Skip to content
2000
image of A Review of Recent Developments in Schiff Base Derivatives for Cancer Treatment

Abstract

The great majority of people on the planet suffer from cancer, one of the main worldwide diseases. The unchecked proliferation of the body's cells makes it one of the most challenging and intricate illnesses to manage. After cardiac disease, it is regarded as one of the primary causes of mortality globally. Numerous anticancer drugs have been developed over time, and their safety is still being evaluated. Among them, Schiff base derivatives are one of the key contributors to cancer treatment worldwide. Often referred to as imines or azomethines, they stand out as fundamental organic moieties that have continuously transformed medicinal chemistry. This versatile moiety serves not only as a key intermediate and linker but also as a fundamental scaffold in the synthesis of biologically active molecules. This review examines non-metallic and non-cyclic imine derivatives as potential anticancer agents, along with their synthetic schemes and structure-activity relationships (SARs). Some Schiff base-based drugs in clinical trials, with their primary action and structure, are also tabulated. By integrating these insights, the review describes how these compounds are being reimagined as potential targeted therapeutic agents in oncology. This comprehensive analysis is designed to guide researchers in developing and designing next-generation anticancer drugs that take advantage of the unique pharmacological properties of Schiff bases with minimal adverse effects.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728405259250924102913
2025-10-17
2025-12-14
Loading full text...

Full text loading...

References

  1. Sahu R. Shah K. Schiff bases: A captivating scaffold with potential anticonvulsant activity. Mini Rev. Med. Chem. 2024 24 18 1632 1650 10.2174/0113895575302197240408121537 38629363
    [Google Scholar]
  2. Ferlay J. Ervik M. Lam F. Colombet M. Mery L. Piñeros M. Global Cancer Observatory: Cancer Today. Lyon International Agency for Research on Cancer 2020
    [Google Scholar]
  3. McKeown M.R. Bradner J.E. Therapeutic strategies to inhibit MYC. Cold Spring Harb. Perspect. Med. 2014 4 10 a014266 10.1101/cshperspect.a014266 25274755
    [Google Scholar]
  4. Kollareddy M. Zheleva D. Dzubak P. Brahmkshatriya P.S. Lepsik M. Hajduch M. Aurora kinase inhibitors: Progress towards the clinic. Invest. New Drugs 2012 30 6 2411 2432 10.1007/s10637‑012‑9798‑6 22350019
    [Google Scholar]
  5. Vijayan R.S.K. He P. Modi V. Duong-Ly K.C. Ma H. Peterson J.R. Dunbrack R.L. Levy R.M. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. J. Med. Chem. 2015 58 1 466 479 10.1021/jm501603h 25478866
    [Google Scholar]
  6. Nasir H. Abbas N. Arfan M. Aftab U. Rafi A. Hafeez H. Latif M. Schiff bases targeting an Sw-480 colorectal cell line: synthesis, characterization, ds-DNA binding and anticancer studies. RSC Advances 2025 15 3 1527 1539 10.1039/D4RA06962E 39831037
    [Google Scholar]
  7. Eni D.B. Cassel J. Namba-Nzanguim C.T. Simoben C.V. Tietjen I. Akunuri R. Salvino J.M. Ntie-Kang F. Design, synthesis, and biochemical and computational screening of novel oxindole derivatives as inhibitors of Aurora A kinase and SARS-CoV-2 spike/host ACE2 interaction. Med. Chem. Res. 2024 33 4 620 634 10.1007/s00044‑024‑03201‑7 38646411
    [Google Scholar]
  8. Chi Y.H. Yeh T.K. Ke Y.Y. Lin W.H. Tsai C.H. Wang W.P. Chen Y.T. Su Y.C. Wang P.C. Chen Y.F. Wu Z.W. Yeh J.Y. Hung M.C. Wu M.H. Wang J.Y. Chen C.P. Song J.S. Shih C. Chen C.T. Chang C.P. Discovery and synthesis of a pyrimidine-based aurora kinase inhibitor to reduce levels of MYC oncoproteins. J. Med. Chem. 2021 64 11 7312 7330 10.1021/acs.jmedchem.0c01806 34009981
    [Google Scholar]
  9. Liu H. Sugiura M. Nava V.E. Edsall L.C. Kono K. Poulton S. Milstien S. Kohama T. Spiegel S. Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform. J. Biol. Chem. 2000 275 26 19513 19520 10.1074/jbc.M002759200 10751414
    [Google Scholar]
  10. Kunkel G.T. Maceyka M. Milstien S. Spiegel S. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat. Rev. Drug Discov. 2013 12 9 688 702 10.1038/nrd4099 23954895
    [Google Scholar]
  11. Maceyka M. Harikumar K.B. Milstien S. Spiegel S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 2012 22 1 50 60 10.1016/j.tcb.2011.09.003 22001186
    [Google Scholar]
  12. Hait N.C. Allegood J. Maceyka M. Strub G.M. Harikumar K.B. Singh S.K. Luo C. Marmorstein R. Kordula T. Milstien S. Spiegel S. Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science 2009 325 5945 1254 1257 10.1126/science.1176709 19729656
    [Google Scholar]
