Skip to content
2000
image of A Brief Review on Reductive Cleavage of Protecting Groups by Acid and Triethylsilane#

Abstract

Total synthesis of complex molecules, natural products, and drugs involves a series of chemical reactions from simpler starting materials by using various reagents and catalysts. This process requires appropriate reaction pathways, protection of functional groups, and management of stereochemistry. This review encompasses the regioselective reductive cleavage of various protecting groups, including trityl, monomethoxytrityl, dimethoxytrityl, diphenylmethyl, para-methoxybenzyl, dimethoxybenzyl, tert-butyl ester, tert-butoxycarbonyl, and many other functional groups, using trifluoroacetic acid/other acids, as well as triethylsilane. Furthermore, it covers selectivity in the deprotection of various protective groups over the reduction/ hydrogenolysis of other functional groups, such as alkenes, benzyl esters, and Cbz groups. In this brief article, we have examined the applications of acid and triethylsilane for the cleavage of various protecting groups and the scope of the reaction conditions.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728404819251110073007
2026-01-15
2026-01-31
Loading full text...

Full text loading...

References

  1. Nicolaou K.C. Chen J.S. The art of total synthesis through cascade reactions. Chem. Soc. Rev. 2009 38 11 2993 3009 10.1039/b903290h 19847336
    [Google Scholar]
  2. Nicolaou K.C. Hale C.R.H. The endeavor of total synthesis and its impact on chemistry, biology and medicine. Natl. Sci. Rev. 2014 1 2 233 252 10.1093/nsr/nwu001
    [Google Scholar]
  3. Nicolaou K.C. Rigol S. Perspectives from nearly five decades of total synthesis of natural products and their analogues for biology and medicine. Nat. Prod. Rep. 2020 37 11 1404 1435 10.1039/D0NP00003E 32319494
    [Google Scholar]
  4. Greene T.W. Wuts P.G.M. Protecting groups in organic synthesis. 3rd ed New York John Wiley and Sons 1999 10.1002/0471220574
    [Google Scholar]
  5. Wuts P.G.M. In greene’s protective groups in organic synthesis. 6th ed John Wiley & Sons, Inc. 2025 10.1002/9781394233199
    [Google Scholar]
  6. Kocienski P.J. Protecting groups. 3rd ed Stuttgart Georg Thieme 2004
    [Google Scholar]
  7. Orain D. Ellard J. Bradley M. Protecting groups in solid-phase organic synthesis. J. Comb. Chem. 2002 4 1 1 16 10.1021/cc0001093 11790135
    [Google Scholar]
  8. Schelhaas M. Waldmann H. Protective group strategies in organic synthesis. Angew. Chem. Int. Ed. Engl. 1996 35 18 2056 2083 10.1002/anie.199620561
    [Google Scholar]
  9. a Isidro-Llobet A. Álvarez M. Albericio F. Amino acid-protecting groups. Chem. Rev. 2009 109 6 2455 2504 10.1021/cr800323s 19364121
    [Google Scholar]
  10. b Sartori G. Ballini R. Bigi F. Bosica G. Maggi R. Righi P. Protection (and deprotection) of functional groups in organic synthesis by heterogeneous catalysis. Chem. Rev. 2004 104 1 199 250 10.1021/cr0200769 14719975
    [Google Scholar]
  11. Bhumkar V.G. Kamble S.B. Jagtap R.M. Arbuj S.S. Sakate S.S. Facile and highly selective deprotection of aryl propionates/acetates using a supported Lewis acid catalyst (20% InCl 3 /MCM-41). ACS Omega 2024 9 51 50269 50280 10.1021/acsomega.4c06271 39741847
    [Google Scholar]
  12. Kishore Kumar G.D. Baskaran S. A facile, catalytic, and environmentally benign method for selective deprotection of tert -butyldimethylsilyl ether mediated by phosphomolybdic acid supported on silica gel. J. Org. Chem. 2005 70 11 4520 4523 10.1021/jo0502697 15903337
    [Google Scholar]
  13. Lohr T.L. Li Z. Assary R.S. Curtiss L.A. Marks T.J. Thermodynamically leveraged tandem catalysis for ester RC(O)O-R′ bond hydrogenolysis. Scope and mechanism. ACS Catal. 2015 5 6 3675 3679 10.1021/acscatal.5b00950
    [Google Scholar]
  14. Kore R. Srivastava R. Satpati B. Highly efficient nanocrystalline zirconosilicate catalysts for the aminolysis, alcoholysis, and hydroamination reactions. ACS Catal. 2013 3 12 2891 2904 10.1021/cs400732f
    [Google Scholar]
  15. López S.E. Salazar J. Trifluoroacetic acid: Uses and recent applications in organic synthesis. J. Fluor. Chem. 2013 156 73 100 10.1016/j.jfluchem.2013.09.004
    [Google Scholar]
  16. Alam M.M. Varala R. Seema V. A decennial update on the applications of trifluroacetic acid. Mini Rev. Org. Chem. 2024 21 4 455 470 10.2174/1570193X20666230511121812
