Skip to content
2000
image of Halogen-Atom Transfer for Visible-Light-Driven Bond Formation: Recent Trends, Challenges, and Opportunities

Abstract

Halogen-atom transfer (XAT) has emerged as a powerful and versatile radical-based strategy for both the activation of carbon-halogen bonds and the construction of new bonds under mild, catalyst-controlled conditions. Recent breakthroughs in photocatalysis have reinvigorated interest in this classical radical process by enabling efficient light-induced XAT pathways that circumvent the inherent limitations of traditional single-electron transfer (SET) mechanisms. This review highlights recent advances in XAT-mediated bond formation, with a focus on C-C, C-N, C-O, C-S, C-Cl, C-D, C=C, and C-P bond construction enabled by visible-light photocatalysis. Emphasis is placed on mechanistic innovation-particularly the use of α-aminoalkyl, boryl, aryl and silyl radicals as XAT initiators-and on the strategic merger of photoredox catalysis with transition metal systems. These developments have unlocked previously inaccessible reactivity patterns, including regioselective eliminations of alkenes, radical carbonylation, multicomponent couplings, and tandem cyclizations. The emerging utility of XAT in constructing complex molecules from simple halide precursors underscores its growing impact on modern synthetic design. By dissecting key mechanistic principles and categorizing bond-forming applications, this review provides a forward-looking perspective on the synthetic potential of halogen-atom transfer and its evolving role in sustainable and programmable molecular construction.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0115701794404250250911094815
2025-10-14
2025-12-25
Loading full text...

Full text loading...