  13. Igarashi N. Okada T. Hayashi S. Fujita T. Jahangeer S. Nakamura S. Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. J. Biol. Chem. 2003 278 47 46832 46839 10.1074/jbc.M306577200 12954646
    [Google Scholar]
  14. Sahu R. Sharma P. Kumar A. An insight into cholangiocarcinoma and recent advances in its treatment. J. Gastrointest. Cancer 2022 ••• 1 4 35023010
    [Google Scholar]
  15. Okada T. Ding G. Sonoda H. Kajimoto T. Haga Y. Khosrowbeygi A. Gao S. Miwa N. Jahangeer S. Nakamura S. Involvement of N-terminal-extended form of sphingosine kinase 2 in serum-dependent regulation of cell proliferation and apoptosis. J. Biol. Chem. 2005 280 43 36318 36325 10.1074/jbc.M504507200 16103110
    [Google Scholar]
  16. Plano D. Amin S. Sharma A.K. Importance of sphingosine kinase (SphK) as a target in developing cancer therapeutics and recent developments in the synthesis of novel SphK inhibitors. J. Med. Chem. 2014 57 13 5509 5524 10.1021/jm4011687 24471412
    [Google Scholar]
  17. Kharel Y. Morris E.A. Congdon M.D. Thorpe S.B. Tomsig J.L. Santos W.L. Lynch K.R. Sphingosine kinase 2 inhibition and blood sphingosine 1-phosphate levels. J. Pharmacol. Exp. Ther. 2015 355 1 23 31 10.1124/jpet.115.225862 26243740
    [Google Scholar]
  18. Khairat S.H.M. Omar M.A. Ragab F.A.F. Roy S. Turab Naqvi A.A. Abdelsamie A.S. Hirsch A.K.H. Galal S.A. Hassan M.I. El Diwani H.I. Design, synthesis, and biological evaluation of novel benzimidazole derivatives as sphingosine kinase 1 inhibitor. Arch. Pharm. (Weinheim) 2021 354 9 2100080 10.1002/ardp.202100080 34128259
    [Google Scholar]
  19. Tafreshi N.K. Lloyd M.C. Bui M.M. Gillies R.J. Morse D.L. Carbonic anhydrase IX as an imaging and therapeutic target for tumors and metastases. In: Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications; Springer Dordrecht: Dordrecht 2014 221 25 10.1007/978‑94‑007‑7359‑2_12 24146382
    [Google Scholar]
  20. Sedlakova O. Svastova E. Takacova M. Kopacek J. Pastorek J. Pastorekova S. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front. Physiol. 2014 4 400 10.3389/fphys.2013.00400 24409151
    [Google Scholar]
  21. Supuran C.T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 2008 7 2 168 181 10.1038/nrd2467 18167490
    [Google Scholar]
  22. Neri D. Supuran C.T. Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov. 2011 10 10 767 777 10.1038/nrd3554 21921921
    [Google Scholar]
  23. Kato Y. Ozawa S. Miyamoto C. Maehata Y. Suzuki A. Maeda T. Baba Y. Acidic extracellular microenvironment and cancer. Cancer Cell Int. 2013 13 1 89 10.1186/1475‑2867‑13‑89 24004445
    [Google Scholar]
  24. Patard J.J. Fergelot P. Karakiewicz P.I. Klatte T. Trinh Q.D. Rioux-Leclercq N. Said J.W. Belldegrun A.S. Pantuck A.J. Low CAIX expression and absence of VHL gene mutation are associated with tumor aggressiveness and poor survival of clear cell renal cell carcinoma. Int. J. Cancer 2008 123 2 395 400 10.1002/ijc.23496 18464292
    [Google Scholar]
  25. Abas M. Rafique H. Shamas S. Roshan S. Ashraf Z. Iqbal Z. Raza H. Hassan M. Afzal K. Rizvanov A.A. Asad M.H.H.B. Sulfonamide‐based azaheterocyclic schiff base derivatives as potential carbonic anhydrase inhibitors: Synthesis, cytotoxicity, and enzyme inhibitory kinetics. BioMed Res. Int. 2020 2020 1 8104107 10.1155/2020/8104107 32149140
    [Google Scholar]
  26. Sumimoto H. Imabayashi F. Iwata T. Kawakami Y. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J. Exp. Med. 2006 203 7 1651 1656 10.1084/jem.20051848 16801397
    [Google Scholar]
  27. Fecher L.A. Amaravadi R.K. Flaherty K.T. The MAPK pathway in melanoma. Curr. Opin. Oncol. 2008 20 2 183 189 10.1097/CCO.0b013e3282f5271c 18300768
    [Google Scholar]
  28. Davies H. Bignell G.R. Cox C. Stephens P. Edkins S. Clegg S. Teague J. Woffendin H. Garnett M.J. Bottomley W. Davis N. Dicks E. Ewing R. Floyd Y. Gray K. Hall S. Hawes R. Hughes J. Kosmidou V. Menzies A. Mould C. Parker A. Stevens C. Watt S. Hooper S. Wilson R. Jayatilake H. Gusterson B.A. Cooper C. Shipley J. Hargrave D. Pritchard-Jones K. Maitland N. Chenevix-Trench G. Riggins G.J. Bigner D.D. Palmieri G. Cossu A. Flanagan A. Nicholson A. Ho J.W.C. Leung S.Y. Yuen S.T. Weber B.L. Seigler H.F. Darrow T.L. Paterson H. Marais R. Marshall C.J. Wooster R. Stratton M.R. Futreal P.A. Mutations of the BRAF gene in human cancer. Nature 2002 417 6892 949 954 10.1038/nature00766 12068308
    [Google Scholar]
  29. Gray-Schopfer V. Wellbrock C. Marais R. Melanoma biology and new targeted therapy. Nature 2007 445 7130 851 857 10.1038/nature05661 17314971
    [Google Scholar]
  30. Padua R.A. Barrass N.C. Currie G.A. Activation of N-ras in a human melanoma cell line. Mol. Cell. Biol. 1985 5 3 582 585 3887133
