Skip to content
2000
image of Diphosphorus P2: A New Synthetic Tool in Organophosphorus Chemistry

Abstract

The advances in the synthetic chemistry of diatomic phosphorus are surveyed. Various routes to release P molecules from diphosphorus synthons have been developed. Among them are (i) photolysis of white phosphorus (P), (ii) thermolysis of the niobium-diphosphaazide complex, (iii) a retro Diels-Alder route, (iv) decomplexation of μ222-P{Ni(IMes)((CO)} complex, (v) photolysis of a phosphorus analogue of -quinodimethane, and (vi) thermolysis of strained 1,1´-biphosphirane complex. Examples of the P-stabilized species capable of diphosphorus transfer to organic substrates are presented.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728417097250908150824
2025-10-06
2025-11-08
Loading full text...

Full text loading...

/deliver/fulltext/coc/10.2174/0113852728417097250908150824/BMS-COC-2025-111.html?itemId=/content/journals/coc/10.2174/0113852728417097250908150824&mimeType=html&fmt=ahah

References

  1. Greenwood N.N. Earnshaw A. Chemistry of Elements. Butterworth-Heinemann 1997
    [Google Scholar]
  2. Regitz, M.; Scherer, O., Eds.; Multiple Bonds and Low Coordination in Phosphorus Chemistry. Thieme Verlag 1990
    [Google Scholar]
  3. Wang Y. Robinson G.H. Unique homonuclear multiple bonding in main group compounds. Chem. Commun. 2009 7345 35 5201 5213 10.1039/b908048a 19707626
    [Google Scholar]
  4. Fischer R.C. Power P.P. π-bonding and the lone pair effect in multiple bonds involving heavier main group elements: Developments in the new millennium. Chem. Rev. 2010 110 7 3877 3923 10.1021/cr100133q 20672858
    [Google Scholar]
  5. Gudat D. Low-coordinate main group compounds – Group 15.Comprehensive Inorganic Chemistry II. Elsevier 2013 Vol. 1 587 621 10.1016/B978‑0‑08‑097774‑4.00123‑6
    [Google Scholar]
  6. Bock H. Mueller H. Gas-phase reactions. The phosphorus P4/2P2 equilibrium visualized. Inorg. Chem. 1984 23 25 4365 4368 10.1021/ic00193a051
    [Google Scholar]
  7. Scherer O.J. Small neutral Pn molecules. Angew. Chem. Int. Ed. 2000 39 6 1029 1030 10.1002/(SICI)1521‑3773(20000317)39:6<1029::AID‑ANIE1029>3.0.CO;2‑6 10760912
    [Google Scholar]
  8. Jupp A.R. Beijer S. Narain G.C. Schipper W. Slootweg J.C. Phosphorus recovery and recycling – closing the loop. Chem. Soc. Rev. 2021 50 1 87 101 10.1039/D0CS01150A 33210686
    [Google Scholar]
  9. Gilliard R.J. Kieser J.M. Protasiewicz J.D. Synthons for the development of new organophosphorus functional materials. Main Group Strategies towards Functional Hybrid Materials Baumgartner T. Jakle F. 2018 357 382
    [Google Scholar]
  10. Romanenko V.D. New trends in the development of C-P bond forming reactions. Curr. Org. Chem. 2021 25 17 1937 1976 10.2174/1385272825666210610153954
    [Google Scholar]
  11. Romanenko V.D. Organophosphorus synthesis beyond P-Cl bond: The development of shelf-stable reagents for [RP] transfer. Curr. Org. Chem. 2024 28 19 1483 1512 10.2174/0113852728323258240613061150
    [Google Scholar]
  12. Geeson M.B. Cummins C.C. Phosphoric acid as a precursor to chemicals traditionally synthesized from white phosphorus. Science 2018 359 6382 1383 1385 10.1126/science.aar6620 29439027
    [Google Scholar]
  13. Romanenko V.D. From elusive monomeric metaphosphates to oligomeric metaphosphate reagents: New avenue to halogen-free phosphorylation of biomolecules. Curr. Org. Chem. 2022 26 5 432 437 10.2174/1385272826666220330111824
