Skip to content
2000
image of Recent Advances in Multicomponent Reactions for Pyrrolidine Derivative Synthesis: Catalytic, Catalyst-Free, and Azomethine Ylide Approaches

Abstract

Pyrrolidine derivatives, as privileged nitrogen-containing heterocycles, are widely recognized for their broad spectrum of biological activities and their prevalence in pharmaceuticals and natural products. The efficient and sustainable synthesis of these frameworks remains a central challenge in organic and medicinal chemistry. Multicomponent reactions (MCRs) have emerged as powerful tools for the rapid and atom-economical construction of pyrrolidine scaffolds, offering significant advantages over traditional stepwise approaches. This review comprehensively summarizes recent advances (2018-2024) in the synthesis of pyrrolidine derivatives MCRs, focusing on catalyst-based, catalyst-free, and azomethine ylide-mediated strategies. Special attention is given to enabling techniques such as ultrasound and microwave irradiation, as well as the use of various catalysts and green solvents. The scope, efficiency, and limitations of each method are critically analyzed, alongside a discussion of their merits and demerits in terms of yield, selectivity, operational simplicity, and environmental impact. Collectively, these developments highlight the growing industrial and pharmaceutical relevance of MCRs for pyrrolidine synthesis and provide valuable insights for future research in heterocyclic chemistry and drug discovery.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728416472251006073957
2025-11-03
2025-12-14
Loading full text...

Full text loading...

References

  1. Insuasty D. Castillo J. Becerra D. Rojas H. Abonia R. Synthesis of biologically active molecules through multicomponent reactions. Molecules 2020 25 3 505 10.3390/molecules25030505 31991635
    [Google Scholar]
  2. Younus H.A. Al-Rashida M. Hameed A. Uroos M. Salar U. Rana S. Khan K.M. Multicomponent reactions (MCR) in medicinal chemistry: A patent review (2010-2020). Expert Opin. Ther. Pat. 2021 31 3 267 289 10.1080/13543776.2021.1858797 33275061
    [Google Scholar]
  3. Cores Á. Clerigué J. Orocio-Rodríguez E. Menéndez J.C. Multicomponent reactions for the synthesis of active pharmaceutical ingredients. Pharmaceuticals 2022 15 8 1009 10.3390/ph15081009 36015157
    [Google Scholar]
  4. Kabir E. Uzzaman M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem. 2022 4 100606 10.1016/j.rechem.2022.100606
    [Google Scholar]
  5. Al-Mulla A.A. Review: Biological importance of heterocyclic compounds. Pharma. Chem. 2017 9 141 147
    [Google Scholar]
  6. Arora P. Arora V. Lamba H. Wadhwa D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res. 2012 3 9 2947 5 10.13040/IJPSR.0975‑8232.3(9).2947‑54
    [Google Scholar]
  7. Sachdeva H. Khaturia S. Saquib M. Khatik N. Khandelwal A.R. Meena R. Sharma K. Oxygen- and sulphur-containing heterocyclic compounds as potential anticancer agents. Appl. Biochem. Biotechnol. 2022 194 12 6438 6467 10.1007/s12010‑022‑04099‑w 35900713
    [Google Scholar]
  8. Jeelan Basha N. Basavarajaiah S.M. Shyamsunder K. Therapeutic potential of pyrrole and pyrrolidine analogs: An update. Mol. Divers. 2022 26 5 2915 2937 10.1007/s11030‑022‑10387‑8 35079946
