Skip to content
2000
image of Advances in the Synthesis of Kavalactones

Abstract

The review provides a comprehensive overview of the latest methodologies developed for the synthesis of kavalactones, a class of bioactive compounds derived from the root of kava (). The review focuses on summarizing various synthetic strategies reported in the literature from 1995 to 2025, highlighting their advantages, limitations, and potential for scalability. It discusses the diverse approaches for synthesizing kavalactones, including the use of different starting materials, reagents, and conditions to achieve high-yielding, cost-effective, and environmentally friendly outcomes. By comparing these methods, the review identifies the most practical and efficient strategies currently available. It suggests areas where future research could lead to improved synthetic strategies to optimize kavalactone synthesis further. Through this comprehensive overview, the manuscript provides valuable insights for researchers aiming to develop superior synthetic methods for kavalactones.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728411104251013072840
2026-01-22
2026-01-31
Loading full text...

Full text loading...

References

  1. Keller F. Klohs M.W. A review of the chemistry and pharmacology of the constituents of Piper methysticum. Lloydia 1963 26 1 15
    [Google Scholar]
  2. Sotheeswaran S. Kawa and the Australian aborigine. Chem. Aust 1987 54 10 377 378
    [Google Scholar]
  3. Singh Y.N. Kava: An overview. J. Ethnopharmacol. 1992 37 1 13 45 10.1016/0378‑8741(92)90003‑A 1453702
    [Google Scholar]
  4. Denali S. Herb safety review: Kava. Boulder, Colorado Herb Research Foundation 1997
    [Google Scholar]
  5. Lehrl S. Clinical efficacy of kava extract WS® 1490 in sleep disturbances associated with anxiety disorders Results of a multicenter, randomized, placebo-controlled, double-blind clinical trial. J. Affect. Disord. 2004 78 2 101 110 10.1016/S0165‑0327(02)00238‑0 14706720
    [Google Scholar]
  6. Bilia A.R. Gallori S. Vincieri F.F. Kava-kava and anxiety: Growing knowledge about the efficacy and safety. Life Sci. 2002 70 22 2581 2597 10.1016/S0024‑3205(02)01555‑2 12269386
    [Google Scholar]
  7. Jamieson D.D. Duffield P.H. The antinociceptive actions of kava components in mice. Clin. Exp. Pharmacol. Physiol. 1990 17 7 495 507 10.1111/j.1440‑1681.1990.tb01349.x 2401103
    [Google Scholar]
  8. Wu D. Yu L. Nair M.G. De Witt D.L. Ramsewak R.S. Cyclooxygenase enzyme inhibitory compounds with antioxidant activities from Piper methysticum (kava kava) roots. Phytomedicine 2002 9 1 41 47 10.1078/0944‑7113‑00068 11924763
    [Google Scholar]
  9. Gleitz J. Beile A. Wilkins P. Ameri A. Peters T. Antithrombotic action of the kava pyrone (+)-kavain prepared from Piper methysticum on human platelets. Planta Med. 1997 63 1 27 30 10.1055/s‑2006‑957597 9063093
    [Google Scholar]
  10. Backhauß C. Krieglstein J. Extract of kava (Piper methysticum) and its methysticin constituents protect brain tissue against ischemic damage in rodents. Eur. J. Pharmacol. 1992 215 2-3 265 269 10.1016/0014‑2999(92)90037‑5 1396990
    [Google Scholar]
  11. Seitz U. Ameri A. Pelzer H. Gleitz J. Peters T. Relaxation of evoked contractile activity of isolated guinea-pig ileum by (+/-)-kavain. Planta Med. 1997 63 4 303 306 10.1055/s‑2006‑957687 9270372
    [Google Scholar]
  12. Einbond L.S. Negrin A. Kulakowski D.M. Wu H.A. Antonetti V. Jalees F. Law W. Roller M. Redenti S. Kennelly E.J. Balick M.J. Traditional preparations of kava (Piper methysticum) inhibit the growth of human colon cancer cells in vitro. Phytomedicine 2017 24 1 13 10.1016/j.phymed.2016.11.002 28160848
    [Google Scholar]
  13. Herath H.M.P. Taki A. Nguyen N. Garcia-Bustos J. Hofmann A. Wang T. Ma G. Chang B. Jabbar A. Sleebs B. Gasser R. Synthetic Kavalactone analogues with increased potency and selective anthelmintic activity against larvae of Haemonchus contortusin Vitro. Molecules 2020 25 8 2004 2012 10.3390/molecules25082004 32344703
    [Google Scholar]
  14. Côté C.S. Kor C. Cohen J. Auclair K. Composition and biological activity of traditional and commercial kava extracts. Biochem. Biophys. Res. Commun. 2004 322 1 147 152 10.1016/j.bbrc.2004.07.093 15313185
    [Google Scholar]
  15. Bilia A. Scalise L. Bergonzi M. Vincieri F. Analysis of kavalactones from Piper methysticum (kava-kava). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2004 812 1-2 203 214 10.1016/S1570‑0232(04)00644‑0 15556499
    [Google Scholar]
  16. McCracken S.T. Kaiser M. Boshoff H.I. Boyd P.D.W. Copp B.R. Synthesis and antimalarial and antituberculosis activities of a series of natural and unnatural 4-methoxy-6-styryl-pyran-2-ones, dihydro analogues and photo-dimers. Bioorg. Med. Chem. 2012 20 4 1482 1493 10.1016/j.bmc.2011.12.053 22285027
    [Google Scholar]
  17. Schmitz D. Zhang C.L. Chatterjee S.S. Heinemann U. Effects of methysticin on three different models of seizure like events studied in rat hippocampal and entorhinal cortex slices. Naunyn Schmiedebergs Arch. Pharmacol. 1995 351 4 348 355 10.1007/BF00169074 7630425
    [Google Scholar]
  18. Pollastri M.P. Whitty A. Merrill J.C. Tang X. Ashton T.D. Amar S. Identification and characterization of kava-derived compounds mediating TNF-α suppression. Chem. Biol. Drug Des. 2009 74 2 121 128 10.1111/j.1747‑0285.2009.00838.x 19538508