    [Google Scholar]
  14. Schipper W. Phosphorus: Too big to fail. Eur. J. Inorg. Chem. 2014 2014 10 1567 1571 10.1002/ejic.201400115
    [Google Scholar]
  15. Grützmacher H. White phosphorus first. Nat. Chem. 2022 14 4 362 364 10.1038/s41557‑022‑00921‑4 35379969
    [Google Scholar]
  16. Scheschkewitz D. A convenient P– source. Nat. Chem. 2020 12 9 785 787 10.1038/s41557‑020‑0534‑0 32807884
    [Google Scholar]
  17. Piro N.A. Figueroa J.S. McKellar J.T. Cummins C.C. Triple-bond reactivity of diphosphorus molecules. Science 2006 313 5791 1276 1279 10.1126/science.1129630 16946068
    [Google Scholar]
  18. Wang Y. Robinson G.H. Carbene-stabilized main group diatomic allotropes. Dalton Trans. 2012 41 2 337 345 10.1039/C1DT11165E 21904737
    [Google Scholar]
  19. Nesterov V. Reiter D. Bag P. Frisch P. Holzner R. Porzelt A. Inoue S. NHCs in main group chemistry. Chem. Rev. 2018 118 19 9678 9842 10.1021/acs.chemrev.8b00079 29969239
    [Google Scholar]
  20. Yadav R. Sinhababu S. Yadav R. Kundu S. Base-stabilized formally zero-valent mono and diatomic molecular main-group compounds. Dalton Trans. 2022 51 6 2170 2202 10.1039/D1DT03569J 35040452
    [Google Scholar]
  21. Wang Y. Robinson G.H. Counterintuitive chemistry: Carbene stabilization of zero-oxidation state main group species. J. Am. Chem. Soc. 2023 145 10 5592 5612 10.1021/jacs.2c13574 36876997
    [Google Scholar]
  22. Russell C.A. P≡P, a laboratory reagent? Angew. Chem. Int. Ed. 2010 49 50 9572 9573 10.1002/anie.201006243 21080394
    [Google Scholar]
  23. Huber K.P. Herzberg G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules. Van Nostrand: Reinhold 1979
    [Google Scholar]
  24. Jones R.O. Hohl D. Structure of phosphorus clusters using simulated annealing—P2 to P8. J. Chem. Phys. 1990 92 11 6710 6721 10.1063/1.458306
    [Google Scholar]
  25. Häser M. Treutler O. Calculated properties of P2, P4, and of closed-shell clusters up to P18. J. Chem. Phys. 1995 102 9 3703 3711 10.1063/1.468552
    [Google Scholar]
  26. Pyykkö P. Riedel S. Patzschke M. Triple-bond covalent radii. Chemistry 2005 11 12 3511 3520 10.1002/chem.200401299 15832398
    [Google Scholar]
  27. Jerabek P. Frenking G. Comparative bonding analysis of N2 and P2 versus tetrahedral N4 and P4. Theor. Chem. Acc. 2014 133 3 1447 10.1007/s00214‑014‑1447‑z
    [Google Scholar]
  28. Jerabek P. Frenking G. Erratum to: Comparative bonding analysis of N2 and P2 versus tetrahedral N4 and P4. Theor. Chem. Acc. 2015 134 11 136 10.1007/s00214‑015‑1742‑3
    [Google Scholar]
  29. Wang S. Sears J.D. Moore C.E. Rheingold A.L. Neidig M.L. Figueroa J.S. Side-on coordination of diphosphorus to a mononuclear iron center. Science 2022 375 6587 1393 1397 10.1126/science.abn7100 35324298
    [Google Scholar]
  30. Vizi-Orosz A. Pályi G. Markó L. Phosphido cobalt carbonyl cluster: Co2(CO)6P2 and Co3(CO)9 PS. J. Organomet. Chem. 1973 60 1 C25 C26 10.1016/S0022‑328X(00)85423‑6
    [Google Scholar]
  31. Vizi-Orosz A. Phosphido cobalt carbonyl clusters Pn[Co(CO)3]4−n (n = 1, 2, 3). J. Organomet. Chem. 1976 111 1 61 64 10.1016/S0022‑328X(00)87058‑8
    [Google Scholar]
  32. Lang H. Zsolnai L. Huttner G. Diphosphorus: P≡P: As eight-electron ligand. Angew. Chem. Int. Ed. Engl. 1983 22 12 976 977 10.1002/anie.198309762
    [Google Scholar]
