSM).ChemistrySelect2024910e20230252410.1002/slct.202302524
    [Google Scholar]
  46. (e LiuC. GuoR. ZhuH. CuiH. LiuM. PanW. Cu2O-based catalysts applied for electrocatalytic CO2 reduction: a review.J. Mater. Chem. A Mater. Energy Sustain.20241246317693179610.1039/D4TA06287F
    [Google Scholar]
  47. (f SuQ. ZuoC. LiuM. TaiX. A review on Cu2O-based composites in photocatalysis: synthesis, modification, and applications.Molecules20232814557610.3390/molecules28145576 37513448
    [Google Scholar]
  48. (g RooydellR. BrahmaS. WangR.C. ModaberiM.R. EbrahimzadehF. LiuC.P. Cu doped ZnO nanorods with controllable Cu content by using single metal organic precursors and their photocatalytic and luminescence properties.J. Alloys Compd.201769193694510.1016/j.jallcom.2016.08.324
    [Google Scholar]
  49. (h EbrahimzadehF. Chemical reduction synthesis of copper nanoparticles in aqueous media in present of maleic acid and polyvinylpyrrolidone (PVP).J. New Mater.201782912112820.1001.1.22285946.1396.8.29.10.9
    [Google Scholar]
  50. (a HungL.I. TsungC.K. HuangW. YangP. Room-temperature formation of hollow Cu(2)O nanoparticles.Adv. Mater.201022171910191410.1002/adma.200903947 20526993
    [Google Scholar]
  51. (b DongY. TaoF. WangL. LanM. ZhangJ. HongT. One-pot preparation of hierarchical Cu2O hollow spheres for improved visible-light photocatalytic properties.RSC Advances20201038223872239610.1039/D0RA02460K 35514579
    [Google Scholar]
  52. (c WangN. ZhouY. ChenK. WangT. SunP. WangC. ChuaiX. ZhangS. LiuX. LuG. Double shell Cu2O hollow microspheres as sensing material for high performance n-propanol sensor.Sens. Actuators B Chem.202133312954010.1016/j.snb.2021.129540
    [Google Scholar]
  53. YangL. GuoJ. YangT. GuoC. ZhangS. LuoS. DaiW. LiB. LuoX. LiY. Self-assembly Cu2O nanowire arrays on Cu mesh: A solid-state, highly-efficient, and stable photocatalyst for toluene degradation under sunlight.J. Hazard. Mater.202140212374110.1016/j.jhazmat.2020.123741 33254768
    [Google Scholar]
  54. SuY. YuanG. HuJ. FengW. ZengQ. LiuY. PangH. Recent progress in strategies for preparation of metal-organic frameworks and their hybrids with different dimensions.Chem. Syn.202231110.20517/cs.2022.24
    [Google Scholar]
  55. FirouzabadiH. IranpoorN. GarzanA. ShaterianH.R. EbrahimzadehF. Facile ring‐expansion substitution reactions of 1,3‐dithiolanes and 1,3‐dithianes initiated by electrophilic reagents to produce monohalo‐ ‐cyano‐ ‐azido‐ and ‐thiocyanato‐1,4‐dithiins and ‐1,4‐dithiepins.Eur. J. Org. Chem.20052005241642810.1002/ejoc.200400502
    [Google Scholar]
  56. EbrahimzadehF. FungK.Z. One-pot synthesis of size and shape controlled copper nanostructures in aqueous media and their application for fast catalytic degradation of organic dyes.J. Chem. Res.201640955255710.3184/174751916X14718784323425
    [Google Scholar]
  57. (a ChastainJ. KingR.C. Jr Handbook of X-ray photoelectron spectroscopy.Perkin-Elm. Corporat.199240221
    [Google Scholar]
  58. (b ChenT. ZhangL. LiJ. GuoC. QiaoS. ZhaoY. WangJ. The exploration of relationship between the evolution of Cu to Cu2O/CuO and photocatalytic efficiency toward water oxidation reaction.Int. J. Hydrogen Energy20246764465010.1016/j.ijhydene.2023.11.091
    [Google Scholar]
  59. (a HuangK. LiangG. SunS. HuH. PengX. ShenR. LiX. Interface-induced charge transfer pathway switching of a Cu2O-TiO2 photocatalyst from p-n to S-scheme heterojunction for effective photocatalytic H2 evolution.J. Mater. Sci. Technol.20241939810610.1016/j.jmst.2024.01.034
    [Google Scholar]
  60. (b OhY. TheerthagiriJ. Aruna KumariM.L. MinA. MoonC.J. ChoiM.Y. Electrokinetic-mechanism of water and furfural oxidation on pulsed laser-interlaced Cu2O and CoO on nickel foam.J. Energy Chem.20249114515410.1016/j.jechem.2023.12.023
    [Google Scholar]
  61. ChandaK. RejS. HuangM.H. Investigation of facet effects on the catalytic activity of Cu2O nanocrystals for efficient regioselective synthesis of 3,5-disubstituted isoxazoles.Nanoscale2013524124941250110.1039/c3nr03790h 24165690
    [Google Scholar]
  62. EspinosaS. SolivanM. VlaarC.P. Synthesis and redox-enzyme modulation by amino-1,4-dihydro-benzo [d] [1,2]dithiine derivatives.Tetrahedron Lett.200950253023302610.1016/j.tetlet.2009.03.209 20161292
    [Google Scholar]
  63. Ali ShahS.T. MerkelP. RaggeH. DuszenkoM. RademannJ. VoelterW. Stereospecific synthesis of chiral 2,3-dihydro-1,4-benzodithiine and methyl-2,3-dihydro-1,4-benzodithiine derivatives and their toxic effects on Trypanosoma brucei.ChemBioChem2005681438144110.1002/cbic.200400375 16052614
    [Google Scholar]
  64. JinG. OkujimaT. HashimotoY. YamadaH. UnoH. OnoN. Synthesis of 2,3-Dihydrobenzo [1,4]dithiin-fused porphyrins.Phosphorus Sulfur Silicon Relat. Elem.20101855-61108111610.1080/10426501003773449
    [Google Scholar]
  65. BarrettM. Investigations into the reactivity of alkynes and sulfur oxides under gold catalysis.Birmingham, UKUniversity of Birmingham2016313
    [Google Scholar]
/content/journals/cocat/10.2174/0122133372356100250116113708
Loading
/content/journals/cocat/10.2174/0122133372356100250116113708
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test