    [Google Scholar]
  9. Heravi M.M. Zadsirjan V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances 2020 10 72 44247 44311 10.1039/D0RA09198G 35557843
    [Google Scholar]
  10. Akram S. Jabeen T. Aslam S. Yusaf A. Ahmad M. Shahid Nazir M. Al-Hussain S.A. Zaki M.E.A. N-Arylpyrazole based scaffolds: Synthesis and biological applications. J. Saudi Chem. Soc. 2024 28 3 101861 10.1016/j.jscs.2024.101861
    [Google Scholar]
  11. Ahmad M. Siddiqui H.L. Gardiner J.M. Parvez M. Aslam S. Synthesis and antioxidant studies of novel N-substituted benzyl/phenyl-2-(3,4-dimethyl-5,5-dioxidopyrazolo[4,3-c][1,2]benzothiazin-2(4H)-yl)acetamides. Med. Chem. Res. 2013 22 2 794 805 10.1007/s00044‑012‑0062‑6
    [Google Scholar]
  12. Kanwal A. Saddique F.A. Aslam S. Ahmad M. Zahoor A.F. Mohsin N.A. Benzimidazole ring system as a privileged template for anticancer agents. Pharm. Chem. J. 2018 51 12 1068 1077 10.1007/s11094‑018‑1742‑4
    [Google Scholar]
  13. Rizvi S.U.F. Siddiqui H.L. Parvez M. Ahmad M. Siddiqui W.A. Yasinzai M.M. Antimicrobial and antileishmanial studies of novel (2E)-3-(2-Chloro-6-methyl/methoxyquinolin-3-yl)-1-(Aryl)prop-2-en-1-ones. Chem. Pharm. Bull. 2010 58 3 301 306 10.1248/cpb.58.301 20190432
    [Google Scholar]
  14. Alam M.Z. Ahmad S. Alimuddin; Khan, S.A. Synthesis of fluorescent pyrazoline sensors as versatile tool for zinc ion detection: A mini-review. J. Fluoresc. 2024 35 3 1241 1253 10.1007/s10895‑023‑03571‑y 38381235
    [Google Scholar]
  15. Alam M.Z. Khan S.A. A review on pyridine based colorimetric and fluorometric chemosensor for detection of Hg2+ ion. J. Fluoresc. 2024 1 16 10.1007/s10895‑024‑04005‑z 39527360
    [Google Scholar]
  16. Rizvi S.U.F. Siddiqui H.L. Ahmad M.N. Ahmad M. Bukhari M.H. Novel quinolyl-thienyl chalcones and their 2-pyrazoline derivatives with diverse substitution pattern as antileishmanial agents against Leishmania major. Med. Chem. Res. 2012 21 7 1322 1333 10.1007/s00044‑011‑9647‑8
    [Google Scholar]
  17. Walayat K. Mohsin N.A. Aslam S. Ahmad M. An insight into the therapeutic potential of piperazine-based anticancer agents. Turk. J. Chem. 2019 43 1 1 23 10.3906/kim‑1806‑7
    [Google Scholar]
  18. Ahmad M. Aslam S. Rizvi S.U.F. Muddassar M. Ashfaq U.A. Montero C. Ollinger O. Detorio M. Gardiner J.M. Schinazi R.F. Molecular docking and antiviral activity of N-substituted benzyl/phenyl-2-(3,4-dimethyl-5,5-dioxidopyrazolo[4,3-c][1,2]benzothiazin-2(4H)-yl)acetamides. Bioorg. Med. Chem. Lett. 2015 25 6 1348 1351 10.1016/j.bmcl.2015.01.007 25701249
    [Google Scholar]
  19. Ibraheem F. Ahmad M. Ashfaq U.A. Aslam S. Khan Z.A. Sultan S. Synthesis, molecular docking and anti-diabetic studies of novel benzimidazole-pyrazoline hybrid molecules. Pak. J. Pharm. Sci. 2020 33 2 847 854 10.36721/PJPS.2020.33.2.Sup 32863261
    [Google Scholar]
  20. Ahmad M. Rizvi S.U.F. Siddiqui H.L. Ahmad S. Parvez M. Suliman R. Antioxidant and antimicrobial studies of novel N′-(substituted-2-chloroquinolin-3-yl)methylidene-4-hydroxy-2H-1,2-benzothiazine-3-carbohydrazides 1,1-dioxides. Med. Chem. Res. 2012 21 9 2340 2348 10.1007/s00044‑011‑9755‑5
    [Google Scholar]