References

  1. Cavallo G. Metrangolo P. Milani R. Pilati T. Priimagi A. Resnati G. Terraneo G. The halogen bond. Chem. Rev. 2016 116 4 2478 2601 10.1021/acs.chemrev.5b00484 26812185
    [Google Scholar]
  2. Smith J.M. Harwood S.J. Baran P.S. Radical retrosynthesis. Acc. Chem. Res. 2018 51 8 1807 1817 10.1021/acs.accounts.8b00209 30070821
    [Google Scholar]
  3. Crespi S. Fagnoni M. Generation of alkyl radicals: From the tyranny of tin to the photon democracy. Chem. Rev. 2020 120 17 9790 9833 10.1021/acs.chemrev.0c00278 32786419
    [Google Scholar]
  4. Sanosa N. Peñín B. Sampedro D. Funes-Ardoiz I. On the mechanism of halogen atom transfer from c−x bonds to α‐aminoalkyl radicals: A computational study. Eur. J. Org. Chem. 2022 2022 34 202200420 10.1002/ejoc.202200420
    [Google Scholar]
  5. Zubčić G. Andrijanić L. Džeba I. You J. Friganović T. Portada T. Pavić K. Bešić E. Vrček V. Šakić D. Mechanistic insights into the propagation cycle of the hofmann–löffler–freytag reaction: Halogen vs hydrogen atom transfer. J. Org. Chem. 2025 90 14 4873 4887 10.1021/acs.joc.4c02997 40166959
    [Google Scholar]
  6. Juliá F. Constantin T. Leonori D. Applications of halogen-atom transfer (XAT) for the generation of carbon radicals in synthetic photochemistry and photocatalysis. Chem. Rev. 2022 122 2 2292 2352 10.1021/acs.chemrev.1c00558 34882396
    [Google Scholar]
  7. Chen J.J. Huang H.M. Merging Halogen-Atom transfer with transition metal catalysis. Tetrahedron Lett. 2022 102 153945 10.1016/j.tetlet.2022.153945
    [Google Scholar]
  8. Sachidanandan K. Niu B. Laulhé S. An overview of α-aminoalkyl radical mediated halogen-atom transfer. ChemCatChem 2023 15 21 202300860 10.1002/cctc.202300860
    [Google Scholar]
  9. Jiang Y. Yin Y. Jiang Z. Recent advances in strategies for halide atom transfer (XAT) and their applications. Youji Huaxue 2024 44 6 1733 1759 10.6023/cjoc202401035
    [Google Scholar]
  10. Pitre S.P. Weires N.A. Overman L.E. Forging C (sp3)-C (sp3) bonds with carbon-centered radicals in the synthesis of complex molecules. J. Am. Chem. Soc. 2019 141 7 2800 2813 10.1021/jacs.8b11790 30566838
    [Google Scholar]
  11. Constantin T. Zanini M. Regni A. Sheikh N.S. Juliá F. Leonori D. Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science 2020 367 6481 1021 1026 10.1126/science.aba2419 32108109
    [Google Scholar]
  12. Twilton J. Le C. Zhang P. Shaw M. H. Evans R. W. MacMillan D. W. The merger of transition metal and photocatalysis. Nat. Rev. Chem., 2017 1 0052. 10.1038/s41570‑017‑0052
    [Google Scholar]
  13. Zhang Z. Tilby M.J. Leonori D. Boryl radical-mediated halogen-atom transfer enables arylation of alkyl halides with electrophilic and nucleophilic coupling partners. Nature Synthesis 2024 3 10 1221 1230 10.1038/s44160‑024‑00587‑5
    [Google Scholar]
  14. Wan T. Capaldo L. Ravelli D. Vitullo W. de Zwart F.J. de Bruin B. Noël T. Photoinduced halogen-atom transfer by N-heterocyclic carbene-ligated boryl radicals for C (sp3)-C (sp3) bond formation. J. Am. Chem. Soc. 2023 145 2 991 999 10.1021/jacs.2c10444 36583709
    [Google Scholar]
  15. Yen-Pon E. Li L. Levitre G. Majhi J. McClain E.J. Voight E.A. Crane E.A. Molander G.A. On-DNA hydroalkylation to introduce diverse bicyclo [1.1. 1] pentanes and abundant alkyls via halogen atom transfer. J. Am. Chem. Soc. 2022 144 27 12184 12191 10.1021/jacs.2c03025 35759692
    [Google Scholar]
  16. Wang J. Sánchez-Roselló M. Aceña J.L. del Pozo C. Sorochinsky A.E. Fustero S. Soloshonok V.A. Liu H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001-2011). Chem. Rev. 2014 114 4 2432 2506 10.1021/cr4002879 24299176
    [Google Scholar]
  17. Alonso C. Martínez de Marigorta E. Rubiales G. Palacios F. Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. Chem. Rev. 2015 115 4 1847 1935 10.1021/cr500368h 25635524
    [Google Scholar]
  18. Du H.W. Du Y.D. Zeng X.W. Shu W. Access to trifluoromethylketones from alkyl bromides and trifluoroacetic anhydride by photocatalysis. Angew. Chem. Int. Ed. 2023 62 38 202308732 10.1002/anie.202308732 37534823
    [Google Scholar]
  19. Dömling A. Wang W. Wang K. Chemistry and biology of multicomponent reactions. Chem. Rev. 2012 112 6 3083 3135 10.1021/cr100233r 22435608
    [Google Scholar]
  20. Cong F. Sun G.Q. Ye S.H. Hu R. Rao W. Koh M.J. A bimolecular homolytic substitution-enabled platform for multicomponent cross-coupling of unactivated alkenes. J. Am. Chem. Soc. 2024 146 15 10274 10280 10.1021/jacs.4c02284 38568080
    [Google Scholar]
  21. Hong F.L. Ye L.W. Transition metal-catalyzed tandem reactions of ynamides for divergent N-heterocycle synthesis. Acc. Chem. Res. 2020 53 9 2003 2019 10.1021/acs.accounts.0c00417 32869969
    [Google Scholar]
  22. Govaerts S. Nakamura K. Constantin T. Leonori D. A halogen-atom transfer (XAT)-based approach to indole synthesis using aryl diazonium salts and alkyl iodides. Org. Lett. 2022 24 43 7883 7887 10.1021/acs.orglett.2c02840 36268790
    [Google Scholar]
