Skip to content
2000
image of Application of Biosensors for Pesticide Analysis: Classification, Toxicity, Environmental Impact, Detection Techniques, and Mode of Action

Abstract

The application of biosensors in pesticide analysis has emerged as a powerful, rapid, and eco-friendly alternative to conventional analytical techniques. This work highlights the benefits of biosensors over conventional detection methods by considering their creative application in the pesticide residue detection process. It also encompasses the classification of pesticides such as insecticides, herbicides, fungicides, and rodenticides—based on their target organisms and chemical nature. Biosensors offer sensitive and specific detection of pesticides, enabling real-time monitoring of their presence in agricultural and environmental samples. They provide valuable insights into the toxicity profiles of pesticides, contributing to risk assessment and safety regulations. Furthermore, biosensor technologies aid in evaluating the environmental impact of pesticide residues on soil, water, and non-target organisms, promoting sustainable agricultural practices. The detection techniques integrated into biosensors—electrochemical, optical, piezoelectric, and enzyme-based—allow for selective identification of specific pesticide molecules with minimal sample preparation. Additionally, biosensors help elucidate the mode of action of pesticides, revealing how they interact with biological systems at the molecular level. In agricultural applications, biosensors support precision farming, pesticide regulation, and residue monitoring, enhancing crop productivity while minimizing environmental and health risks. The integration of biosensor technology into pesticide analysis ensures a more sustainable and scientifically informed approach to pesticide management in modern agriculture. The inclusion of biosensors in agricultural practices also enhances precision farming by allowing quick assessments of pesticide application, reducing environmental pollution, and eliminating overuse.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728404845251024092405
2026-02-10
2026-02-16
Loading full text...

Full text loading...

References

  1. Hara T.O. Singh B. Electrochemical biosensors for detection of pesticides and heavy metal toxicants in water: Recent trends and progress. ACS EST Water 2021 1 3 462 478 10.1021/acsestwater.0c00125
    [Google Scholar]
  2. Polat S. Gunata M. Parlakpinar H. Chemical warfare agents and treatment strategies. Ann. Med. Res. 2018 25 4 776 10.5455/annalsmedres.2018.08.166
    [Google Scholar]
  3. Tsai W.T. Organochlorine insecticides. Encyclopedia of Toxicology. Wexler P. Oxford Academic Press 2014 711 713 10.1016/B978‑0‑12‑386454‑3.00172‑X
    [Google Scholar]
  4. Mahmood I. Imadi S.R. Shazadi K. Gul A. Hakeem K.R. Effects of pesticides on environment. Plant., Soil and Microbes. Switzerland Springer 2016 253 269 10.1007/978‑3‑319‑27455‑3_13
    [Google Scholar]
  5. Botha C.J. Coetser H. Labuschagne L. Basson A. Confirmed organophosphorus and carbamate pesticide poisonings in South African wildlife (2009-2014). J. S. Afr. Vet. Assoc. 2015 86 1 1329 10.4102/jsava.v86i1.1329 26824339
    [Google Scholar]
  6. Pérez-Fernández B. Costa-García A. Muñiz A.E. Electrochemical (bio)sensors for pesticides detection using screen-printed electrodes. Biosensors 2020 10 4 32 10.3390/bios10040032 32252430
    [Google Scholar]
  7. Kaur J. Singh P.K. Enzyme-based optical biosensors for organophosphate class of pesticide detection. Phys. Chem. Chem. Phys. 2020 22 27 15105 15119 10.1039/D0CP01647K 32613964