  21. Afsah E.M. Abdelmageed S.M. Pyrrolidine‐2,3‐diones: Synthesis, reactions and biological activity. J. Heterocycl. Chem. 2020 57 11 3763 3783 10.1002/jhet.4098
    [Google Scholar]
  22. Bhat A.A. Tandon N. Tandon R. Pyrrolidine derivatives as anti‐diabetic agents: Current status and future prospects. ChemistrySelect 2022 7 6 e202103757 10.1002/slct.202103757
    [Google Scholar]
  23. Poyraz S. Döndaş H.A. Döndaş N.Y. Sansano J.M. Recent insights about pyrrolidine core skeletons in pharmacology. Front. Pharmacol. 2023 14 1239658 10.3389/fphar.2023.1239658 37745071
    [Google Scholar]
  24. Bhat A.A. Recent advances in organocatalytic synthesis and catalytic activity of substituted pyrrolidines. Curr. Catal. 2024 13 1 2 24 10.2174/0122115447285170240206115917
    [Google Scholar]
  25. Fatima H.N. Ahmad M. Nazir M.S. Akram S. Aslam S. Recent synthetic methodologies for pyrrolidine derivatives through multicomponent reactions. Synth. Commun. 2025 14 1 27 10.1080/00397911.2025.2503341
    [Google Scholar]
  26. Li S.P. Wang Y.W. Qi S.L. Zhang Y.P. Deng G. Ding W.Z. Ma C. Lin Q.Y. Guan H.D. Liu W. Cheng X.M. Wang C.H. Analogous β-Carboline alkaloids harmaline and harmine ameliorate scopolamine-induced cognition dysfunction by attenuating acetylcholinesterase activity, oxidative stress, and inflammation in mice. Front. Pharmacol. 2018 9 346 10.3389/fphar.2018.00346 29755345
    [Google Scholar]
  27. Lauro F.V. Francisco D.C. Marcela R.N. Maria L.R. Virginia M.A.M. Magdalena A.R. Tomas L.G. Synthesis of some pyrrolidine‐2,5‐dione derivatives with biological activity against Gram‐negative bacteria. Vietnam J. Chem. 2022 60 6 744 758 10.1002/vjch.202200028
    [Google Scholar]
  28. Ji J. Sajjad F. You Q. Xing D. Fan H. Reddy A.G.K. Hu W. Dong S. Synthesis and biological evaluation of substituted pyrrolidines and pyrroles as potential anticancer agents. Arch. Pharm. 2020 353 12 2000136 10.1002/ardp.202000136 32776576
    [Google Scholar]
  29. Tilekar K. Upadhyay N. Meyer-Almes F.J. Loiodice F. Anisimova N.Y. Spirina T.S. Sokolova D.V. Smirnova G.B. Choe J. Pokrovsky V.S. Lavecchia A.S. Ramaa C. Synthesis and biological evaluation of Pyrazoline and Pyrrolidine‐2,5‐dione hybrids as potential antitumor agents. ChemMedChem 2020 15 19 1813 1825 10.1002/cmdc.202000458 32715626
    [Google Scholar]
  30. Almansour A. Kumar R. Beevi F. Shirazi A. Osman H. Ismail R. Choon T. Sullivan B. McCaffrey K. Nahhas A. Parang K. Ali M. Facile, regio- and diastereoselective synthesis of spiro-pyrrolidine and pyrrolizine derivatives and evaluation of their antiproliferative activities. Molecules 2014 19 7 10033 10055 10.3390/molecules190710033 25014532
    [Google Scholar]
  31. Meyers M.J. Liu J. Xu J. Leng F. Guan J. Liu Z. McNitt S.A. Qin L. Dai L. Ma H. Adah D. Zhao S. Li X. Polino A.J. Nasamu A.S. Goldberg D.E. Liu X. Lu Y. Tu Z. Chen X. Tortorella M.D. 4-Aryl pyrrolidines as a novel class of orally efficacious antimalarial Agents. Part 1: Evaluation of 4-Aryl- N -benzylpyrrolidine-3-carboxamides. J. Med. Chem. 2019 62 7 3503 3512 10.1021/acs.jmedchem.8b01972 30856324
    [Google Scholar]
  32. Rahman A. Alam M.Z. Jahan A. Syed S. Khan S.A. A review on recent progress in synthesis and biological activities of spiropyrrolidine and its derivatives. J. Mol. Struct. 2025 1330 9 141377 10.1016/j.molstruc.2025.141377