    [Google Scholar]
  31. Umar A.B. Uzairu A. Shallangwa G.A. Uba S. In silico evaluation of some 4-(quinolin-2-yl)pyrimidin-2-amine derivatives as potent V600E-BRAF inhibitors with pharmacokinetics ADMET and drug-likeness predictions. Future J. Pharm. Sci. 2020 6 1 61 10.1186/s43094‑020‑00084‑4
    [Google Scholar]
  32. Mercer K. Giblett S. Green S. Lloyd D. DaRocha Dias S. Plumb M. Marais R. Pritchard C. Expression of endogenous oncogenic V600EB-raf induces proliferation and developmental defects in mice and transformation of primary fibroblasts. Cancer Res. 2005 65 24 11493 11500 10.1158/0008‑5472.CAN‑05‑2211 16357158
    [Google Scholar]
  33. Temirak A. El Kerdawy A.M. Nageeb A.M. Abdel-Mohsen H.T. Novel 5,6-dichlorobenzimidazole derivatives as dual BRAFWT and BRAFV600E inhibitors: Design, synthesis, anti-cancer activity and molecular dynamics simulations. BMC Chem. 2025 19 1 45 10.1186/s13065‑025‑01402‑8 39985108
    [Google Scholar]
  34. Zhong X. Wei H.L. Liu W.S. Wang D.Q. Wang X. The crystal structures of copper(II), manganese(II), and nickel(II) complexes of a (Z)-2-hydroxy-N′-(2-oxoindolin-3-ylidene) benzohydrazide—potential antitumor agents. Bioorg. Med. Chem. Lett. 2007 17 13 3774 3777 10.1016/j.bmcl.2007.04.006 17466518
    [Google Scholar]
  35. Mirzaei J. Pirelahi H. Amini M. Shafiee A. Convenient syntheses of 5‐[(2‐methyl‐5‐nitro‐1 H‐imidazol‐1‐yl)methyl]‐1,3,4‐oxadiazole‐2(3H)thione and N‐substituted 2‐amino‐5‐[(2‐methyl‐5‐nitro‐1 H ‐imidazol‐1‐yl)methyl]‐1,3,4‐thiadiazoles. J. Heterocycl. Chem. 2008 45 3 921 925 10.1002/jhet.5570450343
    [Google Scholar]
  36. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti-and pro-angiogenic therapies. Genes Cancer 2011 2 12 1097 1105 10.1177/1947601911423031 22866201
    [Google Scholar]
  37. Otrock Z.K. Makarem J.A. Shamseddine A.I. Vascular endothelial growth factor family of ligands and receptors: Review. Blood Cells Mol. Dis. 2007 38 3 258 268 10.1016/j.bcmd.2006.12.003 17344076
    [Google Scholar]
  38. Gershtein E.S. Dubova E.A. Shchegolev A.I. Kushkinskii N.E. Vascular endothelial growth factor and its type 2 receptor in hepatocellular carcinoma. Bull. Exp. Biol. Med. 2010 149 6 749 752 10.1007/s10517‑010‑1043‑8 21165437
    [Google Scholar]
  39. Smith N.R. Baker D. James N.H. Ratcliffe K. Jenkins M. Ashton S.E. Sproat G. Swann R. Gray N. Ryan A. Jürgensmeier J.M. Womack C. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin. Cancer Res. 2010 16 14 3548 3561 10.1158/1078‑0432.CCR‑09‑2797 20606037
    [Google Scholar]
  40. Wei H. Duan Y. Gou W. Cui J. Ning H. Li D. Qin Y. Liu Q. Li Y. Design, synthesis and biological evaluation of novel 4-anilinoquinazoline derivatives as hypoxia-selective EGFR and VEGFR-2 dual inhibitors. Eur. J. Med. Chem. 2019 181 111552 10.1016/j.ejmech.2019.07.055 31387063
    [Google Scholar]
  41. Buhlak S. Abad N. Akachar J. Saffour S. Kesgun Y. Dik S. Yasin B. Bati-Ayaz G. Hanashalshahaby E. Türkez H. Mardinoglu A. Design, synthesis, and computational evaluation of 3,4-dihydroquinolin-2(1H)-one analogues as potential vegfr2 inhibitors in glioblastoma multiforme. Pharmaceuticals 2025 18 2 233 10.3390/ph18020233 40006046
    [Google Scholar]
  42. Alqahtani N.F. Alfaifi M.Y. Shati A, A. Elbehairi S.E.I. Saleh A.M. Kotb E.S. Serag W.M. Elshaarawy R.F.M. Alhamdi H.W. Hassan Y.A. Molecular docking and in vivo/in vitro studies of a novel thiadiazole Schiff base as a hepatoprotective drug against angiogenesis induced by breast cancer. RSC Advances 2024 14 52 39027 39039 10.1039/D4RA06398H 39659603
    [Google Scholar]
  43. Bryndal I. Stolarczyk M. Mikołajczyk A. Krupińska M. Pyra A. Mączyński M. Matera-Witkiewicz A. Pyrimidine Schiff bases: Synthesis, structural characterization and recent studies on biological activities. Int. J. Mol. Sci. 2024 25 4 2076 10.3390/ijms25042076 38396753
    [Google Scholar]
  44. Hassan M. Watari H. AbuAlmaaty A. Ohba Y. Sakuragi N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int. 2014 2014 1 1 23 10.1155/2014/150845 25013758
    [Google Scholar]
  45. Hata A.N. Engelman J.A. Faber A.C. The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov. 2015 5 5 475 487 10.1158/2159‑8290.CD‑15‑0011 25895919
    [Google Scholar]
  46. Maroteaux L. Roumier A. Doly S. Diaz SL. Belmer, A Encyclopedia of Signaling Molecules. Springer 2018
    [Google Scholar]
  47. Edlich F. Banerjee S. Suzuki M. Cleland M.M. Arnoult D. Wang C. Neutzner A. Tjandra N. Youle R.J. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell 2011 145 1 104 116 10.1016/j.cell.2011.02.034 21458670
    [Google Scholar]