    [Google Scholar]
  19. Puppala M. Narayanapillai S.C. Leitzman P. Sun H. Upadhyaya P. O’Sullivan M.G. Hecht S.S. Xing C. Pilot in vivo structure–activity relationship of dihydromethysticin in blocking 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced O6-Methylguanine and Lung tumor in A/J mice. J. Med. Chem. 2017 60 18 7935 7940 10.1021/acs.jmedchem.7b00921 28806079
    [Google Scholar]
  20. Steiner G.G. The correlation between cancer incidence and kava consumption. Hawaii Med. J. 2000 59 11 420 422 [PMID: 11149250
    [Google Scholar]
  21. Blumenthal M. Goldberg A. Brinckmann J. Herbal medicine: Expanded commission E monograpghs. USA Integrative Medicine Communications 2000 xiii+519
    [Google Scholar]
  22. Clayton N.P. Yoshizawa K. Kissling G.E. Burka L.T. Chan P.C. Nyska A. Immunohistochemical analysis of expressions of hepatic cytochrome P450 in F344 rats following oral treatment with kava extract. Exp. Toxicol. Pathol. 2007 58 4 223 236 10.1016/j.etp.2006.08.002 17059882
    [Google Scholar]
  23. Teschke R. Schwarzenboeck A. Hennermann K.H. Kava hepatotoxicity: A clinical survey and critical analysis of 26 suspected cases. Eur. J. Gastroenterol. Hepatol. 2008 20 12 1182 1193 10.1097/MEG.0b013e3283036768 18989142
    [Google Scholar]
  24. Yamazaki Y. Hashida H. Arita A. Hamaguchi K. Shimura F. High dose of commercial products of kava (Piper methysticum) markedly enhanced hepatic cytochrome P450 1A1 mRNA expression with liver enlargement in rats. Food Chem. Toxicol. 2008 46 12 3732 3738 10.1016/j.fct.2008.09.052 18930106
    [Google Scholar]
  25. Ernst E. A re-evaluation of kava (Piper methysticum). Br. J. Clin. Pharmacol. 2007 64 4 415 417 10.1111/j.1365‑2125.2007.02932.x 17555466
    [Google Scholar]
  26. Kalesse M. Christmann M. Bhatt U. Quitschalle M. Claus E. Saeed A. Burzlaff A. Kasper C. Haustedt L.O. Hofer E. Scheper T. Beil W. The chemistry and biology of ratjadone. ChemBioChem 2001 2 9 709 714 10.1002/1439‑7633(20010903)2:9<709:AID‑CBIC709>3.0.CO;2‑7 11828509
    [Google Scholar]
  27. Miyashita K. Ikejiri M. Kawasaki H. Maemura S. Imanishi T. Total synthesis of an antitumor antibiotic, Fostriecin (CI-920). J. Am. Chem. Soc. 2003 125 27 8238 8243 10.1021/ja030133v 12837094
    [Google Scholar]
  28. Bialy L. Waldmann H. Synthesis and biological evaluation of cytostatin analogues Electronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b3/b305308n/. Chem. Commun (Camb) 2003 15 1872 1872 10.1039/b305308n 12932009
    [Google Scholar]
  29. Amorim M.F.D. Diniz M.F.F.M. Araujo M.S.T. Pita J.C.L.R. Dantas J.G. Ramalho J.A. Xavier A.L. Palomaro T.V. Junior B. Nelson N. The controvertible role of Kava (Piper Methysticum G. Foster) an anxiolytic herb, on toxic Hepatitis. Rev. Bras. Farmacogn. 2007 17 448 454 10.1590/S0102‑695X2007000300020
    [Google Scholar]
  30. Dharmaratne H.R. Nanayakkara N.P. Khan I.A. Kavalactones from Piper methysticum, and their 13C NMR spectroscopic analyses. Phytochemistry 2002 59 4 429 433 10.1016/S0031‑9422(01)00443‑5 11830162
    [Google Scholar]
  31. Lebot V. Levesque J. The origin and distribution of Kava (Piper Methysticum Forst. f., Piperaceae): A phytochemical approach. Allertonia 1989 5 223 281
    [Google Scholar]
  32. Pluskal T. Torrens-Spence M.P. Fallon T.R. De Abreu A. Shi C.H. Weng J-K. The biosynthetic origin of psychoactive kavalactones in Kava. Nat. Plants 2019 5 8 867 878 10.1038/s41477‑019‑0474‑0 31332312
    [Google Scholar]
  33. Marco J.A. Carda M. Murga J. Falomir E. Stereoselective syntheses of naturally occurring 5,6-dihydropyran-2-ones. Tetrahedron 2007 63 14 2929 2958 10.1016/j.tet.2006.12.047
    [Google Scholar]
  34. Boucard V. Broustal G. Campagne J.M. Synthetic approaches to α,β-unsaturated δ-lactones and lactols. Eur. J. Org. Chem. 2007 2007 2 225 236 10.1002/ejoc.200600570
    [Google Scholar]
  35. Turner S.R. Strohbach J.W. Tommasi R.A. Aristoff P.A. Johnson P.D. Skulnick H.I. Dolak L.A. Seest E.P. Tomich P.K. Bohanon M.J. Horng M.M. Lynn J.C. Chong K.T. Hinshaw R.R. Watenpaugh K.D. Janakiraman M.N. Thaisrivongs S. Tipranavir (PNU-140690): A potent, orally bioavailable nonpeptidic HIV protease inhibitor of the 5,6-dihydro-4-hydroxy-2-pyrone sulfonamide class. J. Med. Chem. 1998 41 18 3467 3476 10.1021/jm9802158 9719600
    [Google Scholar]
  36. Thaisrivongs S. Skulnick H.I. Turner S.R. Strohbach J.W. Tommasi R.A. Johnson P.D. Aristoff P.A. Judge T.M. Gammill R.B. Morris J.K. Romines K.R. Chrusciel R.A. Hinshaw R.R. Chong K.T. Tarpley W.G. Poppe S.M. Slade D.E. Lynn J.C. Horng M.M. Tomich P.K. Seest E.P. Dolak L.A. Howe W.J. Howard G.M. Schwende F.J. Toth L.N. Padbury G.E. Wilson G.J. Shiou L. Zipp G.L. Wilkinson K.F. Rush B.D. Ruwart M.J. Koeplinger K.A. Zhao Z. Cole S. Zaya R.M. Kakuk T.J. Janakiraman M.N. Watenpaugh K.D. Structure-based design of HIV protease inhibitors: sulfonamide-containing 5,6-dihydro-4-hydroxy-2-pyrones as non-peptidic inhibitors. J. Med. Chem. 1996 39 22 4349 4353 10.1021/jm960541s 8893827
    [Google Scholar]
  37. McGlacken G.P. Fairlamb I.J.S. 2-Pyrone natural products and mimetics: Isolation, characterisation and biological activity. Nat. Prod. Rep. 2005 22 3 369 385 10.1039/b416651p 16010346
    [Google Scholar]