    [Google Scholar]
  33. Yamashita T. Yasuda K. Kizu H. Kameda Y. Watson A.A. Nash R.J. Fleet G.W.J. Asano N. New polyhydroxylated pyrrolidine, piperidine, and pyrrolizidine alkaloids from Scilla sibirica. J. Nat. Prod. 2002 65 12 1875 1881 10.1021/np020296h 12502331
    [Google Scholar]
  34. Glauser T.A. Perucca E. Ethosuximide. The treatment of epilepsy. Shorvon S. Perucca E. Engel J.J. John Wiley and Sons 2015 10.1002/9781118936979
    [Google Scholar]
  35. Ridley J.M. Milnes J.T. Hancox J.C. Witchel H.J. Clemastine, a conventional antihistamine, is a high potency inhibitor of the HERG K+ channel. J. Mol. Cell. Cardiol. 2006 40 1 107 118 10.1016/j.yjmcc.2005.09.017 16288909
    [Google Scholar]
  36. Mohamed A. Alkhiyami D. Rahhal A. Del Castillo M.J.C. Pichad S.M. Ahmad M. Procyclidine overdose induced central and peripheral anti-cholinergic toxicity. Toxicol. Commun. 2018 2 1 42 44 10.1080/24734306.2018.1459109
    [Google Scholar]
  37. Man S. Yang L. Xiang H. Lu G. Wang Y. Liu C. Gao W. Antihypertensive and renal protective effect of Shunaoxin pill combined with captopril on spontaneous hypertension rats. Biomed. Pharmacother. 2020 125 109977 10.1016/j.biopha.2020.109977 32032892
    [Google Scholar]
  38. Macías-Silva M. Vázquez-Victorio G. Hernández-Damián J. Anisomycin is a multifunctional drug: More than just a tool to inhibit protein synthesis. Curr. Chem. Biol. 2010 4 2 124 132 10.2174/187231310791170793
    [Google Scholar]
  39. Egle K. Skadins I. Grava A. Micko L. Dubniks V. Salma I. Dubnika A. Injectable platelet-rich fibrin as a drug carrier increases the antibacterial susceptibility of antibiotic—clindamycin phosphate. Int. J. Mol. Sci. 2022 23 13 7407 10.3390/ijms23137407 35806408
    [Google Scholar]
  40. Mohlala R.L. Rashamuse T.J. Coyanis E.M. Highlighting multicomponent reactions as an efficient and facile alternative route in the chemical synthesis of organic-based molecules: A tremendous growth in the past 5 years. Front Chem. 2024 12 1469677 10.3389/fchem.2024.1469677 39359421
    [Google Scholar]
  41. Ganem B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res. 2009 42 3 463 472 10.1021/ar800214s 19175315
    [Google Scholar]
  42. Tandi M. Sharma V. Gopal B. Sundriyal S. Multicomponent reactions (MCRs) yielding medicinally relevant rings: A recent update and chemical space analysis of the scaffolds. RSC Advances 2025 15 2 1447 1489 10.1039/D4RA06681B 39822567
    [Google Scholar]
  43. Campos-Prieto L. García-Rey A. Sotelo E. Mallo-Abreu A. Multicomponent reactions driving the discovery and optimization of agents targeting central nervous system pathologies. Beilstein J. Org. Chem. 2024 20 3151 3173 10.3762/bjoc.20.261 39669443
    [Google Scholar]
  44. Zavarise C. Cintrat J.C. Romero E. Sallustrau A. Isocyanate-based multicomponent reactions. RSC Advances 2024 14 53 39253 39267 10.1039/D4RA04152F 39670166
    [Google Scholar]
  45. Bhat A.A. Tandon N. Singh I. Pyrrolidine derivatives as α-amylase and α-glucosidase inhibitors: Design, synthesis, structure-activity relationship (SAR), docking studies and HSA binding. Heliyon 2024 10 20 e39444 10.1016/j.heliyon.2024.e39444 39502250
    [Google Scholar]