    [Google Scholar]
  8. Lushchak V.I. Matviishyn T.M. Husak V.V. Storey J.M. Storey K.B. Pesticide toxicity: A mechanistic approach. EXCLI J. 2018 17 1101 1136 10.17179/excli2018‑1710 30564086
    [Google Scholar]
  9. Abubakar Y. Tijjani H. Egbuna C. Adetunji C.O. Kala S. Kryeziu T.L. Pesticides, history, and classification. Natural Remedies for Pest, Disease and Weed Control. Elsevier 2019 29 42 10.1016/B978‑0‑12‑819304‑4.00003‑8
    [Google Scholar]
  10. Narenderan S.T. Meyyanathan S.N. Babu B. Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res. Int. 2020 133 109141 10.1016/j.foodres.2020.109141 32466907
    [Google Scholar]
  11. Chandra Yadav I. Linthoingambi Devi N. Pesticides classification and its impact on human and environment. Environ. Sci. Eng. 2017 6 140 158
    [Google Scholar]
  12. Hedin P.A. Hollingworth R.M. New applications for phytochemical pest-control agents. ACS symposium series Hedin PA. Hollingworth RM. Masler EP. Miyamoto J. Thompson D.G. American Chemical Society: Washington (DC) 1997 1 12 10.1021/bk‑1997‑0658.ch001
    [Google Scholar]
  13. Pavela R. History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects - A review. Plant Prot. Sci. 2016 52 4 229 241 10.17221/31/2016‑PPS
    [Google Scholar]
  14. George D.R. Finn R.D. Graham K.M. Sparagano O.A.E. Present and future potential of plant-derived products to control arthropods of veterinary and medical significance. Parasit. Vectors 2014 7 1 28 10.1186/1756‑3305‑7‑28 24428899
    [Google Scholar]
  15. Gunnell D. Eddleston M. Phillips M.R. Konradsen F. The global distribution of fatal pesticide self-poisoning: Systematic review. BMC Public Health 2007 7 1 357 10.1186/1471‑2458‑7‑357 18154668
    [Google Scholar]
  16. Eddleston M. Poisoning by pesticides. Medicine 2020 48 3 214 217 10.1016/j.mpmed.2019.12.019
    [Google Scholar]
  17. Akashe M.M. Pawade U.V. Nikam A.V. Classification of pesticides: A review. Int. J. Res. Ayurveda Pharm. 2018 9 4 144 150 10.7897/2277‑4343.094131
    [Google Scholar]
  18. Hassaan M.A. El Nemr A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res. 2020 46 3 207 220 10.1016/j.ejar.2020.08.007
    [Google Scholar]
  19. Keswani C. Dilnashin H. Birla H. Roy P. Tyagi R.K. Singh D. Rajput V.D. Minkina T. Singh S.P. Global footprints of organochlorine pesticides: A pan-global survey. Environ. Geochem. Health 2022 44 1 149 177 10.1007/s10653‑021‑00946‑7 34027568
    [Google Scholar]
  20. Fernández-de-Córdova M.L. Ortega-Barrales P. The potential of flow-based optosensing devices for pesticide assessment. Pesticides in the Modern World - Trends in Pesticides Analysis. InTech 2011 489 514 10.5772/18308
    [Google Scholar]
  21. Sakamma K.M. Jayaprakash G.K. Naik P. Mohanty K. Electrocatalytic redox behavior of endosulfan on carbon-based sensors: An experimental and theoretical study. Top. Catal. 2025 10.1007/s11244‑025‑02086‑z
    [Google Scholar]
  22. Madjar R.M. Vasile Scăețeanu G. Sandu M.A. Sustainable water monitoring via analytical techniques and protocols applied in the assessment of organochlorine pesticides. Sustainability 2024 16 13 5293 10.3390/su16135293
    [Google Scholar]
  23. Wei L. Yang Y. Li Q.X. Wang J. Composition, distribution, and risk assessment of organochlorine pesticides in drinking water sources in South China. Water Qual. Expo. Health 2015 7 1 89 97 10.1007/s12403‑014‑0147‑1
    [Google Scholar]
