Skip to content
2000
Volume 6, Issue 13
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Heterocycles present the core of many biologically or pharmaceutically interesting compounds. A new concept that addresses crucial issues of heterocycle synthesis such as selectivity of the actual ring closure step and tolerance of other functional groups, employs the cumulated ylide keteneylidenetriphenylphosphorane Ph3P=C=C=O. Featuring a unique combination of ylidic and ketene properties in a dipolar electronic structure, it reacts with derivatives of carboxylic acids bearing additional OH, NH-, SH- or CH-acidic groups. This reaction proceeds by a domino addition-Wittig olefination giving rise to the formation of the corresponding heterocycles with five- to seven-membered rings. Further pericyclic steps such as Diels-Alder cycloadditions, Claisen rearrangements, ene reactions, and various combinations thereof may ensue with the newly installed C=C bond. In some cases, the outcome of these processes is fully controllable by merely adjusting the external conditions. For example, allyl and cinnamyl α-hydroxycycloalkanoates could be selectively converted either to Claisen rearranged 3-allyltetronic acids or to Claisen-Conia rearranged 3-(spirocyclopropyl)-dihydrofuran-2,4-diones. The former furnished anti-HIV-active 5-spiro-3-(α-cyclopropylbenzyl)-tetronic acids upon Simmons-Smith reaction and the latter could be stereoselectively ring-opened with alcohols, amines and water to give herbicidal 3-(β-synalkoxy / amino)tetronic acids. Congenerous esters with di- or trialkyl substituted allyl residues undergo a formal [2,3]-sigmatropic rearrangement also proceeding via 3-(spirocyclopropyl)dihydrofuran-2,4-diones but leading to 3- exo-alkylidene-5-spirodihydrofuran-2,4-diones which in turn rapidly autooxidize to give potentially antimalarial spirotricyclic hemiketal endoperoxide lactones as products of an overall seven-step cascade.This review takes stock of these and other recent developments in the field of domino Wittig-pericyclic synthesis of bioactive heterocycles.

Loading

Article metrics loading...

/content/journals/coc/10.2174/1385272023373563
2002-11-01
2025-09-05
Loading full text...

Full text loading...

/content/journals/coc/10.2174/1385272023373563
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test