  46. Fukuda T. Uchida R. Inoue H. Ohte S. Yamazaki H. Matsuda D. Katagiri T. Tomoda H. Fungal pyrrolidine-containing metabolites inhibit alkaline phosphatase activity in bone morphogenetic protein-stimulated myoblastoma cells. Acta Pharm. Sin. B 2012 2 1 23 27 10.1016/j.apsb.2011.12.011
    [Google Scholar]
  47. Han M.Y. Jia J.Y. Wang W. Recent advances in organocatalytic asymmetric synthesis of polysubstituted pyrrolidines. Tetrahedron Lett. 2014 55 4 784 794 10.1016/j.tetlet.2013.11.048
    [Google Scholar]
  48. Saraswat P. Jeyabalan G. Hassan M.Z. Rahman M.U. Nyola N.K. Review of synthesis and various biological activities of spiro heterocyclic compounds comprising oxindole and pyrrolidine moities. Synth. Commun. 2016 46 20 1643 1664 10.1080/00397911.2016.1211704
    [Google Scholar]
  49. Bdiri B. Zhao B.J. Zhou Z.M. Recent advances in the enantioselective 1,3-dipolar cycloaddition of azomethine ylides and dipolarophiles. Tetrahedron Asymmetry 2017 28 7 876 899 10.1016/j.tetasy.2017.05.010
    [Google Scholar]
  50. Purohit G. Rawat D.S. Hierarchically porous mixed oxide sheetlike copper–aluminum nanocatalyzed synthesis of 2-Alkynyl pyrrolidines/piperidines and their ideal green chemistry metrics 2019 7 23 19235 19245 10.1021/acssuschemeng.9b05410
  51. Khalaj M. Khatami S.M. Ghashang M. Symmetrical ammonium dibromide as an efficient promoter for the ultrasonic irradiation multi-component preparation of pyrrolidine derivatives. Results Chem. 2023 6 15 101182 10.1016/j.rechem.2023.101182
    [Google Scholar]
  52. Taghrir H. Roudbaraki S.J. Mejías F.J. Mottaghipisheh J. Ghashang M. Mild and efficient synthesis of pyrrolidines catalyzed by ceric ammonium nitrate. SSRN Electron. J. 2022 10.2139/ssrn.4300081
    [Google Scholar]
  53. Yarahmadi H. Ghashang M. Yazdani-Samani L. Lashkari M. CAN combined with NaI as promoter system for the synthesis of novel Ethyl 1,2-Diarylpyrrolidine-3-carboxylate derivatives via three-component reaction. Org. Prep. Proced. Int. 2022 54 6 517 524 10.1080/00304948.2022.2099198
    [Google Scholar]
  54. Zhang Y. Su J. Lin T. Lin Z. Zhou Z. Li Y. Iodine/K 2 CO 3 -catalyzed synthesis of multisubstituted pyrrolidine-2-carboxylates via a one-pot reaction between an araldehyde, an amino acid ester, and a chalcone. J. Chem. Res. 2019 43 3-4 90 96 10.1177/1747519819832108
    [Google Scholar]
  55. Hou Q. You Y. Song X. Wang Y. Chen K. Wang H. Endo-selective construction of spiro-[butyrolactone-pyrrolidine] via Ag(I)/CAAA-Amidphos-Catalyzed 1,3-Dipolar cycloaddition between azomethine ylides and α-Methylene-γ-Butyrolactone. Catalysts 2019 10 1 28 10.3390/catal10010028
    [Google Scholar]
  56. Ray S.K. Biswas R.G. Suneja A. Sadhu M.M. Singh V.K. (R)-DM-SEGPHOS–Ag(I)-Catalyzed enantioselective synthesis of pyrrolidines and pyrrolizidines via (1,3)- and double (1,3)-dipolar cycloaddition reactions. J. Org. Chem. 2018 83 4 2293 2308 10.1021/acs.joc.7b03185 29364672
    [Google Scholar]
  57. Jang H.C. Sin K.R. Paek H.R. Jang Y.M. Jong S.H. Phosphine-catalyzed sequential michael addition between α-Aminonitriles and methyl acrylate for cyclization: Synthesis of N-Aryl-Substituted pyrrolidines. Russ. J. Org. Chem. 2020 56 12 2228 2235 10.1134/S1070428020120283
    [Google Scholar]