  24. Gámiz-Gracia L. García-Campaña A.M. Soto-Chinchilla J.J. Huertas-Pérez J.F. González-Casado A. Analysis of pesticides by chemiluminescence detection in the liquid phase. Trends Analyt. Chem. 2005 24 11 927 942 10.1016/j.trac.2005.05.009
    [Google Scholar]
  25. Dam K. Garcia S.J. Seidler F.J. Slotkin T.A. Neonatal chlorpyrifos exposure alters synaptic development and neuronal activity in cholinergic and catecholaminergic pathways. Brain Res. Dev. Brain Res. 1999 116 1 9 20 10.1016/S0165‑3806(99)00067‑X 10446342
    [Google Scholar]
  26. Slotkin T.A. Tate C.A. Cousins M.M. Seidler F.J. Functional alterations in CNS catecholamine systems in adolescence and adulthood after neonatal chlorpyrifos exposure. Brain Res. Dev. Brain Res 2002 133 2 163 173 10.1016/S0165‑3806(02)00284‑5 11882346
    [Google Scholar]
  27. Uniyal S. Sharma R.K. Technological advancement in electrochemical biosensor based detection of Organophosphate pesticide chlorpyrifos in the environment: A review of status and prospects. Biosens. Bioelectron. 2018 116 37 50 10.1016/j.bios.2018.05.039 29857260
    [Google Scholar]
  28. Slotkin T.A. Seidler F.J. The alterations in CNS serotonergic mechanisms caused by neonatal chlorpyrifos exposure are permanent. Brain Res. Dev. Brain Res. 2005 158 1-2 115 119 10.1016/j.devbrainres.2005.06.008 16024092
    [Google Scholar]
  29. Kaur N. Prabhakar N. Current scenario in organophosphates detection using electrochemical biosensors. Trends Analyt. Chem. 2017 10.1016/j.trac.2017.04.012 29565810
    [Google Scholar]
  30. Malhotra H. Kaur S. Phale P.S. Conserved metabolic and evolutionary themes in microbial degradation of carbamate pesticides. Front. Microbiol. 2021 12 648868 10.3389/fmicb.2021.648868 34305823
    [Google Scholar]
  31. Ecobichon D.J. Pesticide use in developing countries. Toxicology 2001 160 1-3 27 33 10.1016/S0300‑483X(00)00452‑2 11246121
    [Google Scholar]
  32. Jokanović M. Medical treatment of acute poisoning with organophosphorus and carbamate pesticides. Toxicol. Lett. 2009 190 2 107 115 10.1016/j.toxlet.2009.07.025 19651196
    [Google Scholar]
  33. Jokanović M. Maksimović M. Abnormal cholinesterase activity: Understanding and interpretation. Eur. J. Clin. Chem. Clin. Biochem. 1997 35 1 11 16 [PMID: 9156559
    [Google Scholar]
  34. Morais S. Dias E. Pereira M.L. The Impact of Pesticides. Jokanović M. Rijeka IntechOpen 2012 21 38 10.5772/59613
    [Google Scholar]
  35. Md Nur N. Husna Erna K. Merillyn Vonnie J. Rovina K. Extraction and identification techniques for quantification of carbamate pesticides in fruits and vegetables. Pesticides - Updates on Toxicity, Efficacy and Risk Assessment IntechOpen 2022 1 18 10.5772/intechopen.102352
    [Google Scholar]
  36. Kamita S.G. Kang K.D. Hammock B.D. Inceoglu A.B. Genetically modified baculoviruses for pest insect control. Comprehensive Molecular Insect Science 271 322 10.1016/B0‑44‑451924‑6/00085‑5
    [Google Scholar]
  37. Popp J. Pető K. Nagy J. Pesticide productivity and food security. A review Pesticide productivity and food security. A review. Agron. Sustain. Dev. 2012 33 243 255 10.1007/s13593‑012‑0105‑x
    [Google Scholar]
  38. Saha R. Dutta S.M. Pesticides’ mode of action on aquatic life. Toxicol. Rep. 2024 13 101780 10.1016/j.toxrep.2024.101780 39559565
    [Google Scholar]
  39. Bjørling-Poulsen M. Andersen H.R. Grandjean P. Potential developmental neurotoxicity of pesticides used in Europe. Environ. Health 2008 7 1 50 10.1186/1476‑069X‑7‑50 18945337
    [Google Scholar]
  40. Thompson H.M. Esterases as markers of exposure to organophosphates and carbamates. Ecotoxicology 1999 8 5 369 384 10.1023/A:1008934505370