  33. Scherer O.J. Complexes with substituent‐free acyclic and cyclic phosphorus, arsenic, antimony, and bismuth ligands. Angew. Chem. Int. Ed. Engl. 1990 29 10 1104 1122 10.1002/anie.199011041
    [Google Scholar]
  34. Scherer O.J. Schwalb J. Sitzmann H. Lindsell W.E. Tetracarbonylbis(η5‐cyclopentadienyl)(μ‐η2‐diphosphorus)dimolybdenum(I) and dicarbonyl (η5‐ cyclopentadienyl)‐(η3‐cyclo‐triphosphorus)molybdenum(I). Inorg. Synth. 1990 27 224 227 10.1002/9780470132586.ch44
    [Google Scholar]
  35. Scherer O.J. Ehses M. Wolmershäuser G. Activation of P4 and P2 by transition metal complexes at room temperature. Angew. Chem. Int. Ed. 1998 37 4 507 510 10.1002/(SICI)1521‑3773(19980302)37:4<507::AID‑ANIE507>3.0.CO;2‑M 29711163
    [Google Scholar]
  36. Schäfer H. Binder D. Fenske D. Chelate‐stabilized diphosphene and diphosphorus complexes of nickel. Angew. Chem. Int. Ed. Engl. 1985 24 6 522 524 10.1002/anie.198505221
    [Google Scholar]
  37. Scháufer H. Binder D. Übergangsmetallphosphidokomplexe. XVII. Reaktionen von Silylphosphanderivaten mit (R3P)2PtCl2(R=Et,Ph). Z Anorg. Allg. Chem. 1988 560 1 65 79 10.1002/zaac.19885600109
    [Google Scholar]
  38. Thompson R.R. Figgins M.T. Wannipurage D.C. Renteria-Gomez A. Gogoi A.R. Telser J. Tierney D.L. Neben M.C. Demeshko S. Gutierrez O. Powers D.C. P–P coupling with and without terminal metal–phosphorus intermediates. J. Am. Chem. Soc. 2025 147 6 5350 5359 10.1021/jacs.4c16833 39873652
    [Google Scholar]
  39. Du J. Hunger D. Seed J.A. Cryer J.D. King D.M. Wooles A.J. van Slageren J. Liddle S.T. Dipnictogen f-element chemistry: A diphosphorus uranium complex. J. Am. Chem. Soc. 2021 143 14 5343 5348 10.1021/jacs.1c02482 33792307
    [Google Scholar]
  40. Abbenseth J. Diefenbach M. Hinz A. Alig L. Würtele C. Goicoechea J.M. Holthausen M.C. Schneider S. Oxidative coupling of terminal rhenium pnictide complexes. Angew. Chem. Int. Ed. 2019 58 32 10966 10970 10.1002/anie.201905130 31179626
    [Google Scholar]
  41. Hierlmeier G. Hinz A. Wolf R. Goicoechea J.M. Synthesis and Reactivity of Nickel‐Stabilised μ2:η2, η2 ‐P2, As2 and PAs Units. Angew. Chem. Int. Ed. 2018 57 2 431 436 10.1002/anie.201710582 29152826
    [Google Scholar]
  42. Grant L.N. Pinter B. Manor B.C. Suter R. Grützmacher H. Mindiola D.J. A Planar Ti2P2 core assembled by reductive decarbonylation of − O−C≡P and P−P radical coupling. Chemistry 2017 23 26 6272 6276 10.1002/chem.201701054 28297126
    [Google Scholar]
  43. Cossairt B.M. Piro N.A. Cummins C.C. Early-transition-metal-mediated activation and transformation of white phosphorus. Chem. Rev. 2010 110 7 4164 4177 10.1021/cr9003709 20175534
    [Google Scholar]
  44. Caporali M. Gonsalvi L. Rossin A. Peruzzini M. P4 activation by late-transition metal complexes. Chem. Rev. 2010 110 7 4178 4235 10.1021/cr900349u 20170154
    [Google Scholar]
  45. Dürr S. Ertler D. Radius U. Symmetrical P4 cleavage at cobalt: Characterization of intermediates on the way from P4 to coordinated P2 units. Inorg. Chem. 2012 51 6 3904 3909 10.1021/ic300219w 22401604
    [Google Scholar]
  46. Ehses M. Romerosa A. Peruzzini M. Metal-mediated degradation and reaggregation of white phosphorus. Top. Curr. Chem. 2002 220 107 140 10.1007/3‑540‑45731‑3_5
    [Google Scholar]
  47. Nagasaki S. Inagaki S. Stereospecific [2+2] cycloaddition reactions of diphosphorus with alkenes. Tetrahedron Lett. 2008 49 22 3578 3581 10.1016/j.tetlet.2008.04.026