  48. Jasim H.S. Al-Kubaisi Z.A. Al-Shmgani H.S. Cytotoxic potential activity of quercetin derivatives on MCF-7 breast cancer cell line. Revis. Bionatura 2023 8 1 92
    [Google Scholar]
  49. Packialakshmi P. Gobinath P. Ali D. Alarifi S. Gurusamy R. Idhayadhulla A. Surendrakumar R. New chitosan polymer scaffold Schiff bases as potential cytotoxic activity: synthesis, molecular docking, and physiochemical characterization. Front Chem. 2022 9 796599 10.3389/fchem.2021.796599 35111729
    [Google Scholar]
  50. Babina I.S. Turner N.C. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer 2017 17 5 318 332 10.1038/nrc.2017.8 28303906
    [Google Scholar]
  51. Touat M. Ileana E. Postel-Vinay S. André F. Soria J.C. Targeting FGFR signaling in cancer. Clin. Cancer Res. 2015 21 12 2684 2694 10.1158/1078‑0432.CCR‑14‑2329 26078430
    [Google Scholar]
  52. Hallinan N. Finn S. Cuffe S. Rafee S. O’Byrne K. Gately K. Targeting the fibroblast growth factor receptor family in cancer. Cancer Treat. Rev. 2016 46 51 62 10.1016/j.ctrv.2016.03.015 27109926
    [Google Scholar]
  53. Katoh M. Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol. Sci. 2016 37 12 1081 1096 10.1016/j.tips.2016.10.003 27992319
    [Google Scholar]
  54. Hierro C. Rodon J. Tabernero J. Fibroblast growth factor (FGF) receptor/FGF inhibitors: Novel targets and strategies for optimization of response of solid tumors. Semin. Oncol. 2015 42 6 801 819 26615127
    [Google Scholar]
  55. Abdel-Mohsen H.T. Ibrahim M.A. Nageeb A.M. El Kerdawy A.M. Receptor-based pharmacophore modeling, molecular docking, synthesis and biological evaluation of novel VEGFR-2, FGFR-1, and BRAF multi-kinase inhibitors. BMC Chem. 2024 18 1 42 10.1186/s13065‑024‑01135‑0 38395926
    [Google Scholar]
  56. Abdel-Mohsen H.T. Abd El-Meguid E.A. El Kerdawy A.M. Mahmoud A.E.E. Ali M.M. Design, synthesis, and molecular docking of novel 2‐arylbenzothiazole multiangiokinase inhibitors targeting breast cancer. Arch. Pharm. (Weinheim) 2020 353 4 1900340 10.1002/ardp.201900340 32045054
    [Google Scholar]
  57. Nebert D.W. Wikvall K. Miller W.L. Human cytochromes P450 in health and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013 368 1612 20120431 10.1098/rstb.2012.0431 23297354
    [Google Scholar]
  58. Nelson D.R. Zeldin D.C. Hoffman S.M.G. Maltais L.J. Wain H.M. Nebert D.W. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 2004 14 1 1 18 10.1097/00008571‑200401000‑00001 15128046
    [Google Scholar]
  59. Sutter T.R. Tang Y.M. Hayes C.L. Wo Y.Y. Jabs E.W. Li X. Yin H. Cody C.W. Greenlee W.F. Complete cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2. J. Biol. Chem. 1994 269 18 13092 13099 10.1016/S0021‑9258(17)36803‑5 8175734
    [Google Scholar]
  60. Butterweck V. Derendorf H. Gaus W. Nahrstedt A. Schulz V. Unger M. Pharmacokinetic herb-drug interactions: Are preventive screenings necessary and appropriate? Planta Med. 2004 70 9 784 791 10.1055/s‑2004‑827223 15386186
    [Google Scholar]
  61. Hamurcu F. Synthesis, characterization, and biological properties of novel Schiff bases containing pentafluorophenyl hydrazine. J. Biochem. Mol. Toxicol. 2023 37 12 e23512 10.1002/jbt.23512 37638565
    [Google Scholar]
  62. Chaudhari P.J. Bari S.B. Surana S.J. Shirkhedkar A.A. Bonde C.G. Khadse S.C. Ugale V.G. Nagar A.A. Cheke R.S. discovery and anticancer activity of novel 1, 3, 4-thiadiazole-and aziridine-based indolin-2-ones via in silico design followed by supramolecular green synthesis. ACS Omega 2022 7 20 17270 17294 10.1021/acsomega.2c01198 35647471
    [Google Scholar]
  63. Herbst R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys. 2004 59 2 S21 S26 10.1016/j.ijrobp.2003.11.041 15142631
    [Google Scholar]
  64. Zhang H. Berezov A. Wang Q. Zhang G. Drebin J. Murali R. Greene M.I. ErbB receptors: From oncogenes to targeted cancer therapies. J. Clin. Invest. 2007 117 8 2051 2058 10.1172/JCI32278 17671639
    [Google Scholar]
  65. Zeidan M.A. Ashour H.F. Yassen A.S.A. Abo Elmaaty A. Farag A.B. Sharaky M. Abdullah Alzahrani A.Y. Mughram M.H.A.L. Al-Karmalawy A.A. Dual EGFR and telomerase inhibitory potential of new triazole tethered Schiff bases endowed with apoptosis: Design, synthesis, and biological assessments. RSC Medicinal Chemistry 2025 16 3 1208 1222 10.1039/D4MD00750F 39790121
    [Google Scholar]
  66. Al-Wahaibi L.H. El-Sheref E.M. Tawfeek H.N. Abou-Zied H.A. Rabea S.M. Bräse S. Youssif B.G.M. Design, synthesis, and biological evaluation of novel quinoline-based EGFR/HER-2 dual-target inhibitors as potential anti-tumor agents. RSC Advances 2024 14 45 32978 32991 10.1039/D4RA06394E 39434991
    [Google Scholar]