    [Google Scholar]
  41. Verma N. Bhardwaj A. Biosensor technology for pesticides - A review. Appl. Biochem. Biotechnol. 2015 175 6 3093 3119 10.1007/s12010‑015‑1489‑2 25595494
    [Google Scholar]
  42. Sassolas A. Prieto-Simón B. Marty J.L. Biosensors for pesticide detection: New trends. Am. J. Anal. Chem. 2012 3 3 210 232 10.4236/ajac.2012.33030
    [Google Scholar]
  43. Anaji N. Jayaprakash G.K. Naik P. Tigri G. Reddy S. Recent advances in developing modified electrode interface for sensing tartrazine in real samples: A brief review. J. Electrochem. Sci. Eng. 2024 14 719 735 10.5599/jese.2391
    [Google Scholar]
  44. Srikant S.S. Chaturvedi P.K. Basic Electronics Engineering: Including Laboratory Manual. Singapore Springer 2020 10.1007/978‑981‑13‑7414‑2
    [Google Scholar]
  45. Hillberg A. Brain K. Allender C. Molecular imprinted polymer sensors: Implications for therapeutics. Adv. Drug Deliv. Rev. 2005 57 12 1875 1889 10.1016/j.addr.2005.07.016 16257082
    [Google Scholar]
  46. Feng L. Liu Y. Zhou X. Hu J. The fabrication and characterization of a formaldehyde odor sensor using molecularly imprinted polymers. J. Colloid Interface Sci. 2005 284 2 378 382 10.1016/j.jcis.2004.10.054 15780272
    [Google Scholar]
  47. Xue X. Wei Q. Wu D. Li H. Zhang Y. Feng R. Du B. Determination of methyl parathion by a molecularly imprinted sensor based on nitrogen doped graphene sheets. Electrochim. Acta 2014 116 366 371 10.1016/j.electacta.2013.11.075
    [Google Scholar]
  48. Pei Q. Yu G. Zhang C. Heeger A.J. Yang Y. Franz Dickert B.L. Molecularly imprinted polymers for optochemical sensors. Adv. Mater. 1996 8 12 987 990 10.1002/adma.19960081209
    [Google Scholar]
  49. Dickert F.L. Tortschanoff M. Bulst W.E. Fischerauer G. Molecularly imprinted sensor layers for the detection of polycyclic aromatic hydrocarbons in water. Anal. Chem. 1999 71 20 4559 4563 10.1021/ac990513s
    [Google Scholar]
  50. Zhang Z. Li P. Hu X. Zhang Q. Ding X. Zhang W. Microarray technology for major chemical contaminants analysis in food: Current status and prospects. Sensors 2012 12 7 9234 9252 10.3390/s120709234 23012541
    [Google Scholar]
  51. Vo-Dinh T. Biosensors, nanosensors and biochips: Frontiers in environmental and medical diagnostics. Proceedings of the first international symposium on micro and nano technology Hawaii 2004 1 6
    [Google Scholar]
  52. Mishra R.K. Deshpande K. Bhand S. A high-throughput enzyme assay for organophosphate residues in milk. Sensors 2010 10 12 11274 11286 10.3390/s101211274 22163525
    [Google Scholar]
  53. Li Y. Ma X. Zhao M. Qi P. Zhong J. Quick and label-free detection for Coumaphos by using surface plasmon resonance biochip. PLoS One 2014 9 8 e104689 10.1371/journal.pone.0104689 25122502
    [Google Scholar]
  54. Pan B. Cui D. Xu P. Li Q. Huang T. He R. Gao F. Study on interaction between gold nanorod and bovine serum albumin. Colloids Surf. A Physicochem. Eng. Asp. 2007 295 1-3 217 222 10.1016/j.colsurfa.2006.09.002
    [Google Scholar]
  55. Cui D. Advances and prospects on biomolecules functionalized carbon nanotubes. J. Nanosci. Nanotechnol. 2007 7 4 1298 1314 10.1166/jnn.2007.654 17450892
    [Google Scholar]
  56. You X. He R. Gao F. Shao J. Pan B. Cui D. Hydrophilic high-luminescent magnetic nanocomposites. Nanotechnology 2007 18 3 035701 10.1088/0957‑4484/18/3/035701 19636132
    [Google Scholar]
  57. Lin T.J. Huang K.T. Liu C.Y. Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance. Biosens. Bioelectron. 2006 22 4 513 518 10.1016/j.bios.2006.05.007 16769211
    [Google Scholar]