  58. Sakly R. Edziri H. Askri M. Knorr M. Strohmann C. Mastouri M. One-pot four-component domino strategy for the synthesis of novel spirooxindole–pyrrolidine/pyrrolizidine-linked 1,2,3-triazole conjugates via stereo- and regioselective [3+2] cycloaddition reactions: In vitro antibacterial and antifungal studies. C. R. Chim. 2018 21 1 41 53 10.1016/j.crci.2017.11.009
    [Google Scholar]
  59. Basu S. Ghosh T. Maity S. Ghosh P. Mukhopadhyay C. An efficient phosphotungstic acid catalysed synthesis of 4,5‐Dioxopyrrolidines and study of the mechanistic effect of the solvent on the reaction. ChemistrySelect 2019 4 19 5763 5767 10.1002/slct.201901011
    [Google Scholar]
  60. Islam M.S. Ghawas H.M. El-Senduny F.F. Al-Majid A.M. Elshaier Y.A.M.M. Badria F.A. Barakat A. Synthesis of new thiazolo-pyrrolidine–(spirooxindole) tethered to 3-acylindole as anticancer agents. Bioorg. Chem. 2019 82 423 430 10.1016/j.bioorg.2018.10.036 30508794
    [Google Scholar]
  61. Rahimi S. Ghandi M. Fallahnezhad M. Abbasi A. A facile synthesis of chromeno[3,4-c]spiropyrrolidine indenoquinoxalines via 1,3-dipolar cycloadditions. Mol. Divers. 2024 28 1 133 142 10.1007/s11030‑023‑10629‑3 36943611
    [Google Scholar]
  62. Kuai D. Cheng H. Kuan K.Y. Yan X. Accelerated five-component spiro-pyrrolidine construction at the air–liquid interface. Chem. Commun. (Camb.) 2021 57 31 3757 3760 10.1039/D1CC00574J 33876122
    [Google Scholar]
  63. Deivasigamani G. Adukamparai Rajukrishnan S.B. A Sequential Multicomponent Reaction (SMCR) strategy: Synthesis of novel Pyrazolo-1,4-Dioxaspiro [4,5] decane grafted spiro-indenoquinoxaline pyrrolidine heterocycles. Synth. Commun. 2021 51 2063 2076 10.1080/00397911.2020.1866613
    [Google Scholar]
  64. Nguyen N.T. Dai V.V. Tri N.N. Van Meervelt L. Trung N.T. Dehaen W. Experimental and theoretical studies on the synthesis of 1,4,5-trisubstituted pyrrolidine-2,3-diones. Beilstein J. Org. Chem. 2022 18 1140 1153 10.3762/bjoc.18.118 36105726
    [Google Scholar]
  65. Yan L.J. Wang J.L. Xu D. Burgess K.S. Zhu A.F. Rao Y.Y. Chen X.B. Wang Y.C. Chemically sustainable and green one‐pot multicomponent synthesis of highly functionalized polycyclic N‐Fused‐Pyrrolidine heterocycles. ChemistrySelect 2018 3 2 662 665 10.1002/slct.201702188
    [Google Scholar]
  66. Belabbes A. Selva V. Foubelo F. De Gracia Retamosa M. Sansano J.M. Synthesis of Spiropyrrolidine‐3,1′‐pyrrolo[3,4‐c]pyrrole Basic Framework by multicomponent 1,3‐Dipolar cycloaddition. Eur. J. Org. Chem. 2021 2021 29 4229 4236 10.1002/ejoc.202100646
    [Google Scholar]
  67. Vidya S. Priya K. Velayudhan Jayasree D. Deepthi A. Biju P.G. Synthesis of heterocycle appended spiro(oxindole-3,2′-pyrrolidine) derivatives from heterocyclic ylidenes and azomethine ylide through 1,3-dipolar cycloaddition reactions. Synth. Commun. 2019 49 12 1592 1602 10.1080/00397911.2019.1605444
    [Google Scholar]
  68. Kumar R.S. Al-Thamili M. D.; Almansour, A.I.; Arumugam, N.; Dege, N. [Bmim]Br accelerated one-pot three-component cascade protocol for the construction of spirooxindole-pyrrolidine heterocyclic hybrids. Molecules 2020 25 20 4779 10.3390/molecules25204779 33080968
    [Google Scholar]