  67. Başaran E. Çakmak R. Türkmenoğlu B. Akkoc S. Köprü S. Synthesis of sulfonamide‐based schiff bases as potent anticancer agents: Spectral analyses, biological activity, molecular docking, ADME, DFT, and pharmacophore modelling studies. Chem. Biodivers. 2025 22 2 e202402229 10.1002/cbdv.202402229 39439182
    [Google Scholar]
  68. Wang J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol. 2002 3 6 430 440 10.1038/nrm831 12042765
    [Google Scholar]
  69. Wang J.C. DNA topoisomerases. Annu. Rev. Biochem. 1996 65 1 635 692 10.1146/annurev.bi.65.070196.003223 8811192
    [Google Scholar]
  70. Forterre P. Gribaldo S. Gadelle D. Serre M.C. Origin and evolution of DNA topoisomerases. Biochimie 2007 89 4 427 446 10.1016/j.biochi.2006.12.009 17293019
    [Google Scholar]
  71. Bailly C. Contemporary challenges in the design of topoisomerase II inhibitors for cancer chemotherapy. Chem. Rev. 2012 112 7 3611 3640 10.1021/cr200325f 22397403
    [Google Scholar]
  72. Goto T. Wang J.C. Yeast DNA topoisomerase II. An ATP-dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of double-stranded DNA rings. J. Biol. Chem. 1982 257 10 5866 5872 10.1016/S0021‑9258(19)83859‑0 6279616
    [Google Scholar]
  73. Pommier Y. DNA topoisomerase I inhibitors: Chemistry, biology, and interfacial inhibition. Chem. Rev. 2009 109 7 2894 2902 10.1021/cr900097c 19476377
    [Google Scholar]
  74. McClendon A.K. Osheroff N. DNA topoisomerase II, genotoxicity, and cancer. Mutat. Res. 2007 623 1-2 83 97 10.1016/j.mrfmmm.2007.06.009 17681352
    [Google Scholar]
  75. Park S. Kadayat T.M. Jun K.Y. Thapa Magar T.B. Bist G. Shrestha A. Lee E.S. Kwon Y. Novel 2-aryl-4-(4′-hydroxyphenyl)-5H-indeno[1,2-b]pyridines as potent DNA non-intercalative topoisomerase catalytic inhibitors. Eur. J. Med. Chem. 2017 125 14 28 10.1016/j.ejmech.2016.09.019 27643560
    [Google Scholar]
  76. El-Kalyoubi S. Elbaramawi S.S. Eissa A.G. Al-Ageeli E. Hobani Y.H. El-Sharkawy A.A. Mohamed H.T. Al-Karmalawy A.A. Abulkhair H.S. Design and synthesis of novel uracil-linked Schiff bases as dual histone deacetylase type II/topoisomerase type I inhibitors with apoptotic potential. Future Med. Chem. 2023 15 11 937 958 10.4155/fmc‑2023‑0112 37381751
    [Google Scholar]
  77. Suyambulingam J.K. Karvembu R. Bhuvanesh N.S.P. Enoch I.V.M.V. Selvakumar P.M. Premnath D. Subramanian C. Mayakrishnan P. Kim S.H. Chung I.M. Synthesis, structure, biological/chemosensor evaluation and molecular docking studies of aminobenzothiazole Schiff bases. J. Adhes. Sci. Technol. 2020 34 23 2590 2612 10.1080/01694243.2020.1775032
    [Google Scholar]
  78. Zhu W. Chen C. Sun C. Xu S. Wu C. Lei F. Xia H. Tu Q. Zheng P. Design, synthesis and docking studies of novel thienopyrimidine derivatives bearing chromone moiety as mTOR/PI3Kα inhibitors. Eur. J. Med. Chem. 2015 93 64 73 10.1016/j.ejmech.2015.01.061 25659752
    [Google Scholar]
  79. Xu S. Sun C. Chen C. Zheng P. Zhou Y. Zhou H. Zhu W. Synthesis and biological evaluation of novel 8-morpholinoimidazo [1, 2-a] pyrazine derivatives bearing phenylpyridine/phenylpyrimidine-carboxamides. Molecules 2017 22 2 310 10.3390/molecules22020310 28218676
    [Google Scholar]
  80. Sun C. Chen C. Xu S. Wang J. Zhu Y. Kong D. Tao H. Jin M. Zheng P. Zhu W. Synthesis and anticancer activity of novel 4-morpholino-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine derivatives bearing chromone moiety. Bioorg. Med. Chem. 2016 24 16 3862 3869 10.1016/j.bmc.2016.06.032 27353887
    [Google Scholar]
  81. Wang Q. Li X. Sun C. Zhang B. Zheng P. Zhu W. Xu S. Synthesis and Structure-Activity Relationships of 4-Morpholino-7,8-Dihydro-5H-Thiopyrano[4,3-d]pyrimidine Derivatives Bearing Pyrazoline Scaffold. Molecules 2017 22 11 1870 10.3390/molecules22111870 29088090
    [Google Scholar]
  82. Mayer I.A. Abramson V.G. Formisano L. Balko J.M. Estrada M.V. Sanders M.E. Juric D. Solit D. Berger M.F. Won H.H. Li Y. Cantley L.C. Winer E. Arteaga C.L. A phase Ib study of alpelisib (BYL719), a PI3Kα-specific inhibitor, with letrozole in ER+/HER2− metastatic breast cancer. Clin. Cancer Res. 2017 23 1 26 34 10.1158/1078‑0432.CCR‑16‑0134 27126994
    [Google Scholar]
  83. Patnaik A. Appleman L.J. Tolcher A.W. Papadopoulos K.P. Beeram M. Rasco D.W. Weiss G.J. Sachdev J.C. Chadha M. Fulk M. Ejadi S. Mountz J.M. Lotze M.T. Toledo F.G.S. Chu E. Jeffers M. Peña C. Xia C. Reif S. Genvresse I. Ramanathan R.K. First-in-human phase I study of copanlisib (BAY 80-6946), an intravenous pan-class I phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Ann. Oncol. 2016 27 10 1928 1940 10.1093/annonc/mdw282 27672108
    [Google Scholar]