  58. Sun X. Liu B. Xia K. A sensitive and regenerable biosensor for organophosphate pesticide based on self‐assembled multilayer film with CdTe as fluorescence probe. Luminescence 2011 26 6 616 621 10.1002/bio.1284 21567885
    [Google Scholar]
  59. Wang J. Carbon-nanotube based electrochemical biosensors: A review. Electroanalysis 2005 17 1 7 14 10.1002/elan.200403113
    [Google Scholar]
  60. Zhang X. Guo Q. Cui D. Recent advances in nanotechnology applied to biosensors. Sensors 2009 9 2 1033 1053 10.3390/s90201033 22399954
    [Google Scholar]
  61. Du D. Huang X. Cai J. Zhang A. Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosens. Bioelectron. 2007 23 2 285 289 10.1016/j.bios.2007.05.002 17590326
    [Google Scholar]
  62. Firdoz S. Ma F. Yue X. Dai Z. Kumar A. Jiang B. A novel amperometric biosensor based on single walled carbon nanotubes with acetylcholine esterase for the detection of carbaryl pesticide in water. Talanta 2010 83 1 269 273 10.1016/j.talanta.2010.09.028 21035674
    [Google Scholar]
  63. Oliveira A.C. Mascaro L.H. Evaluation of acetylcholinesterase biosensor based on carbon nanotube paste in the determination of chlorphenvinphos. Int. J. Anal. Chem. 2011 2011 1 6 10.1155/2011/974216 21647289
    [Google Scholar]
  64. Qu Y. Sun Q. Xiao F. Shi G. Jin L. Layer-by-Layer self-assembled acetylcholinesterase/PAMAM-Au on CNTs modified electrode for sensing pesticides. Bioelectrochemistry 2010 77 2 139 144 10.1016/j.bioelechem.2009.08.001 19733130
    [Google Scholar]
  65. Choi H.K. Yoon J. Nanotechnology-assisted biosensors for the detection of viral nucleic acids: An overview. Biosensors 2023 13 2 208 10.3390/bios13020208 36831973
    [Google Scholar]
  66. Haigh-Flórez D. de la Hera C. Costas E. Orellana G. Microalgae dual-head biosensors for selective detection of herbicides with fiber-optic luminescent O2 transduction. Biosens. Bioelectron. 2014 54 484 491 10.1016/j.bios.2013.10.062 24316451
    [Google Scholar]
  67. Teo S. Wong L.S. Whole cell-based biosensors for environmental heavy metals detection. Annu. Res. Rev. Biol. 2014 4 17 2663 2674 10.9734/ARRB/2014/9472
    [Google Scholar]
  68. Arip M.N.M. Heng L.Y. Ahmad M. Ujang S. A cell-based potentiometric biosensor using the Fungus lentinus sajor-caju for permethrin determination in treated wood. Talanta 2013 116 776 781 10.1016/j.talanta.2013.07.065 24148473
    [Google Scholar]
  69. Christopher F.C. Kumar P.S. Christopher F.J. Joshiba G.J. Madhesh P. Recent advancements in rapid analysis of pesticides using nano biosensors: A present and future perspective. J. Clean. Prod. 2020 269 122356 10.1016/j.jclepro.2020.122356
    [Google Scholar]
  70. García E. García A. Barbas C. Validated HPLC method for quantifying permethrin in pharmaceutical formulations. J. Pharm. Biomed. Anal. 2001 24 5-6 999 1004 10.1016/S0731‑7085(00)00544‑6 11248494
    [Google Scholar]
  71. Soderlund D.M. Bloomquist J.R. Neurotoxic actions of pyrethroid insecticides. Annu. Rev. Entomol. 1989 34 1 77 96 10.1146/annurev.en.34.010189.000453 2539040
    [Google Scholar]
  72. Bonwick G. Sunb C. Abdul-Latifb P. Baughb P. Smith C. Armitaged R. Determination of several pesticides with a chemical ionization ion trap mass spectrometer. J. Chromatogr. A 1995 707 2 293 302 10.1016/0021‑9673(95)00362‑Q
    [Google Scholar]
  73. McLeese D.W. Metcalfe C.D. Toxicities of eight organochlorine compounds in sediment and seawater to Crangon septemspinosa. Bull. Environ. Contam. Toxicol. 1980 25 1 921 928 10.1007/BF01985632 7470670
    [Google Scholar]