  69. Villarreal Y. Insuasty B. Abonia R. Ortiz A. Quiroga J. Catalyst-free three-component synthesis of new pyrrolidine derivatives via 1,3-dipolar cycloaddition. Chem. Heterocycl. Compd. 2019 55 4-5 352 358 10.1007/s10593‑019‑02464‑y
    [Google Scholar]
  70. Askri S. Dbeibia A. Mchiri C. Boudriga S. Knorr M. Roulland E. Laprévote O. Saffon-Merceron N. Gharbi R. Antimicrobial activity and in silico molecular docking studies of pentacyclic spiro[oxindole-2,3′-pyrrolidines] tethered with succinimide scaffolds. Appl. Sci. (Basel) 2021 12 1 360 10.3390/app12010360
    [Google Scholar]
  71. Boudriga S. Haddad S. Murugaiyah V. Askri M. Knorr M. Strohmann C. Golz C. Three-component access to functionalized spiropyrrolidine heterocyclic scaffolds and their cholinesterase inhibitory activity. Molecules 2020 25 8 1963 10.3390/molecules25081963 32340203
    [Google Scholar]
  72. Ali M.M.A. Suriyan G.U. Surya K.J. Mani K.S. Synthesis of bioactive quinoline appended spiro pyrrolidines as antioxidants. J. Heterocycl. Chem. 2023 60 9 1558 1564 10.1002/jhet.4699
    [Google Scholar]
  73. Toumi A. Boudriga S. Hamden K. Sobeh M. Cheurfa M. Askri M. Knorr M. Strohmann C. Brieger L. Synthesis, antidiabetic activity and molecular docking study of rhodanine-substitued spirooxindole pyrrolidine derivatives as novel α-amylase inhibitors. Bioorg. Chem. 2021 106 104507 10.1016/j.bioorg.2020.104507 33288322
    [Google Scholar]
  74. Zhou Y. Liu X-W. Chang S-Q. Wang Q-L. Chen S. Wang J-X. Zhou W. Decarboxylative-mediated regioselective 1,3-Dipolar cycloaddition for diversity-oriented synthesis of structurally exo′-selective spiro[oxindole-pyrrolidine-dihydrocoumarin] hybrids. Synthesis 2020 52 3018 3028 10.1055/s‑0040‑1707895
    [Google Scholar]
  75. Suryanarayana B. Reddy C.V.R. Synthesis of spiro-oxindole-pyrrolidines via [3 + 2]-cycloaddition of non-stabilized azomethine ylide. Russ. J. Org. Chem. 2023 59 1 85 92 10.1134/S1070428023010098
    [Google Scholar]
  76. Zhu L. Ren X. Liao Z. Pan J. Jiang C. Wang T. Asymmetric three-component cyclizations toward structurally spiro pyrrolidines via bifunctional phosphonium salt catalysis. Org. Lett. 2019 21 21 8667 8672 10.1021/acs.orglett.9b03282 31603337
    [Google Scholar]
  77. Zulfaqar Bacho M. Fazli Mohammat M. Shaameri Z. Wibowo A. Kamarulzaman F. Sazali Hamzah A. A facile synthesis of pyrrolidine-based iminosugars as potential alpha-glucosidase inhibitors. Orient. J. Chem. 2020 36 2 309 319 10.13005/ojc/360214
    [Google Scholar]
  78. Bergamaschi E. Capurro P. Lambruschini C. Riva R. Basso A. Stereoselective synthesis of 3,5‐Dihydroxypyrrolidin‐2‐ones through a photoinduced multicomponent reaction followed by dimerization. Eur. J. Org. Chem. 2019 2019 34 5992 5997 10.1002/ejoc.201901080
    [Google Scholar]
  79. García-Mingüens E. Caletková O. Berkeš D. Nájera C. Sansano J.M. Silver‐catalyzed diastereoselective synthesis of spirocyclic pyrrolidine‐lactones by 1,3‐Dipolar cycloaddition. Eur. J. Org. Chem. 2020 2020 34 5563 5571 10.1002/ejoc.202000915
    [Google Scholar]
  80. Moghaddam F.M. Goudarzi M. Chamani F. Dezag H.M. A new Mumm-type rearrangement with dithiocarbamates via isocyanide-based multicomponent reaction under ultrasound irradiation: Synthesis of polysubstituted pyrrolidine compounds. New J. Chem. 2020 44 23 9699 9702 10.1039/D0NJ00691B