  38. Schröder J. A family of plant-specific polyketide synthases: facts and predictions. Trends Plant Sci. 1997 2 10 373 378 10.1016/S1360‑1385(97)87121‑X
    [Google Scholar]
  39. Beckert C. Horn C. Schnitzler J.P. Lehning A. Heller W. Veit M. Styrylpyrone biosynthesis in Equisetum arvense. Phytochemistry 1997 44 2 275 283 10.1016/S0031‑9422(96)00543‑2
    [Google Scholar]
  40. Moreno-Mañas M. Pleixats R. Dehydroacetic acid, triacetic acid lactone, and related pyrones. In: Advances in Heterocyclic Chemistry; Katritzky, A.R., Ed.; Academic Press, 1992 53 1 84 10.1016/S0065‑2725(08)60861‑2
    [Google Scholar]
  41. Moreno-Ma紡s M. Pleixats R. Bicyclic compounds structurally relted to dehydroacetic acid and triacetic acid lactone. Heterocycles 1994 37 1 585 601 10.3987/REV‑93‑SR2
    [Google Scholar]
  42. Aristoff P.A. Dihydropyrone sulfonamides as a promising new class of HIV protease inhibitors. Drugs Future 1998 23 9 0995 10.1358/dof.1998.023.09.858365
    [Google Scholar]
  43. Sato M. Sakaki J. Sugita Y. Yasuda S. Sakoda H. Kaneko C. Two lactone formation reactions from 1,3-dioxin-4-ones having hydroxyalkyl group at the 6-position: Difference in ring opening and closure. Tetrahedron 1991 47 30 5689 5708 10.1016/S0040‑4020(01)86522‑4
    [Google Scholar]
  44. Harris T.M. Harris C.M. Oster T.A. Brown L.E. Lee J.Y.C. Biomimetic syntheses of pretetramides. 2. A synthetic route based on a preformed D ring. J. Am. Chem. Soc. 1988 110 18 6180 6186 10.1021/ja00226a037 22148797
    [Google Scholar]
  45. Yamaguchi M. Shibato K. Nakashima H. Minami T. Synthesis of phenols by the intramolecular condensation of β, β′, δ, δ′-tetraoxoalkanedioates a novel BF3 -promoted claisen condensation of. Tetrahedron 1988 44 15 4767 4775 10.1016/S0040‑4020(01)86179‑2
    [Google Scholar]
  46. Poulton G.A. Cyr T.D. Pyrones I.X. Synthetic approaches to the fungal metabolite phacidin and its derivatives. Can. J. Chem. 1982 60 22 2821 2829 10.1139/v82‑405
    [Google Scholar]
  47. Abramson H.N. Wormser H.C. Synthesis of nectriapyrone. J. Heterocycl. Chem. 1981 18 2 363 366 10.1002/jhet.5570180227
    [Google Scholar]
  48. Hagiwara H. Kobayashi K. Miya S. Hoshi T. Suzuki T. Ando M. The first total synthesis of (-)-solanapyrone E based on domino Michael strategy. Org. Lett. 2001 3 2 251 254 10.1021/ol006893h 11430047
    [Google Scholar]
  49. Achenbach H. Theobald N. Inhaltsstoffe des rauschpfeffers, VII. Notiz zur absoluten Konfiguration der Kawa-Lactone. Chem. Ber. 1974 107 2 735 737 10.1002/cber.19741070252
    [Google Scholar]
  50. Snatzke G. Hänsel R. Die absolutkonfiguration der Kawa-lactone. Tetrahedron Lett. 1968 9 15 1797 1799 10.1016/S0040‑4039(00)76366‑0
    [Google Scholar]
  51. Du H. Zhao D. Ding K. Enantioselective catalysis of the hetero-Diels-Alder reaction between Brassard’s diene and aldehydes by hydrogen-bonding activation: a one-step synthesis of (S)-(+)-dihydrokawain. Chemistry 2004 10 23 5964 5970 10.1002/chem.200400515 15487027
    [Google Scholar]
  52. Zhou Q. Zhao S. Wang X. Lu T. Research progress in the synthesis of 2-pyrone derivatives. Chin. J. Org Chem 2010 30 11 1652 1663
    [Google Scholar]
  53. Pink C.J. Wong H. Ferreira F.C. Livingston A.G. Organic solvent nanofiltration and adsorbents; a hybrid approach to achieve ultra low palladium contamination of post coupling reaction products. Org. Process Res. Dev. 2008 12 4 589 595 10.1021/op800039g
    [Google Scholar]
  54. Bullock K.M. Mitchell M.B. Toczko J.F. Optimization and scale-up of a suzuki−miyaura coupling reaction: Development of an efficient palladium removal technique. Org. Process Res. Dev. 2008 12 5 896 899 10.1021/op800064y
    [Google Scholar]
  55. Israili Z.H. Smissman E.E. Synthesis of kavain, dihydrokavain, and analogs. J. Org. Chem. 1976 41 26 4070 4074 10.1021/jo00888a004 1003261
    [Google Scholar]
  56. Mineno M. Sawai Y. Kanno K. Sawada N. Mizufune H. Double Reformatsky reaction: Divergent synthesis of δ-hydroxy-β-ketoesters. J. Org. Chem. 2013 78 12 5843 5850 10.1021/jo400408t 23734790
    [Google Scholar]
  57. Mineno M. Sawai Y. Kanno K. Sawada N. Mizufune H. A rapid and diverse construction of 6-substituted-5,6-dihydro-4-hydroxy-2-pyrones through double Reformatsky reaction. Tetrahedron 2013 69 51 10921 10926 10.1016/j.tet.2013.10.079
    [Google Scholar]
  58. Izawa T. Mukaiyama T. A convenient method for the preparation of Δ-Hydroxy-B-Ketoesters and 6-Alkyl-5,6-Dihydro-4-Hydroxy-2-Pyrones. Application to the syntheses of kawain and dihydrokawain. Chem. Lett. 1975 4 2 161 164 10.1246/cl.1975.161
    [Google Scholar]
  59. Afarinkia K. Vinader V. Pyranones and Pyranthiones. Sci. Synth 2003 14 275 346
    [Google Scholar]
  60. Wattanasin S. Kathawala F.G. Convenient ketone synthesis n-acylaziridines. Tetrahedron Lett. 1984 25 8 811 814 10.1016/S0040‑4039(01)80033‑2
    [Google Scholar]
  61. Werrya J. Stamm H. Lin P.Y. Falkenstein R. Gries S. Irngartinger H. Homolytic aziridine opening (aza variant of cyclopropylcarbinyl-homoallyl rearrangement) by addition of tributyltin radical to N-acylaziridines. Factors contributing to the regioselectivity. Tetrahedron 1989 45 16 5015 5028 10.1016/S0040‑4020(01)81081‑4
    [Google Scholar]
  62. Lygo B. N-Acyl-2-methylaziridines: Synthesis and utility in the C-acylation of β-ketoester derived dianions. Tetrahedron 1995 51 47 12859 12868 10.1016/0040‑4020(95)00820‑X