    [Google Scholar]
  48. Velian A. Cummins C.C. Synthesis of a diniobium tetraphosphorus complex by a 2(3−1) process. Chem. Sci. 2012 3 4 1003 10.1039/c2sc00931e
    [Google Scholar]
  49. Wang M. Yang T. Tian R. Wei D. Duan Z. Mathey F. The chemistry of phosphirane-substituted phosphinidene complexes. Chem. Commun. 2020 56 67 9707 9710 10.1039/D0CC04501B 32699865
    [Google Scholar]
  50. Hierlmeier G. Wolf R. Diphosphorus release and heterocumulene oligomerisation by nickel complexes. Eur. J. Inorg. Chem. 2022 2022 10 e202101057 10.1002/ejic.202101057 35915815
    [Google Scholar]
  51. Sasamori T. Tokitoh N. Doubly bonded systems between heavier Group 15 elements. Dalton Trans. 2008 1395 1408 10.1039/B715033D
    [Google Scholar]
  52. Sun J. Verplancke H. Schweizer J.I. Diefenbach M. Würtele C. Otte M. Tkach I. Herwig C. Limberg C. Demeshko S. Holthausen M.C. Schneider S. Stabilizing P≡P: P22–, P2–, and P20 as bridging ligands. Chem. 2021 7 7 1952 1962 10.1016/j.chempr.2021.06.006
    [Google Scholar]
  53. Rathenau G. Optische und photochemische versuche mit phosphor. Physica 1937 4 6 503 514 10.1016/S0031‑8914(37)80084‑1
    [Google Scholar]
  54. Serrano-Ruiz M. Romerosa A. Lorenzo-Luis P. Elemental phosphorus and electromagnetic radiation. Eur. J. Inorg. Chem. 2014 2014 10 1587 1598 10.1002/ejic.201301361
    [Google Scholar]
  55. Scheer M. Balázs G. Seitz A. P4 activation by main group elements and compounds. Chem. Rev. 2010 110 7 4236 4256 10.1021/cr100010e 20438122
    [Google Scholar]
  56. Wang L.P. Tofan D. Chen J. Van Voorhis T. Cummins C.C. A pathway to diphosphorus from the dissociation of photoexcited tetraphosphorus. RSC Advances 2013 3 45 23166 10.1039/c3ra43940b
    [Google Scholar]
  57. Tofan D. Cummins C.C. Photochemical incorporation of diphosphorus units into organic molecules. Angew. Chem. Int. Ed. 2010 49 41 7516 7518 10.1002/anie.201004385 20799313
    [Google Scholar]
  58. Velian A. Nava M. Temprado M. Zhou Y. Field R.W. Cummins C.C. A retro Diels-Alder route to diphosphorus chemistry: molecular precursor synthesis, kinetics of P2 transfer to 1,3-dienes, and detection of P2 by molecular beam mass spectrometry. J. Am. Chem. Soc. 2014 136 39 13586 13589 10.1021/ja507922x 25198657
    [Google Scholar]
  59. Wang Y. Xie Y. Wei P. King R.B. Schaefer H.F. Schleyer P.R. Robinson G.H. Carbene-Stabilized Diphosphorus. J. Am. Chem. Soc. 2008 130 45 14970 14971 10.1021/ja807828t 18937460
    [Google Scholar]
  60. Doddi A. Bockfeld D. Zaretzke M.K. Kleeberg C. Bannenberg T. Tamm M. A modular approach to carbene-stabilized diphosphorus species. Dalton Trans. 2017 46 45 15859 15864 10.1039/C7DT03436A 29114655
    [Google Scholar]
  61. Jacobsen H. Correa A. Poater A. Costabile C. Cavallo L. Understanding the M(NHC) (NHC=N-heterocyclic carbene) bond. Coord. Chem. Rev. 2009 253 5-6 687 703 10.1016/j.ccr.2008.06.006
    [Google Scholar]
  62. Martin C.D. Soleilhavoup M. Bertrand G. Carbene-stabilized main group radicals and radical ions. Chem. Sci. 2013 4 8 3020 3030 10.1039/c3sc51174j 23878717
    [Google Scholar]
  63. Romanenko V.D. Kachkovskaya L.S. Markovskii L.N. 1,1-Tetrakis (dialkylamino)-2,3-diphosphabutadienes. Zh. Obshch. Khim., 1985, 55, 2140-2141. Chem. Abstr. 1986 104 149000e
    [Google Scholar]
  64. Back O. Kuchenbeiser G. Donnadieu B. Bertrand G. Nonmetal-mediated fragmentation of P4: isolation of P1 and P2 bis(carbene) adducts. Angew. Chem. Int. Ed. 2009 48 30 5530 5533 10.1002/anie.200902344 19544519