  84. Burke R.T. Meadows S. Loriaux M.M. Currie K.S. Mitchell S.A. Maciejewski P. Clarke A.S. Dipaolo J.A. Druker B.J. Lannutti B.J. Spurgeon S.E. A potential therapeutic strategy for chronic lymphocytic leukemia by combining Idelalisib and GS-9973, a novel spleen tyrosine kinase (Syk) inhibitor. Oncotarget 2014 5 4 908 915 10.18632/oncotarget.1484 24659719
    [Google Scholar]
  85. Tan H. Zhang G. Xu C. Lei X. Chen J. Long H. Qiu X. Wang W. Zhou Y. Chen D. Li C. Synthesis of novel 4-substituted isatin Schiff base derivatives as potential autophagy inducers and evaluation of their antitumour activity. Mol. Divers. 2024 2 1 8 39110306
    [Google Scholar]
  86. El-Helw EA. Ghareeb EA. Mahmoud NF. El-Bordany EA. Soliman EA. Abouzid K. El-Khouly A. Design, synthesis, antiproliferative activity and in silico studies of 2-Oxo-1, 2-dihydroquinolin derivatives. Polycycl. Ar. Compd. 2025 4 1 6
    [Google Scholar]
  87. Noser A.A. Abdelmonsef A.H. El-Naggar M. Salem M.M. New amino acid Schiff bases as anticancer agents via potential mitochondrial Complex I-associated hexokinase inhibition and targeting AMP-protein kinases/mTOR signaling pathway. Molecules 2021 26 17 5332 10.3390/molecules26175332 34500765
    [Google Scholar]
  88. DiNardo C.D. Jabbour E. Ravandi F. Takahashi K. Daver N. Routbort M. Patel K.P. Brandt M. Pierce S. Kantarjian H. Garcia-Manero G. IDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progression. Leukemia 2016 30 4 980 984 10.1038/leu.2015.211 26228814
    [Google Scholar]
  89. Zhou K.G. Jiang L.J. Shang Z. Wang J. Huang L. Zhou J.F. Potential application of IDH1 and IDH2 mutations as prognostic indicators in non-promyelocytic acute myeloid leukemia: A meta-analysis. Leuk. Lymphoma 2012 53 12 2423 2429 10.3109/10428194.2012.695359 22616558
    [Google Scholar]
  90. Reitman Z.J. Yan H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J. Natl. Cancer Inst. 2010 102 13 932 941 10.1093/jnci/djq187 20513808
    [Google Scholar]
  91. Dang L. Yen K. Attar E.C. IDH mutations in cancer and progress toward development of targeted therapeutics. Ann. Oncol. 2016 27 4 599 608 10.1093/annonc/mdw013 27005468
    [Google Scholar]
  92. Sulkowski P.L. Corso C.D. Robinson N.D. Scanlon S.E. Purshouse K.R. Bai H. Liu Y. Sundaram R.K. Hegan D.C. Fons N.R. Breuer G.A. Song Y. Mishra-Gorur K. De Feyter H.M. de Graaf R.A. Surovtseva Y.V. Kachman M. Halene S. Günel M. Glazer P.M. Bindra R.S. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci. Transl. Med. 2017 9 375 eaal2463 10.1126/scitranslmed.aal2463 28148839
    [Google Scholar]
  93. Reitman Z.J. Parsons D.W. Yan H. IDH1 and IDH2: Not your typical oncogenes. Cancer Cell 2010 17 3 215 216 10.1016/j.ccr.2010.02.024 20227034
    [Google Scholar]
  94. Chaturvedi A. Araujo Cruz M.M. Jyotsana N. Sharma A. Yun H. Görlich K. Wichmann M. Schwarzer A. Preller M. Thol F. Meyer J. Haemmerle R. Struys E.A. Jansen E.E. Modlich U. Li Z. Sly L.M. Geffers R. Lindner R. Manstein D.J. Lehmann U. Krauter J. Ganser A. Heuser M. Mutant IDH1 promotes leukemogenesis in vivo and can be specifically targeted in human AML. Blood 2013 122 16 2877 2887 10.1182/blood‑2013‑03‑491571 23954893
    [Google Scholar]
  95. Wei K. Guo K. Tao Y. Gong X. Yan G. Wang L. Guo M. Design, synthesis, biological evaluation and molecular docking of novel isatin-oxime ether derivatives as potential IDH1 inhibitors. Mol. Divers. 2025 1 3 10.1007/s11030‑024‑11084‑4 39747799
    [Google Scholar]
  96. Jingwen B. Yaochen L. Guojun Z. Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med. 2017 14 4 348 362 10.20892/j.issn.2095‑3941.2017.0033 29372101
    [Google Scholar]
  97. Chen J. Pang L. Wang W. Wang L. Zhang J.Z.H. Zhu T. Decoding molecular mechanism of inhibitor bindings to CDK2 using molecular dynamics simulations and binding free energy calculations. J. Biomol. Struct. Dyn. 2020 38 4 985 996 10.1080/07391102.2019.1591304 30843759
    [Google Scholar]
  98. Phoujdar M.S. Aland G.R. Molecular docking study on 1H-(3,4d) Pyrazolo-pyrimidines as cyclin dependant kinase (CDK2) inhibitors. Int. J. Curr. Pharm. Res. 2016 9 1 94 100 10.22159/ijcpr.2017v9i1.16625
    [Google Scholar]
  99. Peyressatre M. Prével C. Pellerano M. Morris M. Targeting cyclin-dependent kinases in human cancers: From small molecules to Peptide inhibitors. Cancers 2015 7 1 179 237 10.3390/cancers7010179 25625291
    [Google Scholar]
  100. Whittaker S.R. Mallinger A. Workman P. Clarke P.A. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol. Ther. 2017 173 83 105 10.1016/j.pharmthera.2017.02.008 28174091
    [Google Scholar]
  101. Kargbo R.B. Selective cyclin-dependent kinase inhibitors and their application in cancer therapy. ACS Med. Chem. Lett. 2022 13 10 1561 1563 10.1021/acsmedchemlett.2c00417 36267128
    [Google Scholar]