  23. Corpas J. Alonso M. Leonori D. Boryl radical-mediated halogen-atom transfer (XAT) enables the Sonogashira-like alkynylation of alkyl halides. Chem. Sci. 2024 15 45 19113 19118 10.1039/D4SC06516F 39483251
    [Google Scholar]
  24. Sephton T. Large J.M. Natrajan L.S. Butterworth S. Greaney M.F. XAT-catalysis for intramolecular biaryl synthesis. Angew. Chem. Int. Ed. 2024 63 35 202407979 10.1002/anie.202407979 38818676
    [Google Scholar]
  25. Zhang T. Huang H. Photocatalyzed aminomethylation of alkyl halides enabled by sterically hindered N-substituents. Angew. Chem. Int. Ed. 2023 62 45 202310114 10.1002/anie.202310114 37721856
    [Google Scholar]
  26. Li J. Liu T. Singh N. Huang Z. Ding Y. Huang J. Sudarsanam P. Li H. Photocatalytic C–N bond construction toward high-value nitrogenous chemicals. Chem. Commun. 2023 59 97 14341 14352 10.1039/D3CC04771G 37987689
    [Google Scholar]
  27. Rosen B.M. Quasdorf K.W. Wilson D.A. Zhang N. Resmerita A.M. Garg N.K. Percec V. Nickel-catalyzed cross-couplings involving carbon-oxygen bonds. Chem. Rev. 2011 111 3 1346 1416 10.1021/cr100259t 21133429
    [Google Scholar]
  28. Caiger L. Zhao H. Constantin T. Douglas J.J. Leonori D. The merger of aryl radical-mediated halogen-atom transfer (XAT) and copper catalysis for the modular cross-coupling-type functionalization of alkyl iodides. ACS Catal. 2023 13 7 4985 4991 10.1021/acscatal.3c00571
    [Google Scholar]
  29. Zhang Z. Poletti L. Leonori D. A radical strategy for the alkylation of amides with alkyl halides by merging boryl radical-mediated halogen-atom transfer and copper catalysis. J. Am. Chem. Soc. 2024 146 32 22424 22430 10.1021/jacs.4c05487 39087940
    [Google Scholar]
  30. Zhang J. Jiang M. Wang C.S. Guo K. Li Q.X. Ma C. Ni S.F. Chen G.Q. Zong Y. Lu H. Xu L.W. Shao X. Transition-metal free C–N bond formation from alkyl iodides and diazonium salts via halogen-atom transfer. Nat. Commun. 2022 13 1 7961 10.1038/s41467‑022‑35613‑7 36575172
    [Google Scholar]
  31. Chauhan P. Mahajan S. Enders D. Organocatalytic carbon-sulfur bond-forming reactions. Chem. Rev. 2014 114 18 8807 8864 10.1021/cr500235v 25144663
    [Google Scholar]
  32. Wu X. Gao B. Hydrosulfonylation of Unactivated alkenes and alkynes by halogen-atom transfer (XAT) cleavage of SVI-F bond. Org. Lett. 2023 25 48 8722 8726 10.1021/acs.orglett.3c03628 38019153
    [Google Scholar]
  33. Levitre G. Granados A. Molander G.A. Sustainable photoinduced decarboxylative chlorination mediated by halogen atom transfer. Green Chem. 2023 25 2 560 565 10.1039/D2GC04578H 37588672
    [Google Scholar]
  34. Di Martino R.M.C. Maxwell B.D. Pirali T. Deuterium in drug discovery: Progress, opportunities and challenges. Nat. Rev. Drug Discov. 2023 22 7 562 584 10.1038/s41573‑023‑00703‑8 37277503
    [Google Scholar]
  35. Lee J. Lee S. Dehalogenative deuteration of alkyl and aryl bromides by thiyl radical catalysis under visible-light irradiation. Chem. Commun. 2024 60 42 5526 5529 10.1039/D4CC00474D 38695506
    [Google Scholar]
  36. Ravelli D. Protti S. Fagnoni M. Carbon-carbon bond forming reactions via photogenerated intermediates. Chem. Rev. 2016 116 17 9850 9913 10.1021/acs.chemrev.5b00662 27070820
    [Google Scholar]
  37. Zhao H. McMillan A.J. Constantin T. Mykura R.C. Juliá F. Leonori D. Merging halogen-atom transfer (XAT) and cobalt catalysis to override E2-selectivity in the elimination of alkyl halides: A mild route toward contra-thermodynamic olefins. J. Am. Chem. Soc. 2021 143 36 14806 14813 10.1021/jacs.1c06768 34468137
    [Google Scholar]
  38. Nyagilo V.O. Mallojjala S.C. Hirschi J.S. Transition state analysis of key steps in dual photoredox-cobalt-catalyzed elimination of alkyl bromides. ACS Catal. 2024 14 7 4683 4689 10.1021/acscatal.3c06324 39211423
    [Google Scholar]
  39. Zhang P. Wang Y. Deng Z. Gao J. Synthetic versatility: The C–P bond odyssey. Org. Biomol. Chem. 2025 23 3 546 578 10.1039/D4OB01461H 39569945
    [Google Scholar]
  40. Tu Y.L. Zhang B.B. Qiu B.S. Wang Z.X. Chen X.Y. Cross‐electrophile C-PIII coupling of chlorophosphines with organic halides: Photoinduced PIII and aminoalkyl radical generation enabled by pnictogen bonding. Angew. Chem. 2023 135 43 202310764 10.1002/ange.202310764
    [Google Scholar]
  41. Giedyk M. Narobe R. Weiß S. Touraud D. Kunz W. König B. Photocatalytic activation of alkyl chlorides by assembly-promoted single electron transfer in microheterogeneous solutions. Nat. Catal. 2019 3 1 40 47 10.1038/s41929‑019‑0369‑5
    [Google Scholar]
  42. Fang C.Z. Zhang B.B. Tu Y.L. Liu Q. Wang Z.X. Chen X.Y. Radical replacement process for ligated boryl radical-mediated activation of unactivated alkyl chlorides for C(sp3)−C(sp3) bond formation. J. Am. Chem. Soc. 2024 146 38 26574 26584 10.1021/jacs.4c10915 39264946
    [Google Scholar]
/content/journals/coc/10.2174/0115701794404250250911094815
Loading
/content/journals/coc/10.2174/0115701794404250250911094815
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test