    [Google Scholar]
  63. Hanamoto T. Hiyama T. A facile entry to β,δ-diketo and syn-β,δ-dihydroxy esters. Tetrahedron Lett. 1988 29 49 6467 6470 10.1016/S0040‑4039(00)82375‑8
    [Google Scholar]
  64. Spino C. Mayes N. Desfossés H. Sotheeswaran S. Enantioselective synthesis of (+)- and (−)-dihydrokawain. Tetrahedron Lett. 1996 37 36 6503 6506 10.1016/0040‑4039(96)01429‑3
    [Google Scholar]
  65. Cresp T.M. Sargent M.V. Vogel P. A synthesis of αβ-unsaturated aldehydes. J. Chem. Soc., Perkin Trans. 1 1974 1 37 41 10.1039/P19740000037
    [Google Scholar]
  66. Shaik A.A. Tan J. Lü J. Xing C. Economically viable efficient synthesis of (±)-methysticin: a component in kava potentially responsible for its cancer chemopreventive activity. ARKIVOC 2012 2012 8 137 145 10.3998/ark.5550190.0013.813
    [Google Scholar]
  67. Hati S. Hu Q. Huo Z. Lu J. Xing C. In vivo structure-activity relationship of dihydromethysticin in reducing Nicotine-Derived Nitrosamine Ketone (NNK)-Induced lung dna damage against lung carcinogenesis in A/J mice. ChemMedChem 2022 17 7 e202100727 10.1002/cmdc.202100727 35064644
    [Google Scholar]
  68. Danishefsky S.J. DeNinno M.P. Totally synthetic routes to the higher monosaccharides. Angew. Chem. Int. Ed. Engl. 1987 26 1 15 23 10.1002/anie.198700151
    [Google Scholar]
  69. Jørgensen K.A. Catalytic asymmetric hetero-diels–alder reactions of carbonyl compounds and imines. Angew. Chem. Int. Ed. 2000 39 20 3558 3588 10.1002/1521‑3773(20001016)39:20<3558:AID‑ANIE3558>3.0.CO;2‑I 11091406
    [Google Scholar]
  70. Tietze L.F. Steinmetz A. Stereoselective solid-phase synthesis of cyclopentane and cyclohexane derivatives by two-component domino reactions: Generation of combinatorial libraries. Angew. Chem. Int. Ed. Engl. 1996 35 6 651 652 10.1002/anie.199606511
    [Google Scholar]
  71. Pierres C. George P. van Hijfte L. Ducep J.B. Hibert M. Mann A. Polymer-supported electron-rich diene for hetero Diels–Alder reactions. Tetrahedron Lett. 2003 44 18 3645 3647 10.1016/S0040‑4039(03)00712‑3
    [Google Scholar]
  72. Lin L. Chen Z. Yang X. Liu X. Feng X. Efficient enantioselective hetero-Diels-Alder reaction of Brassard’s diene with aliphatic aldehydes: a one-step synthesis of (R)-(+)-kavain and (S)-(+)-dihydrokavain. Org. Lett. 2008 10 6 1311 1314 10.1021/ol8002282 18303910
    [Google Scholar]
  73. List B. Pojarliev P. Castello C. Proline-catalyzed asymmetric aldol reactions between ketones and α-unsubstituted aldehydes. Org. Lett. 2001 3 4 573 575 10.1021/ol006976y 11178828
    [Google Scholar]
  74. Bach T. Kirsch S. Synthesis of 6-substituted 4-Hydroxy-2-pyrones from aldehydes by addition of an acetoacetate equivalent, Dess-Martin oxidation and subsequent cyclization. Synlett 2001 2001 12 1974 1976 10.1055/s‑2001‑18759
    [Google Scholar]
  75. Lokot I.P. Pashkovsky F.S. Lakhvich F.A. A new approach to the synthesis of 3,6- and 5,6-dialkyl derivatives of 4-hydroxy-2-pyrone. Synthesis of rac-germicidin. Tetrahedron 1999 55 15 4783 4792 10.1016/S0040‑4020(99)00150‑7
    [Google Scholar]
  76. Smith T.E. Djang M. Velander A.J. Downey C.W. Carroll K.A. van Alphen S. Versatile asymmetric synthesis of the kavalactones: first synthesis of (+)-kavain. Org. Lett. 2004 6 14 2317 2320 10.1021/ol0493960 15228268
    [Google Scholar]
  77. Kim Y. Singer R.A. Carreira E.M. Total synthesis of macrolactin a with versatile catalytic, enantioselective dienolate aldol addition reactions. Angew. Chem. Int. Ed. 1998 37 9 1261 1263 10.1002/(SICI)1521‑3773(19980518)37:9<1261:AID‑ANIE1261>3.0.CO;2‑2 29711229
    [Google Scholar]
  78. Singer R.A. Carreira E.M. Catalytic, enantioselective dienolate additions to aldehydes: preparation of optically active acetoacetate aldol adducts. J. Am. Chem. Soc. 1995 117 49 12360 12361 10.1021/ja00154a049
    [Google Scholar]
  79. Krüger J. Carreira E.M. Apparent catalytic generation of chiral metal enolates: Enantioselective dienolate additions to aldehydes mediated by Tol-BINAP·Cu(II) fluoride complexes. J. Am. Chem. Soc. 1998 120 4 837 838 10.1021/ja973331t
    [Google Scholar]
  80. De Rosa M. Soriente A. Scettri A. Enantioselective aldol condensation of O-silyl dienolates to aldehydes mediated by chiral BINOL–titanium complexes. Tetrahedron Asymmetry 2000 11 15 3187 3195 10.1016/S0957‑4166(00)00259‑7
    [Google Scholar]
  81. Sato M. Sunami S. Sugita Y. Kaneko C. Use of 1,3-Dioxin-4-ones and related compounds in synthesis. xliv. asymmetric aldol reaction of 4-trimethylsiloxy-6-methylene-1,3-dioxines: Use of tartaric acid-derived (acyloxy)borane complex as the catalyst. Chem. Pharm. Bull. 1994 42 4 839 845 10.1248/cpb.42.839
    [Google Scholar]
  82. Kaneko C. Sato M. Sunami S. Sugita Y. An efficient asymmetric aldol reaction of 4-trimethylsiloxy-6-methylene-1,3-dioxines by chiral binaphthol-titanium complex catalysis. Heterocycles 1995 41 7 1435 1444 10.3987/COM‑95‑7065
    [Google Scholar]
  83. Nagao Y. Yamada S. Kumagai T. Ochiai M. Fujita E. Use of chiral 1,3-oxazolidine-2-thiones in the diastereoselective synthesis of aldols. J. Chem. Soc. Chem. Commun. 1985 20 1418 1419 10.1039/c39850001418
    [Google Scholar]
  84. Nagao Y. Hagiwara Y. Kumagai T. Ochiai M. Inoue T. Hashimoto K. Fujita E. New C-4-chiral 1,3-thiazolidine-2-thiones: excellent chiral auxiliaries for highly diastereo-controlled aldol-type reactions of acetic acid and. alpha.beta.-unsaturated aldehydes. J. Org. Chem. 1986 51 12 2391 2393 10.1021/jo00362a047