  74. Solanki P.R. Prabhakar N. Pandey M.K. Malhotra B.D. Self-assembled monolayer for toxicant detection using nucleic acid sensor based on surface plasmon resonance technique. Biomed. Microdevices 2008 10 5 757 767 10.1007/s10544‑008‑9188‑1 18574694
    [Google Scholar]
  75. Solanki P.R. Prabhakar N. Pandey M.K. Malhotra B.D. Nucleic acid sensor for insecticide detection. J. Mol. Recognit. 2008 21 4 217 223 10.1002/jmr.888 18446886
    [Google Scholar]
  76. Hollis R.P. Killham K. Glover L.A. Design and application of a biosensor for monitoring toxicity of compounds to eukaryotes. Appl. Environ. Microbiol. 2000 66 4 1676 1679 10.1128/AEM.66.4.1676‑1679.2000 10742259
    [Google Scholar]
  77. Leth S. Maltoni S. Simkus R. Mattiasson B. Corbisier P. Klimant I. Wolfbeis O.S. Csöregi E. Engineered bacteria-based biosensors for monitoring bioavailable heavy metals. Electroanalysis 2002 14 1 35 42 10.1002/1521‑4109(200201)14:1<35:AID‑ELAN35>3.0.CO;2‑W
    [Google Scholar]
  78. Elsevier T. Campanella L. Favero G. Tomassetti M. Immobilised yeast cells biosensor for total toxicity testing. Sci. Total Environ 1995 171 1-3 227 234 10.1016/0048‑9697(95)04673‑0 7481749
    [Google Scholar]
  79. Rodriguez-Mozaz S. Marco M-P. Lopez De Alda M.J. Barceló D. Biosensors for environmental applications: Future development trends. Pure Appl. Chem. 2004 76 4 723 752 10.1351/pac200476040723
    [Google Scholar]
  80. Antonacci A. Scognamiglio V. Biotechnological advances in the design of algae-based biosensors. Trends Biotechnol. 2020 38 3 334 347 10.1016/j.tibtech.2019.10.005 31706693
    [Google Scholar]
  81. Singh U.B. Ahluwalia A.S. Microalgae: A promising tool for carbon sequestration. Mitig. Adapt. Strategies Glob. Change 2013 18 1 73 95 10.1007/s11027‑012‑9393‑3
    [Google Scholar]
  82. Tripathi S. Poluri K.M. Heavy metal detoxification mechanisms by microalgae: Insights from transcriptomics analysis. Environ. Pollut. 2021 285 117443 10.1016/j.envpol.2021.117443 34090077
    [Google Scholar]
  83. Durrieu C. Tran-Minh C. Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol. Environ. Saf. 2002 51 3 206 209 10.1006/eesa.2001.2140 11971642
    [Google Scholar]
  84. Nunes G.S. Lins J.A.P. Silva F.G.S. Araujo L.C. Silva F.E.P.S. Mendonça C.D. Badea M. Hayat A. Marty J.L. Design of a macroalgae amperometric biosensor; Application to the rapid monitoring of organophosphate insecticides in an agroecosystem. Chemosphere 2014 111 623 630 10.1016/j.chemosphere.2014.05.028 24997974
    [Google Scholar]
  85. Wong L.S. Judge S.K. Voon B.W.N. Tee L.J. Tan K.Y. Murti M. Chai M.K. Bioluminescent microalgae-based biosensor for metal detection in water. IEEE Sens. J. 2018 18 5 2091 2096 10.1109/JSEN.2017.2787786
    [Google Scholar]
  86. Chouler J. Monti M.D. Morgan W.J. Cameron P.J. Di Lorenzo M. A photosynthetic toxicity biosensor for water. Electrochim. Acta 2019 309 392 401 10.1016/j.electacta.2019.04.061
    [Google Scholar]
  87. Huang C.W. Lin C. Nguyen M.K. Hussain A. Bui X.T. Ngo H.H. A review of biosensor for environmental monitoring: principle, application, and corresponding achievement of sustainable development goals. Bioengineered 2023 14 1 58 80 10.1080/21655979.2022.2095089 37377408
    [Google Scholar]
  88. Beamish F.E. Westland A.D. Inorganic gravimetric and volumetric analysis. Anal. Chem. 1956 28 4 694 705 10.1021/ac60112a019
    [Google Scholar]
  89. Ellis Y.C.M. Vogel A.I. Studies on hypovanadous salts as analytical reagents. Analyst 1956 81 969 693 703 10.1039/AN9568100693
    [Google Scholar]