  102. Zhang M. Zhang L. Hei R. Li X. Cai H. Wu X. Zheng Q. Cai C. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 2021 11 5 1913 1935 34094661
    [Google Scholar]
  103. Ali Y.S. Mahdi M.F. Abd Razik B.M. Aburjai T. Design, molecular docking, synthesis, characterization and preliminary evaluation of novel 1,3,4-Oxadiazole derivatives as cyclin-dependent kinase 2 inhibitors. Al Mustansiriyah J. Pharm. Sci. 2025 25 1 94 109 10.32947/ajps.v25i1.1132
    [Google Scholar]
  104. Khan M.R. Khan M.A. Ahmad I. Ahmed J. Ahmed H. Mubeen I. Awan B. Ullah F. Synthesis of quercetin derivatives as cytotoxic against breast cancer MCF-7 cell line in vitro and in silico studies. Future Med. Chem. 2024 16 17 1749 1759 10.1080/17568919.2024.2379241 39101595
    [Google Scholar]
  105. Acharya R. Deb P.K. Venugopala K.N. Pattanayak S.P. An azomethine derivative, BCS3, targets XIAP and cIAP1/2 to arrest breast cancer progression through MDM2-p53 and Bcl-2-caspase signaling modulation. Pharmaceuticals 2024 17 12 1645 10.3390/ph17121645 39770487
    [Google Scholar]
  106. Yang H. Chennamaneni L.R. Ho M.W.T. Ang S.H. Tan E.S.W. Jeyaraj D.A. Yeap Y.S. Liu B. Ong E.H. Joy J.K. Wee J.L.K. Kwek P. Retna P. Dinie N. Nguyen T.T.H. Tai S.J. Manoharan V. Pendharkar V. Low C.B. Chew Y.S. Vuddagiri S. Sangthongpitag K. Choong M.L. Lee M.A. Kannan S. Verma C.S. Poulsen A. Lim S. Chuah C. Ong T.S. Hill J. Matter A. Nacro K. Optimization of selective mitogen-activated protein kinase interacting kinases 1 and 2 inhibitors for the treatment of blast crisis leukemia. J. Med. Chem. 2018 61 10 4348 4369 10.1021/acs.jmedchem.7b01714 29683667
    [Google Scholar]
  107. Wang S. Li B. Liu B. Huang M. Li D. Guan L. Zang J. Liu D. Zhao L. Design and synthesis of novel 6-hydroxy-4-methoxy-3-methylbenzofuran-7-carboxamide derivatives as potent Mnks inhibitors by fragment-based drug design. Bioorg. Med. Chem. 2018 26 16 4602 4614 10.1016/j.bmc.2018.05.004 30115493
    [Google Scholar]
  108. Dreas A. Mikulski M. Milik M. Fabritius C.H. Brzózka K. Rzymski T. Mitogen-activated protein kinase (MAPK) interacting kinases 1 and 2 (MNK1 and MNK2) as targets for cancer therapy: Recent progress in the development of MNK inhibitors. Curr. Med. Chem. 2017 24 28 3025 3053 28164761
    [Google Scholar]
  109. Wheater M.J. Johnson P.W.M. Blaydes J.P. The role of MNK proteins and eIF4E phosphorylation in breast cancer cell proliferation and survival. Cancer Biol. Ther. 2010 10 7 728 735 10.4161/cbt.10.7.12965 20686366
    [Google Scholar]
  110. Mishra R. Kumar N. Sachan N. Synthesis and pharmacological study of thiophene derivatives. Int. J. Pharm. Qual. Assur 2021 12 3 282 291
    [Google Scholar]
  111. Ueda T. Sasaki M. Elia A.J. Chio I.I.C. Hamada K. Fukunaga R. Mak T.W. Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. Proc. Natl. Acad. Sci. USA 2010 107 32 13984 13990 10.1073/pnas.1008136107 20679220
    [Google Scholar]
  112. Landon A.L. Muniandy P.A. Shetty A.C. Lehrmann E. Volpon L. Houng S. Zhang Y. Dai B. Peroutka R. Mazan-Mamczarz K. Steinhardt J. Mahurkar A. Becker K.G. Borden K.L. Gartenhaus R.B. MNKs act as a regulatory switch for eIF4E1 and eIF4E3 driven mRNA translation in DLBCL. Nat. Commun. 2014 5 1 5413 10.1038/ncomms6413 25403230
    [Google Scholar]
  113. Abourehab M.A.S. Alqahtani A.M. Almalki F.A. Abdalla A.N. Gouda A.M. Pyrrolizine/indolizine-cinnamaldehyde Schiff bases: Design, synthesis, biological evaluation, ADME, and molecular docking study. European J. Med. Chem. Report 2022 4 100036 10.1016/j.ejmcr.2022.100036
    [Google Scholar]
  114. Florian S. Mitchison T.J. Anti-microtubule drugs. The Mitotic Spindle. Methods Protoc. 2016 2 403 421
    [Google Scholar]
  115. Mitchison T.J. Microtubule dynamics and kinetochore function in mitosis. Annu. Rev. Cell Biol. 1988 4 1 527 545 10.1146/annurev.cb.04.110188.002523 3058165
    [Google Scholar]
  116. Nitika V. Kapil K. Microtubule targeting agents: A benchmark in cancer therapy. Curr. Drug Ther. 2014 8 3 189 196 10.2174/15748855113086660011
    [Google Scholar]
  117. Risinger A.L. Giles F.J. Mooberry S.L. Microtubule dynamics as a target in oncology. Cancer Treat. Rev. 2009 35 3 255 261 10.1016/j.ctrv.2008.11.001 19117686
    [Google Scholar]
  118. Nepali K. Ojha R. Lee H.Y. Liou J.P. Early investigational tubulin inhibitors as novel cancer therapeutics. Expert Opin. Investig. Drugs 2016 25 8 917 936 10.1080/13543784.2016.1189901 27186892
    [Google Scholar]
  119. Mukhtar E. Adhami V.M. Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther. 2014 13 2 275 284 10.1158/1535‑7163.MCT‑13‑0791 24435445
    [Google Scholar]