    [Google Scholar]
  85. González Á. Aiguadé J. Urpí F. Vilarrasa J. Asymmetric acetate aldol reactions in connection with an enantioselective total synthesis of macrolactin A. Tetrahedron Lett. 1996 37 49 8949 8952 10.1016/S0040‑4039(96)02055‑2
    [Google Scholar]
  86. Zhang Y. Phillips A.J. Sammakia T. Highly selective asymmetric acetate aldol reactions of an N-acetyl thiazolidinethione reagent. Org. Lett. 2004 6 1 23 25 10.1021/ol036020y 14703341
    [Google Scholar]
  87. Villano R. Acocella M.R. Massa A. Palombi L. Scettri A. A new procedure for the enantioselective vinylogous aldol reaction of Chan’s diene. Tetrahedron Asymmetry 2006 17 24 3332 3334 10.1016/j.tetasy.2006.12.016
    [Google Scholar]
  88. Denmark S.E. Winter S.B.D. Su X. Wong K.T. Chemistry of trichlorosilyl enolates. 1. new reagents for catalytic, asymmetric aldol additions. J. Am. Chem. Soc. 1996 118 31 7404 7405 10.1021/ja9606539
    [Google Scholar]
  89. Denmark S.E. Wong K.T. Stavenger R.A. The chemistry of trichlorosilyl enolates. 2. highly-selective asymmetric aldol additions of ketone enolates. J. Am. Chem. Soc. 1997 119 9 2333 2334 10.1021/ja9636698
    [Google Scholar]
  90. Denmark S.E. Pham S.M. Stavenger R.A. Su X. Wong K.T. Nishigaichi Y. Chiral phosphoramide-catalyzed aldol additions of ketone trichlorosilyl enolates. Mechanistic aspects. J. Org. Chem. 2006 71 10 3904 3922 10.1021/jo060243v 16674067
    [Google Scholar]
  91. Denmark S.E. Beutner G.L. Lewis base activation of Lewis acids. Vinylogous aldol reactions. J. Am. Chem. Soc. 2003 125 26 7800 7801 10.1021/ja035448p 12822988
    [Google Scholar]
  92. Denmark S.E. Heemstra J.R. Lewis base activation of lewis acids: vinylogous aldol additions of silyl dienol ethers to aldehydes. Synlett 2004 2004 13 2411 2416 10.1055/s‑2004‑834789
    [Google Scholar]
  93. Denmark S.E. Heemstra J.R. Lewis base activation of Lewis acids. Vinylogous aldol addition reactions of conjugated N,O-silyl ketene acetals to aldehydes. J. Am. Chem. Soc. 2006 128 4 1038 1039 10.1021/ja056747c 16433495
    [Google Scholar]
  94. Qi S. Ran Q. Liu C. Li B. Zhang X. Highly enantioselective vinylogous aldol reaction of dioxinone-derived silyl diene by combined Lewis acid catalyst. ARKIVOC 2022 2022 5 282 295 10.24820/ark.5550190.p011.801
    [Google Scholar]
  95. Paul Raj I.V. Sudalai A. Asymmetric synthesis of (S)-vigabatrin® and (S)-dihydrokavain via cobalt catalyzed hydrolytic kinetic resolution of epoxides. Tetrahedron Lett. 2008 49 16 2646 2648 10.1016/j.tetlet.2008.02.064
    [Google Scholar]
  96. Arai Y. Masuda T. Yoneda S. Masaki Y. Shiro M. Asymmetric synthesis of (+)-dihydrokawain-5-ol. J. Org. Chem. 2000 65 1 258 262 10.1021/jo991307n 10813926
    [Google Scholar]
  97. Arai Y. Masuda T. Masaki Y. Highly Stereoselective aldol reaction of Chiral 3-(p-Tolylsulfinyl)furfural with silyl ketene acetal catalyzed by lanthanide triflate. Synlett 1997 12 12 1459 1461 10.1055/s‑1997‑1068
    [Google Scholar]
  98. Couladouros E.A. Georgiadis M.P. Products from furans. 4. Selective oxidation of 2-furfuryl alcohol derivatives, in the presence of aryl thioethers, with N-bromosuccinimide (NBS). A new procedure for the preparation of 2H-pyran-3(6H)-ones. J. Org. Chem. 1986 51 14 2725 2727 10.1021/jo00364a020
    [Google Scholar]
  99. Iguchi S. Nakai H. Hayashi M. Yamamoto H. Diisobutylaluminum 2,6-di-tert-butyl-4-methylphenoxide. Novel stereoselective reducing agent for prostaglandin synthesis. J. Org. Chem. 1979 44 8 1363 1364 10.1021/jo01322a045
    [Google Scholar]
  100. Kraus G.A. Wanninayake U.K. An improved aldol protocol for the preparation of 6-styrenylpyrones. Tetrahedron Lett. 2015 56 51 7112 7114 10.1016/j.tetlet.2015.11.021
    [Google Scholar]
  101. Benferrah N. Hammadi M. Berthiol F. Potassium fluoride-barium oxide catalysis in an easy and efficient synthesis of methysticin from piperonal under microwave irradiation. Russ. J. Gen. Chem. 2015 85 8 1939 1944 10.1134/S107036321508023X
    [Google Scholar]
  102. Benferrah N. Hammadi M. Berthiol F. Easy and green synthesis of 6-(arylvinyl)-4-hydroxy-3-(phenylsulfanyl)-2h-pyran-2-ones in aqueous potassium hydroxide. Russ. J. Org. Chem. 2016 86 12 2881 2886
    [Google Scholar]
  103. Kumagai M. Nishikawa K. Mishima T. Yoshida I. Ide M. Koizumi K. Nakamura M. Morimoto Y. Synthesis of novel 5,6-dehydrokawain analogs as osteogenic inducers and their action mechanisms. Bioorg. Med. Chem. Lett. 2017 27 11 2401 2406 10.1016/j.bmcl.2017.04.016 28427810
    [Google Scholar]
  104. Li C. Cheng B. Fang S. Zhou H. Gu Q. Xu J. Design, syntheses and lipid accumulation inhibitory activities of novel resveratrol mimics. Eur. J. Med. Chem. 2018 143 114 122 10.1016/j.ejmech.2017.11.017 29172079
    [Google Scholar]
  105. Shimizu M. Magnesium oxide, alkoxides, and carboxylates. Sci. Synth 2004 7 645 659
    [Google Scholar]
  106. Carpenter T.A. Jenner P.J. Leeper F.J. Staunton J. A novel kinetic deprotonation at a vinylic carbon in a pyrone ring. J. Chem. Soc. Chem. Commun. 1980 24 1227 1227 10.1039/c39800001227
    [Google Scholar]
  107. Younis Y.M. Al-Shihry S.S. Triacetic acid lactone methyl ether as a natural products synthon. Aust. J. Chem. 2000 53 7 589 591 10.1071/CH99119