  90. Amaral D.S.D. Tholozan L.V. Bonemann D.H. Jansen-Alves C. Boschetti W. La Rosa Novo D. Algal biosensors for detection of potentially toxic pollutants and validation by advanced methods: A brief review. Chemosensors 2024 12 11 235 [https://doi.org/10.3390/chemosensors12110235
    [Google Scholar]
  91. Spain O. Plöhn M. Funk C. The cell wall of green microalgae and its role in heavy metal removal. Physiol. Plant. 2021 173 2 526 535 10.1111/ppl.13405 33764544
    [Google Scholar]
  92. Nie J. Sun Y. Zhou Y. Kumar M. Usman M. Li J. Shao J. Wang L. Tsang D.C.W. Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Sci. Total Environ. 2020 707 136080 10.1016/j.scitotenv.2019.136080 31869621
    [Google Scholar]
  93. Kulshreshtha N.M. Shrivastava D. Bisen P.S. Contaminant sensors: Nanotechnology-based contaminant sensors Nanobiosensors. Elsevier 2016 573 628 10.1016/B978‑0‑12‑804301‑1.00014‑X
    [Google Scholar]
  94. Zhang J. Zhang X. Yang G. Chen J. Wang S. A signal-on fluorescent aptasensor based on Tb3+ and structure-switching aptamer for label-free detection of Ochratoxin A in wheat. Biosens. Bioelectron. 2013 41 704 709 10.1016/j.bios.2012.09.053 23089328
    [Google Scholar]
  95. Verdian A. Apta-nanosensors for detection and quantitative determination of acetamiprid - A pesticide residue in food and environment. Talanta 2018 176 456 464 10.1016/j.talanta.2017.08.070 28917776
    [Google Scholar]
  96. Hamula C.L.A. Zhang H. Li F. Wang Z. Chris Le X. Li X.F. Selection and analytical applications of aptamers binding microbial pathogens. Trends Analyt. Chem. 2011 30 10 1587 1597 10.1016/j.trac.2011.08.006 32287535
    [Google Scholar]
  97. Na W. Liu X. Wang L. Su X. Label-free aptamer biosensor for selective detection of thrombin. Anal. Chim. Acta 2015 899 85 90 10.1016/j.aca.2015.09.051 26547496
    [Google Scholar]
  98. Li F. Yu Z. Han X. Lai R.Y. Electrochemical aptamer-based sensors for food and water analysis: A review. Anal. Chim. Acta 2019 1051 1 23 10.1016/j.aca.2018.10.058 30661605
    [Google Scholar]
  99. Mairal T. Nadal P. Svobodova M. O’Sullivan C.K. FRET-based dimeric aptamer probe for selective and sensitive Lup an 1 allergen detection. Biosens. Bioelectron. 2014 54 207 210 10.1016/j.bios.2013.10.070 24280051
    [Google Scholar]
  100. Duan N. Wu S. Dai S. Gu H. Hao L. Ye H. Wang Z. Advances in aptasensors for the detection of food contaminants. Analyst 2016 141 13 3942 3961 10.1039/C6AN00952B 27265444
    [Google Scholar]
  101. Madianos L. Skotadis E. Tsekenis G. Patsiouras L. Tsigkourakos M. Tsoukalas D. Impedimetric nanoparticle aptasensor for selective and label free pesticide detection. Microelectron. Eng. 2018 189 39 45 10.1016/j.mee.2017.12.016
    [Google Scholar]
  102. Fei A. Liu Q. Huan J. Qian J. Dong X. Qiu B. Mao H. Wang K. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens. Bioelectron. 2015 70 122 129 10.1016/j.bios.2015.03.028 25797851
    [Google Scholar]
  103. Hu W. Chen Q. Li H. Ouyang Q. Zhao J. Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4: Yb, Ho@SiO2 and Au nanoparticles. Biosens. Bioelectron. 2016 80 398 404 10.1016/j.bios.2016.02.001 26874106
    [Google Scholar]
  104. Zhang C. Wang L. Tu Z. Sun X. He Q. Lei Z. Xu C. Liu Y. Zhang X. Yang J. Liu X. Xu Y. Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay. Biosens. Bioelectron. 2014 55 216 219 10.1016/j.bios.2013.12.020 24384262
    [Google Scholar]
  105. Arvand M. Mirroshandel A.A. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l -cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide. Biosens. Bioelectron. 2017 96 324 331 10.1016/j.bios.2017.05.028 28525850