    [Google Scholar]
  65. Markovskii L.N. Romanenko V.D. Pidvarko T.V. Phosphadienes with two-coordinate phosphorus atom. Zh. Obshch. Khim. 1983 53 7 1672 1673
    [Google Scholar]
  66. Markovskii L.N. Romanenko V.D. Kachkovskaya L.S. Povolotskii M.I. Patsanovskii I.I. Stepanova Yu.Z. Ishmaeva E.A. 1,1-Bis(dialkylamino)-4,4-bis(trimethylsilyl-2,3-diphosphabutadienes. Zh. Obshch. Khim. 1987 57 901 907
    [Google Scholar]
  67. Yoon J.S. Abdellaoui M. Gembicky M. Bertrand G. A carbene-stabilized diphosphorus: a triple-bonded diphosphorus (PÁP) and a bis(phosphinidene) (P–P) transfer agent. Chem. Sci. 2024 15 38 15713 15716 10.1039/D4SC05091F 39246371
    [Google Scholar]
  68. Back O. Donnadieu B. Parameswaran P. Frenking G. Bertrand G. Isolation of crystalline carbene-stabilized P2-radical cations and P2-dications. Nat. Chem. 2010 2 5 369 373 10.1038/nchem.617 20414236
    [Google Scholar]
  69. Wang Y. Hickox H.P. Xie Y. Wei P. Cui D. Walter M.R. Schaefer H.F. Robinson G.H. Protonation of carbene-stabilized diphosphorus: complexation of HP2+. Chem. Commun. 2016 52 33 5746 5748 10.1039/C6CC01759B 27046462
    [Google Scholar]
  70. Wang Y. Xie Y. Abraham M.Y. Wei P. Schaefer H.F. Schleyer P.R. Robinson G.H. Carbene-stabilized diphosphorus: bidentate complexation of BH2+. Chem. Commun. 2011 47 32 9224 9226 10.1039/c1cc13224e 21761063
    [Google Scholar]
  71. Wang Y. Xie Y. Wei P. Schaefer H.F. Schleyer P.R. Robinson G.H. Splitting molecular oxygen en route to a stable molecule containing diphosphorus tetroxide. J. Am. Chem. Soc. 2013 135 51 19139 19142 10.1021/ja411667f 24299493
    [Google Scholar]
  72. Wang Y. Xie Y. Abraham M.Y. Gilliard R.J. Wei P. Schaefer H.F. Schleyer P.R. Robinson G.H. Carbene-stabilized parent phosphinidene. Organometallics 2010 29 21 4778 4780 10.1021/om100335j
    [Google Scholar]
  73. Ghosh B. Banerjee A. Paul A. Understanding the unexpected product distribution in the aerial oxidation of carbene‐stabilized diphosphorus complex. Chemistry 2018 24 17 4350 4360 10.1002/chem.201705496 29323438
    [Google Scholar]
  74. Wang Y. Szilvási T. Yao S. Driess M. A bis(silylene)-stabilized diphosphorus compound and its reactivity as a monophosphorus anion transfer reagent. Nat. Chem. 2020 12 9 801 807 10.1038/s41557‑020‑0518‑0 32807885
    [Google Scholar]
  75. Rottschäfer D. Ho N.K.T. Neumann B. Stammler H.G. van Gastel M. Andrada D.M. Ghadwal R.S. N‐Heterocyclic Carbene Analogues of Thiele and Chichibabin Hydrocarbons. Angew. Chem. Int. Ed. 2018 57 20 5838 5842 10.1002/anie.201713346 29668119
    [Google Scholar]
  76. Rottschäfer D. Neumann B. Stammler H.G. Kishi R. Nakano M. Ghadwal R.S. A phosphorus analogue of p‐quinodimethane with a planar P4 ring: A metal‐free diphosphorus source. Chemistry 2019 25 13 3244 3247 10.1002/chem.201805932 30716177
    [Google Scholar]
  77. Frenette B.L. Trach J. Ferguson M.J. Rivard E. Frustrated Lewis pair adduct of atomic P(−1) as a source of phosphinidenes (PR), diphosphorus (P2), and indium Phosphide. Angew. Chem. Int. Ed. 2023 62 10 e202218587 10.1002/anie.202218587 36625676
    [Google Scholar]
/content/journals/coc/10.2174/0113852728417097250908150824
Loading
/content/journals/coc/10.2174/0113852728417097250908150824
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test