    [Google Scholar]
  108. Samala R. Basu M.K. Mukkanti K. Regioselective functionalization of pyrones: Facile synthesis of 6-styrylpyrones via KHMDS-mediated aldol condensation. Tetrahedron Lett. 2022 88 153574 10.1016/j.tetlet.2021.153574
    [Google Scholar]
  109. Wang F-D. Yue J-M. Total synthesis of (R)-(+)-Kavain via (MeCN)2PdCl2-Catalyzed Isomerization of a Cis double bond and sonochemical blaise reaction. Synlett 2005 13 2077 2079
    [Google Scholar]
  110. Schmid C.R. Bryant J.D. Dowlatzedah M. Phillips J.L. Prather D.E. Schantz R.D. Sear N.L. Vianco C.S. Synthesis of 2,3-O-isopropylidene-D-glyceraldehyde in high chemical and optical purity: Observations on the development of a practical bulk process. J. Org. Chem. 1991 56 12 4056 4058 10.1021/jo00012a049
    [Google Scholar]
  111. Yu J. Gaunt M.J. Spencer J.B. Convenient preparation of trans-arylalkenes via palladium(II)-catalyzed isomerization of cis-arylalkenes. J. Org. Chem. 2002 67 13 4627 4629 10.1021/jo015880u 12076172
    [Google Scholar]
  112. Lee A.S.Y. Cheng R.Y. Pan O.G. A simple and highly efficient synthesis of β-amino-α, β-unsaturated ester via sonochemical Blaise reaction. Tetrahedron Lett. 1997 38 3 443 446 10.1016/S0040‑4039(96)02321‑0
    [Google Scholar]
  113. Narkunan K. Uang B-J. Synthesis of δ-Hydroxy-β-oxo esters using sonochemical blaise reaction. Synthesis 1998 1998 12 1713 1714 10.1055/s‑1998‑2213
    [Google Scholar]
  114. Wang F.D. Yue J.M. A total synthesis of (+)- and (-)-Dihydrokavain with a sonochemical blaise reaction as the key step. Eur. J. Org. Chem. 2005 2005 12 2575 2579 10.1002/ejoc.200400833
    [Google Scholar]
  115. Mitsunobu O. The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis 1981 1981 1 1 28 10.1055/s‑1981‑29317
    [Google Scholar]
  116. Saeed M. Ilg T. Schick M. Abbas M. Voelter W. Total synthesis and anti-leishmanial activity of R-(−)-argentilactone. Tetrahedron Lett. 2001 42 42 7401 7403 10.1016/S0040‑4039(01)01559‑3
    [Google Scholar]
  117. Xuan T. Teschke R. Dihydro-5,6-dehydrokavain (DDK) from Alpinia zerumbet: Its isolation, synthesis, and characterization. Molecules 2015 20 9 16306 16319 10.3390/molecules200916306 26370954
    [Google Scholar]
  118. Cordovilla C. Bartolomé C. Martínez-Ilarduya J.M. Espinet P. The Stille reaction, 38 years later. ACS Catal. 2015 5 5 3040 3053 10.1021/acscatal.5b00448
    [Google Scholar]
  119. Sabitha G. Sudhakar K. Yadav J.S. Application of the Cosford cross-coupling protocol for the stereoselective synthesis of (R)-(+)-goniothalamin, (R)-(+)-kavain and (S)-(+)-7,8-dihydrokavain. Tetrahedron Lett. 2006 47 48 8599 8602 10.1016/j.tetlet.2006.09.122
    [Google Scholar]
  120. Frigoli S. Fuganti C. Malpezzi L. Serra S. A Practical and efficient process for the preparation of tazarotene. Org. Process Res. Dev. 2005 9 5 646 650 10.1021/op050080x
    [Google Scholar]
  121. Bleicher L.S. Cosford N.D.P. Herbaut A. McCallum J.S. McDonald I.A. A practical and efficient synthesis of the selective neuronal acetylcholine-gated ion channel agonist (S)-(−)-5-ethynyl-3-(1-methyl-2-pyrrolidinyl)-pyridine Maleate (SIB-1508Y). J. Org. Chem. 1998 63 4 1109 1118 10.1021/jo971572d
    [Google Scholar]
  122. Bleicher L. Cosford N.D.P. Aryl- and heteroaryl-alkyne coupling reactions catalyzed by palladium on carbon and cui in an aqueous medium. Synlett 1995 1995 11 1115 1116 10.1055/s‑1995‑5220
    [Google Scholar]
  123. S Yadav J. Deshpande, P.K.; V M Sharma, G. An effective practical method for the synthesis of chiral propargyl alcohols. Tetrahedron 1990 46 20 7033 7046 10.1016/S0040‑4020(01)87888‑1
    [Google Scholar]
  124. Wei-Guo Q. Y, B.X.; Ying-Peng, S.; Xue-Gong, S.; Xin-Fu, P. Total synthesis of all stereoisomers of dihydrokawain anddihydrokawain-5-ol. Youji Huaxue 2007 27 12 1516 1519
    [Google Scholar]
  125. Pospíšil J. Markó I.E. Metathesis-based synthesis of 3-methoxy α,β-unsaturated lactones: total synthesis of (R)-kavain and of the C1–C6 fragment of jerangolid D. Tetrahedron Lett. 2008 49 9 1523 1526 10.1016/j.tetlet.2007.12.113
    [Google Scholar]
  126. Allwein S.P. Cox J.M. Howard B.E. Johnson H.W.B. Rainier J.D. C-Glycosides to fused polycyclic ethers. Tetrahedron 2002 58 10 1997 2009 10.1016/S0040‑4020(02)00057‑1
    [Google Scholar]
  127. Okazoe T. Takai K. Oshima K. Utimoto K. Alkylidenation of ester carbonyl groups by means of a reagent derived from RCHBr2, Zn, TiCl4, and TMEDA. Stereoselective preparation of (Z)-alkenyl ethers. J. Org. Chem. 1987 52 19 4410 4412 10.1021/jo00228a055
    [Google Scholar]
  128. Johnson H.W.B. Majumder U. Rainier J.D. Total synthesis of gambierol: Subunit coupling and completion. Chemistry 2006 12 6 1747 1753 10.1002/chem.200500994 16331719
    [Google Scholar]
  129. Holson E.B. Roush W.R. Diastereoselective synthesis of the C(17)-C(28) fragment (the C-D spiroketal unit) of spongistatin 1 (altohyrtin A) via a kinetically controlled iodo-spiroketalization reaction. Org. Lett. 2002 4 21 3719 3722 10.1021/ol0266875 12375927
    [Google Scholar]
  130. Taillier C. Gille B. Bellosta V. Cossy J. Synthetic approaches and total synthesis of natural zoapatanol. J. Org. Chem. 2005 70 6 2097 2108 10.1021/jo048115z 15760193
    [Google Scholar]
  131. Schrock R.R. Olefin metathesis by molybdenum imido alkylidene catalysts. Tetrahedron 1999 55 27 8141 8153 10.1016/S0040‑4020(99)00304‑X
    [Google Scholar]
  132. Pospíšil J. Markó I.E. Total synthesis of (R)-(+)-goniothalamin and (R)-(+)-goniothalamin oxide: first application of the sulfoxide-modified Julia olefination in total synthesis. Tetrahedron Lett. 2006 47 33 5933 5937 10.1016/j.tetlet.2006.06.054
    [Google Scholar]
  133. Kamal A. Krishnaji T. Khanna G.B.R. Chemoenzymatic synthesis of enantiomerically enriched kavalactones. Tetrahedron Lett. 2006 47 49 8657 8660 10.1016/j.tetlet.2006.09.155
    [Google Scholar]
  134. Amaral P.A. Gouault N. Roch M.L. Eifler-Lima V.L. David M. Towards synthesis of kavalactone derivatives. Tetrahedron Lett. 2008 49 47 6607 6609 10.1016/j.tetlet.2008.07.102
    [Google Scholar]
  135. Moro A.V. Cardoso F.S.P. Correia C.R.D. Highly regio- and stereoselective Heck reaction of allylic esters with arenediazonium salts: application to the synthesis of kavalactones. Org. Lett. 2009 11 16 3642 3645 10.1021/ol901416e 19719201
    [Google Scholar]
  136. Felpin F.X. Nassar-Hardy L. Le Callonnec F. Fouquet E. Recent advances in the Heck–Matsuda reaction in heterocyclic chemistry. Tetrahedron 2011 67 16 2815 2831 10.1016/j.tet.2011.02.051
    [Google Scholar]
  137. Roglans A. Pla-Quintana A. Moreno-Mañas M. Diazonium salts as substrates in palladium-catalyzed cross-coupling reactions. Chem. Rev. 2006 106 11 4622 4643 10.1021/cr0509861 17091930
    [Google Scholar]
  138. Taylor J.G. Moro A.V. Correia C.R.D. Evolution and synthetic applications of the heck–matsuda reaction: The return of arenediazonium salts to prominence. Eur. J. Org. Chem. 2011 2011 8 1403 1428 10.1002/ejoc.201001620
    [Google Scholar]
  139. Prediger P. Barbosa L.F. Génisson Y. Correia C.R.D. Substrate-directable Heck reactions with arenediazonium salts. The regio- and stereoselective arylation of allylamine derivatives and applications in the synthesis of naftifine and abamines. J. Org. Chem. 2011 76 19 7737 7749 10.1021/jo201105z 21877731
    [Google Scholar]
  140. Taylor J.G. Correia C.R.D. Stereoselective synthesis of unsymmetrical β,β-diarylacrylates by a Heck-Matsuda reaction: Versatile building blocks for asymmetric synthesis of β,β-diphenylpropanoates, 3-aryl-indole, and 4-aryl-3,4-dihydro-quinolin-2-one and formal synthesis of (-)-indatraline. J. Org. Chem. 2011 76 3 857 869 10.1021/jo102134v 21241065
    [Google Scholar]
  141. Moro A.V. Cardoso F.S.P. Correia C.R.D. Heck arylation of styrenes with arenediazonium salts: short, efficient, and stereoselective synthesis of resveratrol, DMU-212, and analogues. Tetrahedron Lett. 2008 49 39 5668 5671 10.1016/j.tetlet.2008.07.087
    [Google Scholar]
  142. Bloomer J.L. Zaidi S.M.H. Strupczewski J.T. Brosz C.S. Gudzyk L.A. New polyketide synthon. J. Org. Chem. 1974 39 24 3615 3616 10.1021/jo00938a047
    [Google Scholar]
  143. Soldi C. Moro A.V. Pizzolatti M.G. Correia C.R.D. Heck–matsuda arylation as a strategy to access kavalactones isolated from Polygala sabulosa, Piper methysticum, and Analogues. Eur. J. Org. Chem. 2012 2012 19 3607 3616 10.1002/ejoc.201200308
    [Google Scholar]
  144. Barder T.E. Walker S.D. Martinelli J.R. Buchwald S.L. Catalysts for suzuki-miyaura coupling processes: Scope and studies of the effect of ligand structure. J. Am. Chem. Soc. 2005 127 13 4685 4696 10.1021/ja042491j 15796535
    [Google Scholar]
  145. Miura M. Rational ligand design in constructing efficient catalyst systems for suzuki-miyaura coupling. Angew. Chem. Int. Ed. 2004 43 17 2201 2203 10.1002/anie.200301753 15108127
    [Google Scholar]
  146. Nan Y. Miao H. Yang Z. A new complex of palladium-thiourea and carbon tetrabromide catalyzed carbonylative annulation of o-hydroxylarylacetylenes: Efficient new synthetic technology for the synthesis of 2,3-disubstituted benzo[b]furans. Org. Lett. 2000 2 3 297 299 10.1021/ol991327b 10814306
    [Google Scholar]
  147. Marshall J.A. Yanik M.M. Stereoselective synthesis of substituted ketopyranose subunits of polyketide natural products by intramolecular alkoxycarbonylation of δ-alkynyl alcohols. Tetrahedron Lett. 2000 41 24 4717 4721 10.1016/S0040‑4039(00)00705‑X
    [Google Scholar]
  148. Kato K. Matsuba C. Kusakabe T. Takayama H. Yamamura S. Mochida T. Akita H. Peganova T.A. Vologdin N.V. Gusev O.V. 2,2′-Isopropylidenebis[(4S,5R)-4,5-di(2-naphthyl)-2-oxazoline] ligand for asymmetric cyclization–carbonylation of meso-2-alkyl-2-propargylcyclohexane-1,3-diols. Tetrahedron 2006 62 42 9988 9999 10.1016/j.tet.2006.08.004
    [Google Scholar]
  149. Kato K. Nishimura A. Yamamoto Y. Akita H. Improved method for the synthesis of (E)-cyclic-β-alkoxyacrylates under mild conditions. Tetrahedron Lett. 2001 42 25 4203 4205 10.1016/S0040‑4039(01)00689‑X
    [Google Scholar]
  150. Kato K. Teraguchi R. Motodate S. Uchida A. Mochida T. Peganova T.A. Vologdin N.V. Akita H. Meso-Phbox-Pd(ii) catalyzed tandem carbonylative cyclization of 1-ethynyl-1-propargyl acetate. Chem. Commun. 2008 31 3687 3689 10.1039/b806207b 18665300
    [Google Scholar]
  151. Kato K. T. Teraguchi R. Yamamura S. Mochida T. Akita H. Peganova T.A. Vologdin N.V. Gusev O.V. Ligand-controlled intramolecular carbonylative cyclization of 1,1-Diethynyl acetates: New entry to the functionalized 4-Cyclopentene-1,3-Diones. Synlett 2007 2007 4 0638 0642 10.1055/s‑2007‑967944