    [Google Scholar]
  106. Bala R. Swami A. Tabujew I. Peneva K. Wangoo N. Sharma R.K. Ultra-sensitive detection of malathion using quantum dots-polymer based fluorescence aptasensor. Biosens. Bioelectron. 2018 104 45 49 10.1016/j.bios.2017.12.034 29306032
    [Google Scholar]
  107. Dou X. Chu X. Kong W. Luo J. Yang M. A gold-based nanobeacon probe for fluorescence sensing of organophosphorus pesticides. Anal. Chim. Acta 2015 891 291 297 10.1016/j.aca.2015.08.012 26388389
    [Google Scholar]
  108. Qi Y. Xiu F.R. Zheng M. Li B. A simple and rapid chemiluminescence aptasensor for acetamiprid in contaminated samples: Sensitivity, selectivity and mechanism. Biosens. Bioelectron. 2016 83 243 249 10.1016/j.bios.2016.04.074 27131997
    [Google Scholar]
  109. Andreou V.G. Clonis Y.D. A portable fiber-optic pesticide biosensor based on immobilized cholinesterase and sol-gel entrapped bromcresol purple for in-field use. Biosens. Bioelectron. 2002 17 1-2 61 69 10.1016/S0956‑5663(01)00261‑5 11742736
    [Google Scholar]
  110. Barry R.C. Lin Y. Wang J. Liu G. Timchalk C.A. Nanotechnology-based electrochemical sensors for biomonitoring chemical exposures. J. Expo. Sci. Environ. Epidemiol. 2009 19 1 1 18 10.1038/jes.2008.71 19018275
    [Google Scholar]
  111. Dey M. Bhuvanagayathri R. Daniel D.K. Biosensor based on butyrylcholinesterase for detection of carbofuran. J. Inst. Eng. India Ser. E 2015 96 1 9 14 10.1007/s40034‑015‑0060‑6
    [Google Scholar]
  112. Pedrosa V.A. Caetano J. Machado S.A.S. Bertotti M. Determination of parathion and carbaryl pesticides in water and food samples using a self assembled monolayer /acetylcholinesterase electrochemical biosensor. Sensors 2008 8 8 4600 4610 10.3390/s8084600 27873775
    [Google Scholar]
  113. Arain M. Brohi K.M. Channa A. Brohi R.O.Z. Mushtaque S. Kumar K. Samuee A. Analysis of chlorpyrifos pesticide residues in surface water, ground water and vegetables through gas chromatography. J. Int. Environ. Appl. Sci. 2018 13 3 167 173
    [Google Scholar]
  114. Tseng S.H. Lo Y.W. Chang P.C. Chou S.S. Chang H.M. Simultaneous quantification of glyphosate, glufosinate, and their major metabolites in rice and soybean sprouts by gas chromatography with pulsed flame photometric detector. J. Agric. Food Chem. 2004 52 13 4057 4063 10.1021/jf049973z 15212448
    [Google Scholar]
  115. Bezerra D.S.S. Silva M.M.S. Carvalho P.H.V. Aquino A. Navickiene S. MSPD procedure combined with GC-MS for the determination of procymidone, bifenthrin, malathion and pirimicarb in honey. Quim. Nova 2010 33 6 1348 1351 10.1590/S0100‑40422010000600024
    [Google Scholar]
  116. Velkoska-Markovska L. Petanovska-Ilievska B. Determination of malathion in pesticide formulation by high-performance liquid chromatography. Agric For. 2020 66 4 171 181 10.17707/AgricultForest.66.4.14
    [Google Scholar]
  117. Shuja A. Shafi H. Abid A.I. Iqbal M.M. Khatak M.S. Determination of pesticide residues using quechers extraction with inert GC-MSD analytical technique and application on seasonal fruits and vegetables in Pakistan. OAlib 2022 9 3 1 13 10.4236/oalib.1108499
    [Google Scholar]
  118. Thorat T. Patle B.K. Wakchaure M. Parihar L. Advancements in techniques used for identification of pesticide residue on crops. J. Nat. Pest. Res. 2023 4 100031 10.1016/j.napere.2023.100031
    [Google Scholar]
/content/journals/coc/10.2174/0113852728404845251024092405
Loading
/content/journals/coc/10.2174/0113852728404845251024092405
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test