    [Google Scholar]
  17. Soural M. Ručilová V. Recent advances in the applications of triethylsilane in organic synthesis. Synthesis 2018 50 19 3809 3824 10.1055/s‑0037‑1610107
    [Google Scholar]
  18. Kursanov D.N. Parnes Z.N. Loim N.M. Applications of ionic hydrogenation to organic synthesis. Synthesis 1974 1974 9 633 651 10.1055/s‑1974‑23387
    [Google Scholar]
  19. Humphrey J.M. Arnold E.P. Chappie T.A. Feltenberger J.B. Nagel A. Simon W. Suarez-Contreras M. Tom N.J. O’Neill B.T. Diastereoselective synthesis of 2,3,6-trisubstituted piperidines. J. Org. Chem. 2009 74 12 4525 4536 10.1021/jo9003184 19441779
    [Google Scholar]
  20. Shingate B.B. Hazra B.G. Pore V.S. Gonnade R.G. Bhadbhade M.M. Ionic hydrogenation of C-20, 22-ketene dithioacetal: Stereoselective synthesis of steroidal C (20 R ) aldehydes. Chem. Commun.) 2004 19 2194 2195 10.1039/b407952c 15467868
    [Google Scholar]
  21. Kumaragurubaran N. Juhl K. Zhuang W. Bøgevig A. Jørgensen K.A. Direct L-proline-catalyzed asymmetric alpha-amination of ketones. J. Am. Chem. Soc. 2002 124 22 6254 6255 10.1021/ja026412k 12033850
    [Google Scholar]
  22. Schmidt A. Boland W. General strategy for the synthesis of B 1 phytoprostanes, dinor isoprostanes, and analogs. J. Org. Chem. 2007 72 5 1699 1706 10.1021/jo062359x 17286439
    [Google Scholar]
  23. Bénardeau A. Benz J. Binggeli A. Blum D. Boehringer M. Grether U. Hilpert H. Kuhn B. Märki H.P. Meyer M. Püntener K. Raab S. Ruf A. Schlatter D. Mohr P. Aleglitazar, a new, potent, and balanced dual PPARα/γ agonist for the treatment of type II diabetes. Bioorg. Med. Chem. Lett. 2009 19 9 2468 2473 10.1016/j.bmcl.2009.03.036 19349176
    [Google Scholar]
  24. Shingate B.B. Hazra B.G. Pore V.S. Gonnade R.G. Bhadbhade M.M. Stereoselective syntheses of unnatural steroidal C(20 R ) aldehydes by ionic hydrogenation of C-20 tertiary alcohols. Tetrahedron Lett. 2006 47 52 9343 9347 10.1016/j.tetlet.2006.10.116
    [Google Scholar]
  25. Shingate B.B. Hazra B.G. Pore V.S. Gonnade R.G. Bhadbhade M.M. Stereoselective syntheses of 20- epi cholanic acid derivatives from 16-dehydropregnenolone acetate. Tetrahedron 2007 63 25 5622 5635 10.1016/j.tet.2007.04.014
    [Google Scholar]
  26. Shingate B.B. Hazra B.G. Ionic hydrogenation-directed stereoselective construction of C-20( H ) stereogenic center in steroid side chains: Scope and limitations. Tetrahedron 2017 73 17 2396 2414 10.1016/j.tet.2017.03.029
    [Google Scholar]
  27. Soloshonok V.A. Ueki H. Tiwari R. Cai C. Hruby V.J. Virtually complete control of simple and face diastereoselectivity in the Michael addition reactions between achiral equivalents of a nucleophilic glycine and ( S )- or ( R )-3-( E -enoyl)-4-phenyl-1,3-oxazolidin-2-ones: Practical method for preparation of β-substituted pyroglutamic acids and prolines. J. Org. Chem. 2004 69 15 4984 4990 10.1021/jo0495438 15255725
    [Google Scholar]
  28. Brimble M.A. Davey R.M. McLeod M.D. Murphy M. Synthesis of 3-azido-2,3,6-trideoxy-β- d -arabino-hexopyranosyl pyranonaphthoquinone analogues of medermycin. Org. Biomol. Chem. 2003 1 10 1690 1700 10.1039/B301449P 12926356
    [Google Scholar]
  29. Rathwell K. Sperry J. Brimble M.A. Synthesis of triazole analogues of the nanaomycin antibiotics using ‘click chemistry’. Tetrahedron 2010 66 23 4002 4009 10.1016/j.tet.2010.04.048
    [Google Scholar]
  30. Liu T Wang X Yin D Recent progress towards ionic hydrogenation: Lewis acid catalyzed hydrogenation using organosilanes as donors of hydride ions. RSC Adv 2015 5 75794 75805
    [Google Scholar]
  31. Bullock R.M. Catalytic ionic hydrogenations. Chemistry 2004 10 10 2366 2374 10.1002/chem.200305639 15146510
    [Google Scholar]
  32. Augustine J. Naik Y. Mandal A. Alagarsamy P. Akabote V. Novel and highly regioselective Friedel-Crafts alkylation of 3,5-dimethoxyaniline using an aldehyde and triethylsilane as reducing agent. Synlett 2008 2008 16 2429 2432 10.1055/s‑2008‑1078207
    [Google Scholar]
  33. Mahadevan A. Sard H. Gonzalez M. McKew J.C. A general method for C 3 reductive alkylation of indoles. Tetrahedron Lett. 2003 44 24 4589 4591 10.1016/S0040‑4039(03)01010‑4
    [Google Scholar]
  34. Baskaran S. Hanan E. Byun D. Shen W. A facile reduction of 2-aminopyrimidines with triethylsilane and trifluoroacetic acid. