Skip to content
2000
image of Characterization of a Novel Triterpenoid Saponin from Glinus oppositifolius Aerial Parts with Enzyme Inhibitory Potential

Abstract

A new triterpenoid saponin, namely spergulin C (1), together with four known structures, 3---D-xylopyranosyl-spergulagenin A (2), vanillin (3), -ferulic acid (4), and cinnamic acid (5), were isolated from aerial parts of . The structures of all compounds were elucidated using comprehensive 1D and 2D NMR techniques, mass spectroscopy, and comparison with the literature. In addition, compounds 3-5 exhibited prominent effects against Xanthine Oxidase (XO) activity, with the IC values ranging from 5.37 to 106.69 (µM). In contrast, compounds 1 and 2 showed significant -glucosidase (-Glu) inhibitory activity with the IC values of 31.23 ± 0.45 (µM) and 13.99 ± 0.33 (µM), respectively.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728409928251006112905
2025-10-31
2025-12-14
Loading full text...

Full text loading...

References

  1. Rullo R. Cerchia C. Nasso R. Romanelli V. Vendittis E.D. Masullo M. Lavecchia A. Novel reversible inhibitors of xanthine oxidase targeting the active site of the enzyme. Antioxidants 2023 12 4 825 10.3390/antiox12040825 37107199
    [Google Scholar]
  2. Mehmood A. Ishaq M. Zhao L. Safdar B. Rehman A. Munir M. Raza A. Nadeem M. Iqbal W. Wang C. Natural compounds with xanthine oxidase inhibitory activity: A review. Chem. Biol. Drug Des. 2019 93 4 387 418 10.1111/cbdd.13437 30403440
    [Google Scholar]
  3. Hudaib M. Mohammad M.K. Issa A.Y. Aburjai T.A. Bustanji Y.K. Tawaha K.A. Assaf A.M. Alali F.Q. Xanthine oxidase inhibitory activity of the methanolic extracts of selected Jordanian medicinal plants. Pharmacogn. Mag. 2011 7 28 320 324 10.4103/0973‑1296.90413 22262935
    [Google Scholar]
  4. Ullah Z. Yue P. Mao G. Zhang M. Liu P. Wu X. Zhao T. Yang L. A comprehensive review on recent xanthine oxidase inhibitors of dietary based bioactive substances for the treatment of hyperuricemia and gout: Molecular mechanisms and perspective. Int. J. Biol. Macromol. 2024 278 Pt 3 134832 10.1016/j.ijbiomac.2024.134832 39168219
    [Google Scholar]
  5. Fagugli R.M. Gentile G. Ferrara G. Brugnano R. Acute renal and hepatic failure associated with allopurinol treatment. Clin. Nephrol. 2008 70 12 523 526 10.5414/CNP70523 19049711
    [Google Scholar]
  6. Singh A. Singh K. Sharma A. Kaur K. Chadha R. Singh Bedi P.M. Past, present and future of xanthine oxidase inhibitors: design strategies, structural and pharmacological insights, patents and clinical trials. RSC Med. Chem. 2023 14 11 2155 2191 10.1039/D3MD00316G 37974965
    [Google Scholar]
  7. Guo H. Zhang Q. Yuan H. Zhou L. Li F. Wang S.M. Shi G. Wang M. Nitric oxide mediates inflammation in type II diabetes mellitus through the PPARγ/eNOS signaling pathway. PPAR Res. 2020 2020 1 1 7 10.1155/2020/8889612 33293942
    [Google Scholar]
  8. Ayyappan P. Nampoothiri S.V. Radhika M. Bioactive natural products as potent inhibitors of xanthine oxidase. Studies in Natural Products Chemistry 2020 64 391 416 10.1016/B978‑0‑12‑817903‑1.00013‑9
    [Google Scholar]
  9. Xue H. Tan J. Zhu X. Li Q. Tang J. Cai X. Counter-current fractionation-assisted and bioassay-guided separation of active compounds from cranberry and their interaction with α-glucosidase. Lebensm. Wiss. Technol. 2021 145 111374 10.1016/j.lwt.2021.111374
    [Google Scholar]
  10. Orhan I.E. Deniz F.S.S. Natural products and extracts as xanthine oxidase inhibitors: a hope for gout disease? Curr. Pharm. Des. 2021 27 2 143 158 10.2174/18734286MTA4lNTc95 32723252
    [Google Scholar]
  11. Liu R. Han C. Wu D. Xia X. Gu J. Guan H. Shan Z. Teng W. Prevalence of hyperuricemia and gout in mainland China from 2000 to 2014: a systematic review and meta‐analysis. BioMed Res. Int. 2015 2015 1 1 12 10.1155/2015/762820 26640795
    [Google Scholar]
  12. Liu J. Pan H. Liu Y. Guan M. Li X. Chen S. Tong X. Luo Y. Wang X. Yang X. Guo X. Zhang J. Tao L. Distinct hyperuricemia trajectories are associated with different risks of incident diabetes: A prospective cohort study. Nutr. Metab. Cardiovasc. Dis. 2023 33 5 967 977 10.1016/j.numecd.2023.02.018 36958974
    [Google Scholar]
  13. Zhang D. Zhao M. Li Y. Zhang D. Yang Y. Li L. Natural xanthine oxidase inhibitor 5-O-caffeoylshikimic acid ameliorates kidney injury caused by hyperuricemia in mice. Molecules 2021 26 23 7307 10.3390/molecules26237307 34885887
    [Google Scholar]
  14. Mehmood A. Li J. Rehman A.U. Kobun R. Llah I.U. Khan I. Althobaiti F. Albogami S. Usman M. Alharthi F. Soliman M.M. Yaqoob S. Awan K.A. Zhao L. Zhao L. Xanthine oxidase inhibitory study of eight structurally diverse phenolic compounds. Front. Nutr. 2022 9 966557 10.3389/fnut.2022.966557 36204384
    [Google Scholar]
  15. Chen J.J. Yang C.S. Chen Y.H. Chao C.Y. Chen Y.C. Kuo Y.H. New triterpenoids and anti-inflammatory constituents from Glinus oppositifolius. Molecules 2023 28 7 2903 10.3390/molecules28072903 37049664
    [Google Scholar]
  16. Chu Y.H. Chen C.J. Wu S.H. Hsieh J.F. Inhibition of xanthine oxidase by Rhodiola crenulata extracts and their phytochemicals. J. Agric. Food Chem. 2014 62 17 3742 3749 10.1021/jf5004094 24712453
    [Google Scholar]
  17. Dash S. Pattanayak S. Jena B. Panda M.K. Singh Y.D. Xanthine oxidase perspective in human health. Curr. Biotechnol. 2021 9 4 255 262 10.2174/2211550109999201113101040
    [Google Scholar]
  18. Mageed S.S.A. Mohamed F.A. Sobhy M. Elosaily A.H. El-Dessouki A.M. Ghaiad H.R. Abd-Elmawla M.A. Fahmy M.I. Hassan M.A.M. El-Shiekh R.A. Abdelmaksoud N.M. Integrating natural products with modern medicine in the treatment of gouty arthritis: A review. Inflammopharmacology 2025 1 24 10.1007/s10787‑025‑01784‑0 40418438
    [Google Scholar]
  19. Yin Z. Zhang W. Feng F. Zhang Y. Kang W. α-Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness 2014 3 3-4 136 174 10.1016/j.fshw.2014.11.003
    [Google Scholar]
  20. Dirir A.M. Dao M. Yousef L.F. A review of alpha-glucosidase inhibitors from plants for management of diabetes mellitus. Phytochem. Rev. 2022 21 4 1049 1079 10.1007/s11101‑021‑09773‑1 34421444
    [Google Scholar]
  21. Şöhretoğlu D. Renda G. Arroo R. Xiao J. Sari S. Advances in the natural α‐glucosidase inhibitors. eFood 2023 4 5 e112 10.1002/efd2.112
    [Google Scholar]
  22. Assefa S.T. Yang E.Y. Chae S.Y. Song M. Lee J. Cho M.C. Jang S. Alpha glucosidase inhibitory activities of plants with focus on vegetable crops. Plants 2019 9 1 2 10.3390/plants9010002 31861279
    [Google Scholar]
  23. Kashtoh H. Baek K.H. Recent updates on phytoconstituent alpha-glucosidase inhibitors: An approach towards the treatment of type two diabetes via plant-derived α-glucosidase inhibitors. Plants 2022 11 20 2722 10.3390/plants11202722 36297746
    [Google Scholar]
  24. Lam T.P. Tran N-V.N. Pham L-H.D. Lai N.V-T. Dang B-T.N. Truong N-L.N. Nguyen-Vo S-K. Hoang T-L. Mai T.T. Tran T-D. Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: a systematic review of in vitro studies. Nat. Prod. Bioprospect. 2024 14 1 4 10.1007/s13659‑023‑00424‑w 38163838
    [Google Scholar]
  25. Le T.K.D. Danova A. Aree T. Duong T.H. Koketsu M. Ninomiya M. Sawada Y. Kamsri P. Pungpo P. Chavasiri W. α-Glucosidase Inhibitors from the Stems of Knema globularia. J. Nat. Prod. 2022 85 4 776 786 10.1021/acs.jnatprod.1c00765 35262352
    [Google Scholar]
  26. Ashiq K. Hussain K. Islam M. Shehzadi N. Ali E. Ashiq S. Medicinal plants of Pakistan and their xanthine oxidase inhibition activity to treat gout: A systematic review. Turk. J. Bot. 2021 45 SI-2 723 738 10.3906/bot‑2109‑19
    [Google Scholar]
  27. Patel P. Shah D. Bambharoliya T. Patel V. Patel M. Patel D. Bhavsar V. Padhiyar S. Patel B. Mahavar A. Patel R. Patel A. A review on the development of novel heterocycles as α-glucosidase inhibitors for the treatment of type-2 diabetes mellitus. Med. Chem. 2024 20 5 503 536 10.2174/0115734064264591231031065639 38275074
    [Google Scholar]
  28. Kumari S. Saini R. Bhatnagar A. Mishra A. Exploring plant-based alpha-glucosidase inhibitors: promising contenders for combatting type-2 diabetes. Arch. Physiol. Biochem. 2024 130 6 694 709 10.1080/13813455.2023.2262167 37767958
    [Google Scholar]
  29. Break M.K.B. Hussein W. Alafnan D. Almutairi H.O. Katamesh A.A. Alshammari M.D. Achillea fragrantissima (Forssk.) Sch. Bip. essential oil inhibits the growth of pancreatic cancer cells via induction of necrosis, sub-G1 arrest, modulation of β-catenin/ERK signalling pathways and p38α MAPK, CDK2, EGFR inhibition. J. Ethnopharmacol. 2025 352 120201 10.1016/j.jep.2025.120201 40571228
    [Google Scholar]
  30. Break M.K.B. Hussein W. Huwaimel B. Alafnan A. Almansour K. Alafnan D. Alshammari A.S. Alanazi I.A. Alshammari D.S. Alanzi F.S. Alsnaideh F.F. Almuhaysin A. Alanazi Y.S. Algharbi S. AlHarbi S. Artemisia sieberi Besser essential oil inhibits the growth and migration of breast cancer cells via induction of S-phase arrest, caspase-independent cell death and downregulation of ERK. J. Ethnopharmacol. 2023 312 116492 10.1016/j.jep.2023.116492 37059248
    [Google Scholar]
  31. Sheu S.Y. Yao C.H. Lei Y.C. Kuo T.F. Recent progress in Glinus oppositifolius research. Pharm. Biol. 2014 52 8 1079 1084 10.3109/13880209.2013.876653 24617922
    [Google Scholar]
  32. Hien N.T.T. Dung H.T.Q. Minh B.H. Chen T.V. Tuan N.T. Dung L.T. A new flavonoid derivative and inhibitory effects on xanthine oxidase and α-glucosidase from Glinus oppositifolius. Curr. Org. Chem. 2023 27 15 1371 1379 10.2174/0113852728273341231006075959
    [Google Scholar]
  33. Buluran A.I.L. Secondary metabolites from Glinus oppositifolius. 2012
    [Google Scholar]
  34. Phi K.H. Park M.H. Lee S. Koo M.H. Suh S.S. Youn U.J. New anti-adipogenic triterpenoid saponins from the aerial parts of Glinus oppositifolius. Biomed. Pharmacother. 2024 176 116851 10.1016/j.biopha.2024.116851 38838506
    [Google Scholar]
  35. Ragab G. Elshahaly M. Bardin T. Gout: An old disease in new perspective: A review. J. Adv. Res. 2017 8 5 495 511 10.1016/j.jare.2017.04.008 28748116
    [Google Scholar]
  36. Kodama S. Saito K. Yachi Y. Asumi M. Sugawara A. Totsuka K. Saito A. Sone H. Association between serum uric acid and development of type 2 diabetes. Diabetes Care 2009 32 9 1737 1742 10.2337/dc09‑0288 19549729
    [Google Scholar]
  37. Maiuolo J. Oppedisano F. Gratteri S. Muscoli C. Mollace V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol. 2016 213 8 14 10.1016/j.ijcard.2015.08.109 26316329
    [Google Scholar]
  38. Chen L. Magliano D.J. Zimmet P.Z. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat. Rev. Endocrinol. 2012 8 4 228 236 10.1038/nrendo.2011.183 22064493
    [Google Scholar]
  39. Sahu N.P. Koike K. Banerjee S. Achari B. Nikaido T. Triterpenoid saponins from Mollugo spergula. Phytochemistry 2001 58 8 1177 1182 10.1016/S0031‑9422(01)00346‑6 11738403
    [Google Scholar]
  40. Kumar D. Shah V. Ghosh R. Pal B.C. A new triterpenoid saponin from Glinus oppositifolius with α-glucosidase inhibitory activity. Nat. Prod. Res. 2013 27 7 624 630 10.1080/14786419.2012.686907 22594571
    [Google Scholar]
  41. Thanh L.N. Thu N.A. Oanh V.T.K. Hue V.T. Minh N.T. Minh N.P.N. Xuan T.V. Phuong D.T.L. Lien N.T.P. Chemical constituents and cytotoxicity of Lepidotrigona ventralis propolis. Vietnam J. Chem. 2023 61 1 74 79 10.1002/vjch.202200031
    [Google Scholar]
  42. Prachayasittikul S. Suphapong S. Worachartcheewan A. Lawung R. Ruchirawat S. Prachayasittikul V. Bioactive metabolites from Spilanthes acmella Murr. Molecules 2009 14 2 850 867 10.3390/molecules14020850 19255544
    [Google Scholar]
  43. Liu R. Li A. Sun A. Preparative isolation and purification of hydroxyanthraquinones and cinnamic acid from the Chinese medicinal herb Rheum officinale Baill. by high-speed counter-current chromatography. J. Chromatogr. A 2004 1052 1-2 217 221 10.1016/j.chroma.2004.08.101 15527141
    [Google Scholar]
  44. Li K. Wang Y. Liu W. Zhang C. Xi Y. Zhou Y. Li H. Liu X. Structure–activity relationships and changes in the inhibition of xanthine oxidase by polyphenols: A review. Foods 2024 13 15 2365 10.3390/foods13152365 39123556
    [Google Scholar]
  45. Mohos V. Fliszár-Nyúl E. Poór M. Inhibition of xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation by flavonoid aglycones and some of their conjugates. Int. J. Mol. Sci. 2020 21 9 3256 10.3390/ijms21093256 32380641
    [Google Scholar]
  46. Xue H. Xu M. Gong D. Zhang G. Mechanism of flavonoids inhibiting xanthine oxidase and alleviating hyperuricemia from structure–activity relationship and animal experiments: A review. Food Front. 2023 4 4 1643 1665 10.1002/fft2.287
    [Google Scholar]
  47. Lin S. Zhang G. Liao Y. Pan J. Gong D. Dietary flavonoids as xanthine oxidase inhibitors: Structure–affinity and structure–activity relationships. J. Agric. Food Chem. 2015 63 35 7784 7794 10.1021/acs.jafc.5b03386 26285120
    [Google Scholar]
  48. Zhou Q. Zhang H. Lin X. Wu J. Xu Y. Vanillic acid as a promising xanthine oxidase inhibitor: Extraction from Amomum villosum and biocompatibility improvement. Foods 2022 11 7 968 10.3390/foods11070968 35407055
    [Google Scholar]
  49. Pirouzpanah S. Hanaee J. Razavieh S.V. Rashidi M.R. Inhibitory effects of flavonoids on aldehyde oxidase activity. J. Enzyme Inhib. Med. Chem. 2009 24 1 14 21 10.1080/14756360701841301 18608746
    [Google Scholar]
  50. Iyer K.R. Subash S. Gogtay N.J. Gandhe P. Budania R. Thatte U. Evaluation of vanillin as a probe drug for aldehyde oxidase and phenotyping for its activity in a Western Indian Cohort. Indian J. Pharmacol. 2021 53 3 213 220 10.4103/ijp.IJP_463_18 34169906
    [Google Scholar]
  51. Sharma K. Kaur R. Kumar S. Saini R.K. Sharma S. Pawde S.V. Kumar V. Saponins: A concise review on food related aspects, applications and health implications. Food. Chem. Adv. 2023 2 100191 10.1016/j.focha.2023.100191
    [Google Scholar]
  52. Cong P.V. Anh H.L.T. Vinh L.B. Han Y.K. Trung N.Q. Minh B.Q. Duc N.V. Ngoc T.M. Hien N.T.T. Manh H.D. Lien L.T. Lee K.Y. Alpha-glucosidase inhibitory activity of saponins isolated from Vernonia gratiosa Hance. J. Microbiol. Biotechnol. 2023 33 6 797 805 10.4014/jmb.2212.12040 36908274
    [Google Scholar]
  53. Su R. Zhang Y. Liu S. Liu Q. Lin L. Screening for α-glucosidase-inhibiting saponins from quinoa husk. Foods 2022 11 19 3026 10.3390/foods11193026 36230101
    [Google Scholar]
  54. Kwon R.H. Choi Y.J. Jang M.S. Lee J.Y. Comprehensive profiling of phenolic compounds and α-glucosidase inhibitory activity in wild berries. Sci. Rep. 2024 14 1 12134 10.1038/s41598‑024‑77574‑5 38802431
    [Google Scholar]
  55. Bildziukevich U. Wimmerová M. Wimmer Z. Saponins of selected triterpenoids as potential therapeutic agents: A review. Pharmaceuticals 2023 16 3 386 10.3390/ph16030386 36986485
    [Google Scholar]
  56. Li B. Wang R.Y. Zhao Y. Yu Y.F. Zhang Z.X. Hu F.D. Gao K. Fei D-Q. Triterpenoids with α-glucosidase inhibitory activities from the roots of Codonopsis pilosula var. modesta. J. Chem. Res. 2021 45 5-6 635 638 10.1177/1747519820979967
    [Google Scholar]
  57. Nabil M. Ghaly N.S. Kassem I.A. Grace M.H. Melek F.R. Two triterpenoid saponins with alpha-glucosidase inhibitory activity from Harpullia pendula seed extract. Pharmacogn. J. 2019 11 6s 10.5530/pj.2019.11.214
    [Google Scholar]
  58. Panoutsopoulos G.I. Beedham C. Metabolism of isovanillin by aldehyde oxidase, xanthine oxidase, aldehyde dehydrogenase and liver slices. Pharmacology 2005 73 4 199 208 10.1159/000082860 15627845
    [Google Scholar]
  59. Morrison R.D. Blobaum A.L. Byers F.W. Santomango T.S. Bridges T.M. Stec D. Brewer K.A. Sanchez-Ponce R. Corlew M.M. Rush R. Felts A.S. Manka J. Bates B.S. Venable D.F. Rodriguez A.L. Jones C.K. Niswender C.M. Conn P.J. Lindsley C.W. Emmitte K.A. Daniels J.S. The role of aldehyde oxidase and xanthine oxidase in the biotransformation of a novel negative allosteric modulator of metabotropic glutamate receptor subtype 5. Drug Metab. Dispos. 2012 40 9 1834 1845 10.1124/dmd.112.046136 22711749
    [Google Scholar]
  60. Jhong C.H. Riyaphan J. Lin S.H. Chia Y.C. Weng C.F. S creening alpha‐glucosidase and alpha‐amylase inhibitors from natural compounds by molecular docking in silico. Biofactors 2015 41 4 242 251 10.1002/biof.1219 26154585
    [Google Scholar]
  61. Matsui T. Ueda T. Oki T. Sugita K. Terahara N. Matsumoto K. α-Glucosidase inhibitory profile of catechins and theaflavins. J. Agric. Food Chem. 2002 50 24 7053 7057 10.1021/jf025623b 12428959
    [Google Scholar]
  62. Ur Rehman N. Halim S.A. Al-Azri M. Khan M. Khan A. Rafiq K. Al-Rawahi A. Csuk R. Al-Harrasi A. Triterpenic acids as non-competitive α-glucosidase inhibitors from Boswellia elongata with structure-activity relationship: in vitro and in silico studies. Biomolecules 2020 10 5 751 10.3390/biom10050751 32408614
    [Google Scholar]
  63. Sayed U. Hudaib M. Issa A. Tawaha K. Bustanji Y. Plant products and their inhibitory activity against xanthine oxidase. Farmacia 2021 69 6 1042 1052 10.31925/farmacia.2021.6.4
    [Google Scholar]
  64. Liu J. Henkel T. Wang H. Triterpenoid saponins from plants and their biological activities. Phytochem. Rev. 2013 12 1 197 233 10.1007/s11101‑013‑9285‑7
    [Google Scholar]
  65. Malik N. Dhiman P. Khatkar A. In silico and 3D QSAR studies of natural based derivatives as xanthine oxidase inhibitors. Curr. Top. Med. Chem. 2019 19 2 123 138 10.2174/1568026619666190206122640 30727896
    [Google Scholar]
  66. Zhang S. He J. Li J. He H. He Y. Wang X. Shu H. Zhang J. Xu D. Zou K. Triterpenoid compounds from Cyclocarya paliurus: A review of their phytochemistry, quality control, pharmacology, and structure–activity relationship. Am. J. Chin. Med. 2023 51 8 2041 2075 10.1142/S0192415X2350088X 37957120
    [Google Scholar]
  67. Zhou Y. Xu B. New insights into anti-diabetes effects and molecular mechanisms of dietary saponins. Crit. Rev. Food Sci. Nutr. 2023 63 33 12372 12397 10.1080/10408398.2022.2101425 35866515
    [Google Scholar]
  68. Li S. Cui B. Liu Q. Tang L. Yang Y. Jin X. Shen Z. New triterpenoids from the leaves of Cyclocarya paliurus. Planta Med. 2012 78 3 290 296 10.1055/s‑0031‑1280411 22161740
    [Google Scholar]
  69. Kwon R.H. Na H. Kim J.H. Kim S.A. Kim S.Y. Jung H.A. Lee S.H. Wee C.D. Lee K.S. Kim H.W. Comprehensive profiling of phenolic compounds and triterpenoid saponins from Acanthopanax senticosus and their antioxidant, α-glucosidase inhibitory activities. Sci. Rep. 2024 14 1 26330 10.1038/s41598‑024‑77574‑5 39487169
    [Google Scholar]
  70. Li H. Zhai B. Sun J. Fan Y. Zou J. Cheng J. Zhang X. Shi Y. Guo D. Ultrasound-assisted extraction of total saponins from Aralia taibaiensis: Process optimization, phytochemical characterization, and mechanism of α-glucosidase inhibition. Drug Des. Devel. Ther. 2022 16 83 105 10.2147/DDDT.S345592 35027819
    [Google Scholar]
  71. To D.C. Bui T.Q. Nhung N.T.A. Tran Q.T. Do T.T. Tran M.H. Hien P.P. Ngu T.N. Quy P.T. Nguyen T.H. Nguyen H.T. Nguyen T.D. Nguyen P.H. On the inhibitability of natural products isolated from Tetradium ruticarpum towards tyrosine phosphatase 1B (PTP1B) and α-glucosidase (3W37): An in vitro and in silico study. Molecules 2021 26 12 3691 10.3390/molecules26123691 34204232
    [Google Scholar]
  72. Semwal D. Semwal R. Combrinck S. Viljoen A. Myricetin: A dietary molecule with diverse biological activities. Nutrients 2016 8 2 90 10.3390/nu8020090 26891321
    [Google Scholar]
  73. Kim Y.M. Jeong Y.K. Wang M.H. Lee W.Y. Rhee H.I. Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition 2005 21 6 756 761 10.1016/j.nut.2004.10.014 15925302
    [Google Scholar]
  74. Nainu F. Frediansyah A. Mamada S.S. Permana A.D. Salampe M. Chandran D. Emran T.B. Simal-Gandara J. Natural products targeting inflammation-related metabolic disorders: A comprehensive review. Heliyon 2023 9 6 e16919 10.1016/j.heliyon.2023.e16919 37346355
    [Google Scholar]
  75. Xu W.A. Yin L. Pan H.Y. Shi L. Xu L. Zhang X. Duan J.A. Study on the correlation between constituents detected in serum from Rhizoma Smilacis Glabrae and the reduction of uric acid levels in hyperuricemia. J. Ethnopharmacol. 2013 150 2 747 754 10.1016/j.jep.2013.09.024 24140588
    [Google Scholar]
/content/journals/coc/10.2174/0113852728409928251006112905
Loading
/content/journals/coc/10.2174/0113852728409928251006112905
Loading

Data & Media loading...

Supplements

supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test