  120. Rohena C.C. Mooberry S.L. Recent progress with microtubule stabilizers: new compounds, binding modes and cellular activities. Nat. Prod. Rep. 2014 31 3 335 355 10.1039/C3NP70092E 24481420
    [Google Scholar]
  121. Alyamani N.M. New Schiff Base-TMB Hybrids: Design, synthesis and antiproliferative investigation as potential anticancer agents. Symmetry 2023 15 3 609 10.3390/sym15030609
    [Google Scholar]
  122. El-Kalyoubi S. El-Sebaey S.A. El-Sayed A.A. Abdelhamid M.S. Agili F. Elfeky S.M. Novel pyrimidine Schiff bases and their selenium-containing nanoparticles as dual inhibitors of CDK1 and tubulin polymerase: Design, synthesis, anti-proliferative evaluation, and molecular modelling. J. Enzyme Inhib. Med. Chem. 2023 38 1 2232125 10.1080/14756366.2023.2232125 37403517
    [Google Scholar]
  123. Coskun G.P. Ozhan Y. Dobričić V. Bošković J. Reis R. Sipahi H. Sahin Z. Demirayak S. Discovery of novel thiophene/hydrazones: In vitro and in silico studies against pancreatic cancer. Pharmaceutics 2023 15 5 1441 37242684
    [Google Scholar]
  124. Howsaui H.B. Basaleh A.S. Abdellattif M.H. Hassan W.M.I. Hussien M.A. Synthesis, structural investigations, molecular docking, and anticancer activity of some novel Schiff bases and their uranyl Complexes. Biomolecules 2021 11 8 1138 10.3390/biom11081138 34439805
    [Google Scholar]
  125. Sehrawat R. Pasrija R. Rathee P. Kumari D. Khatkar A. Küpeli Akkol E. Sobarzo-Sánchez E. Hybrid caffeic acid-based DHFR inhibitors as novel antimicrobial and anticancer agents. Antibiotics 2024 13 6 479 10.3390/antibiotics13060479 38927146
    [Google Scholar]
  126. Thakor P.M. Patel R.J. Giri R.K. Chaki S.H. Khimani A.J. Vaidya Y.H. Thakor P. Thakkar A.B. Patel J.D. Synthesis, spectral characterization, thermal investigation, Computational studies, molecular docking, and in vitro biological activities of a new schiff base derived from 2-Chloro Benzaldehyde and 3, 3′-Dimethyl-[1,1′-biphenyl]-4, 4′-diamine. ACS Omega 2023 8 36 33069 33082 10.1021/acsomega.3c05254 37720740
    [Google Scholar]
  127. Alamri A.A. Borik R.M.A. El-Wahab A.H.F.A. Mohamed H.M. Ismail K.S. El-Aassar M.R. Al-Dies A.A.M. El-Agrody A.M. Synthesis of Schiff bases based on Chitosan, thermal stability and evaluation of antimicrobial and antitumor activities. Sci. Rep. 2025 15 1 892 10.1038/s41598‑024‑73610‑6 39762317
    [Google Scholar]
  128. Rezaeianzadeh O. Asghari S. Tajbakhsh M. Khalilpour A. Shityakov S. Synthesis and application of diazenyl sulfonamide-based schiff bases as potential BRCA2 active inhibitors against MCF-7 breast cancer cell line. Sci. Rep. 2025 15 1 6661 10.1038/s41598‑025‑91113‑w 39994448
    [Google Scholar]
  129. Zúñiga-Miranda J. González-Pastor R. Carrera-Pacheco S.E. Rodríguez-Pólit C. Barba-Ostria C. Machado A. Guamán L.P. Alcivar-León C.D. Heredia-Moya J. Experimental and computational studies of Schiff bases derived from 4-aminoantipyrine as potential antibacterial and anticancer agents. Discover Appl. Sci. 2025 7 2 115 10.1007/s42452‑025‑06459‑7
    [Google Scholar]
  130. El-Far A. Liu X. Xiao T. Du J. Du X. Wei C. Cheng J. Zou H. Fu J. TQFL19, a novel derivative of Thymoquinone (TQ), plays an essential role by inhibiting cell growth, metastasis, and invasion in triple-negative breast cancer. Molecules 2025 30 4 773 10.3390/molecules30040773 40005083
    [Google Scholar]
  131. Alyar S. Alyar H. Özdemir Özmen Ü. Aktaş O. Erdem K. Biochemical properties of Schiff bases derived from FDA-approved sulfa drugs: Synthesis, ADME/molecular docking studies, and anticancer activity. J. Mol. Struct. 2023 1293 136167 10.1016/j.molstruc.2023.136167
    [Google Scholar]
  132. Sharma P. Sweta Jha N. Curcumin Knoevenagel’s Schiff base as a promising stabilizer of G‐quadruplex structure. Chem. Biodivers. 2024 21 10 e202400797 10.1002/cbdv.202400797 38946104
    [Google Scholar]
  133. Uddin N. Rashid F. Ali S. Tirmizi S.A. Ahmad I. Zaib S. Zubair M. Diaconescu P.L. Tahir M.N. Iqbal J. Haider A. Synthesis, characterization, and anticancer activity of Schiff bases. J. Biomol. Struct. Dyn. 2020 38 11 3246 3259 10.1080/07391102.2019.1654924 31411114
    [Google Scholar]
  134. Al Rasheed H.H. Malebari A.M. Dahlous K.A. Fayne D. El-Faham A. Synthesis, anti-proliferative activity, and molecular docking study of new series of 1, 3-5-triazine Schiff base derivatives. Molecules 2020 25 18 4065 10.3390/molecules25184065 32899566
    [Google Scholar]
/content/journals/coc/10.2174/0113852728405259250924102913
Loading
/content/journals/coc/10.2174/0113852728405259250924102913
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Schiff bases ; malignant tumor ; targeted treatment ; inhibitors ; cancer ; SAR ; anticancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test