  152. Kato K. Motodate S. Mochida T. Kobayashi T. Akita H. Intermolecular methoxycarbonylation of terminal alkynes catalyzed by palladium(II) bis(oxazoline) complexes. Angew. Chem. Int. Ed. 2009 48 18 3326 3328 10.1002/anie.200806080 19191366
    [Google Scholar]
  153. Alonso F. Beletskaya I.P. Yus M. Transition-metal-catalyzed addition of heteroatom-hydrogen bonds to alkynes. Chem. Rev. 2004 104 6 3079 3160 10.1021/cr0201068 15186189
    [Google Scholar]
  154. Motodate S. Kobayashi T. Fujii M. Mochida T. Kusakabe T. Katoh S. Akita H. Kato K. Synthesis of β-methoxyacrylate natural products based on box-Pd(II)-catalyzed intermolecular methoxycarbonylation of alkynoles. Chem. Asian J. 2010 5 10 2221 2230 10.1002/asia.201000292 20669219
    [Google Scholar]
  155. Abdul Fattah T. Saeed A. Applications of Keck allylation in the synthesis of natural products. New J. Chem. 2017 41 24 14804 14821 10.1039/C7NJ02799K
    [Google Scholar]
  156. Mineeva I.V. Enantioselective synthesis of (+)-(S)-7,8-dihydrokavain and (4R,6R)-4-hydroxy-6-(2-phenylethyl)tetrahydro-2H-pyran-2-one, lactone analog of compactin and mevinolin. Russ. J. Org. Chem. 2013 49 5 712 716 10.1134/S1070428013050138
    [Google Scholar]
  157. Grela K. Olefin metathesis: Theory and practice. Hoboken John Wiley and Sons 2014 10.1002/9781118711613
    [Google Scholar]
  158. Grubss R.H. Wenzel A.G. O’Leary D.J. Khosravi E. Handbook of Metathesis. Weinheim Wiley-VCH 2015 10.1002/9783527674107
    [Google Scholar]
  159. Czaban J. Torborg C. Grela K. Sustainable catalysis: Challenges and practices for the pharmaceutical and fine chemical industries; Dunn, P. J.; Hii, K. M.; Krische, M. J. Williams M.T. Hoboken, NJ John Wiley and Sons 2013
    [Google Scholar]
  160. Cossy J. Arseniyadis S. Meyer C. Metathesis in natural product synthesis: Strategies, substrates and catalysts. Weinheim Wiley-VCH 2010 10.1002/9783527629626
    [Google Scholar]
  161. Higman C.S. Lummiss J.A.M. Fogg D.E. Olefin metathesis at the dawn of implementation in pharmaceutical and specialty-chemicals manufacturing. Angew. Chem. Int. Ed. 2016 55 11 3552 3565 10.1002/anie.201506846 26890855
    [Google Scholar]
  162. Żukowska K. Pączek Ł. Grela K. Sulfoxide-chelated ruthenium benzylidene catalyst: A synthetic study on the utility of olefin metathesis. ChemCatChem 2016 8 17 2817 2823 10.1002/cctc.201600538
    [Google Scholar]
  163. Obi G. Van Heerden F.R. Synthesis of 5,6-dehydrokawain and some fluorinated analogues. Synth. Commun. 2018 48 12 1482 1486 10.1080/00397911.2018.1455212
    [Google Scholar]
  164. Douglas C.J. Sklenicka H.M. Shen H.C. Mathias D.S. Degen S.J. Golding G.M. Morgan C.D. Shih R.A. Mueller K.L. Scurer L.M. Johnson E.W. Hsung R.P. Synthesis and UV Studies of a small library of 6-aryl-4-hydroxy-2-pyrones. A relevant structural feature for the inhibitory property of arisugacin against acetylcholinesterase. Tetrahedron 1999 55 48 13683 13696 10.1016/S0040‑4020(99)00847‑9
    [Google Scholar]
  165. Cervello J. Marquet J. Moreno-Mañas M. Copper and cobalt mediated regioselective alkylation of polyketide models: Methyl 3,5-dioxohexanoate and triacetic acid lactone. Tetrahedron 1990 46 6 2035 2046 10.1016/S0040‑4020(01)89770‑2
    [Google Scholar]
  166. Eskici M. Karanfil A. Özer M.S. Kabak Y. Durucasu İ. Asymmetric synthesis of ( S )-dihydrokavain from l -malic acid. Synth. Commun. 2018 48 18 2382 2390 10.1080/00397911.2018.1489057
    [Google Scholar]
  167. Lin W.Q. He Z. Jing Y. Cui X. Liu H. Mi A.Q. A practical synthesis of ethyl (R)- and (S)-2-hydroxy-4-phenylbutanoate and d-homophenyla-lanine ethyl ester hydrochloride from l-malic acid. Tetrahedron Asymmetry 2001 12 11 1583 1587 10.1016/S0957‑4166(01)00285‑3
    [Google Scholar]
  168. Gao Y. Sharpless K.B. Vicinal diol cyclic sulfates. Like epoxides only more reactive. J. Am. Chem. Soc. 1988 110 22 7538 7539 10.1021/ja00230a045
    [Google Scholar]
  169. Akagawa K. Kudo K. Iterative polyketide synthesis via a consecutive carbonyl-protecting strategy. J. Org. Chem. 2018 83 7 4279 4285 10.1021/acs.joc.8b00497 29509410
    [Google Scholar]
  170. Takeuchi Y. Akagawa K. Kudo K. Solid-phase biomimetic synthesis of polyketide. J. Org. Chem. 2021 86 23 17307 17317 10.1021/acs.joc.1c02441 34797678
    [Google Scholar]
  171. Martin J.C. Arhart R.J. Sulfuranes I.I.I. Reagent for the dehydration of alcohols. J. Am. Chem. Soc. 1971 93 17 4327 4329 10.1021/ja00746a059
    [Google Scholar]
  172. Noyori R. Hashiguchi S. Asymmetric transfer hydrogenation catalyzed by chiral ruthenium complexes. Acc. Chem. Res. 1997 30 2 97 102 10.1021/ar9502341
    [Google Scholar]
  173. Touge T. Hakamata T. Nara H. Kobayashi T. Sayo N. Saito T. Kayaki Y. Ikariya T. Oxo-tethered ruthenium(II) complex as a bifunctional catalyst for asymmetric transfer hydrogenation and H2 hydrogenation. J. Am. Chem. Soc. 2011 133 38 14960 14963 10.1021/ja207283t 21870824
    [Google Scholar]
/content/journals/coc/10.2174/0113852728411104251013072840
Loading
/content/journals/coc/10.2174/0113852728411104251013072840
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: lactone ; methysticin ; kavain ; Chemical synthesis ; kavalactones ; pyrones ; kava ; chemoenzymatic synthesis ; yangonin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test