    [Google Scholar]
  81. Jassem A.M. Chen B. Ultrasound-assisted synthesis and in vitro antimicrobial activity of novel 5-oxo-2-pyrrolidinecarboxamides and 7-oxo-2-azepanecarboxamides. Chem. Pap. 2021 75 7 3575 3586 10.1007/s11696‑021‑01603‑0
    [Google Scholar]
  82. Riadi Y. Ouerghi O. Geesi M.H. Kaiba A. Anouar E.H. Guionneau P. Efficient novel eutectic-mixture-mediated synthesis of benzoxazole-linked pyrrolidin-2-one heterocycles. J. Mol. Liq. 2021 323 115011 10.1016/j.molliq.2020.115011
    [Google Scholar]
  83. Zhang X. Qiu W. Ma X. Evans J. Kaur M. Jasinski J.P. Zhang W. One-Pot double [3 + 2] cycloadditions for diastereoselective synthesis of pyrrolidine-based polycyclic systems. J. Org. Chem. 2018 83 21 13536 13542 10.1021/acs.joc.8b02046 30296831
    [Google Scholar]
  84. Flores-Constante G. Sánchez-Chávez A.C. Polindara-García L.A. A convenient synthesis of 1,2‐Disubstituted‐ cis ‐3,4‐Dihydroxypyrrolidines via an Ugi‐four‐component‐reaction/cycloisomerization/dihydroxylation protocol. Eur. J. Org. Chem. 2018 2018 33 4586 4591 10.1002/ejoc.201800756
    [Google Scholar]
  85. Panda J. Raiguru B.P. Nayak S. Mohapatra S. Mohapatra S. Rout S. Mohanty P. Biswal H.S. Bhattacharya D. Sahoo C.R. [3+2] cycloaddition mediated synthesis of spirooxindole pyrrolidine/piperidine fused chromene aldehyde derivatives: DFT studies, antibacterial evaluation and molecular docking investigation as DNA gyrase inhibitors. New J. Chem. 2024 48 30 13609 13630 10.1039/D4NJ01102C
    [Google Scholar]
  86. Nayak S. Pattanaik P. Mohapatra S. Mishra D.R. Panda P. Raiguru B. Mishra N.P. Jena S. Biswal H.S. One pot, three component synthesis of spiroindenoquinoxaline pyrrolidine fused nitrochromene derivatives following 1,3-dipolar cycloaddition. Synth. Commun. 2019 49 14 1823 1835 10.1080/00397911.2019.1606919
    [Google Scholar]
  87. Elinson M.N. Ryzhkova Y.E. Vereshchagin A.N. Ryzhkov F.V. Kalashnikova V.M. Egorov M.P. Direct and efficient electrocatalytic multicomponent assembling of arylaldehydes, malononitrile, and pyrazolin-5-ones into spirocyclopropyl pyrazolone scaffold. Monatsh. Chem. 2021 152 6 641 648 10.1007/s00706‑021‑02784‑w
    [Google Scholar]
  88. Amarouche L. Mehdid M.A. Brahimi F.T. Belkhadem F. Karmaoui M. Othman A.A. Synthesis of some 2-substituted pyrrolidine alkaloid analogues: N-benzyl-2-(5-substituted 1,3,4-oxadiazolyl) pyrrolidine derivatives and pharmacological screening. J. Saudi Chem. Soc. 2022 26 3 101448 10.1016/j.jscs.2022.101448
    [Google Scholar]
  89. Niu C. Chen X.P. Yin Z.C. Wang G.W. Multicomponent synthesis of 2‐Arylvinyl‐substituted fulleropyrrolidines from [60]fullerene, amines and aldehydes. Eur. J. Org. Chem. 2019 2019 38 6504 6509 10.1002/ejoc.201901133
    [Google Scholar]
  90. Iddum S. Yang D.Y. Liou T.J. Diastereoselective synthesis of polysubstituted pyrrolidines/dihydropyrroles: Photochemical properties of polysubstituted pyrroles. Asian J. Org. Chem. 2021 10 10 2663 2669 10.1002/ajoc.202100498
    [Google Scholar]
/content/journals/coc/10.2174/0113852728416472251006073957
Loading
/content/journals/coc/10.2174/0113852728416472251006073957
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test