Skip to content
2000
Volume 21, Issue 19
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Background: In the quest for sustainable energy materials, new donor and acceptor materials are being designed, synthesized and tested for photovoltaic (PV) applications. In this context, conjugated organic polymers have received significant interests in the last few decades. Objective: In the present work, we synthesized an organic poly-yne P and assessed its efficiency as donor with a rylene acceptor EP-PTC. Methods: The organic poly-yne P was synthesised via Sonogashira coupling and characterized by analytical and spectroscopic techniques. The PV performance of blends composed of different amounts of polymer P and acceptor EP-PTC was assessed. Computational studies were undertaken at DFT level to determine the geometry, dipole moment, Mulliken charge and energy level. Results: A soluble blue low band-gap (1.72 eV) π-conjugated co-polymer consisting of dioctyloxyphenylene unit linked via ethynylene to 2,3-diphenylthieno[3,4-b]pyrazine has been synthesized and characterized. Blends of P and a soluble organic dye EP-PTC showed good PV performance with broad photocurrent spectra. The copoly-yne/dye-based solar cell with high EP-PTC content shows significantly higher external quantum efficiency (EQE) compared to the single material-based devices. However, a decrease in EQE was observed upon thermal annealing. DFT calculations showed convergence of the experimental results. Conclusion: We have synthesized and characterized a thienopyrazine-based organic co-polyyne and showed that blends of co-polymer P and the perylene dye EP-PTC possess high EQE up to 5.5% for the 90:10 EPPTC: P blend at wavelengths between 350 nm and 710 nm.

Loading

Article metrics loading...

/content/journals/coc/10.2174/1385272821666170420152645
2017-08-01
2025-09-16
Loading full text...

Full text loading...

/content/journals/coc/10.2174/1385272821666170420152645
Loading

  • Article Type:
    Research Article
Keyword(s): Blend; DFT; EQE; organic poly-yne; perylene; thermal annealing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test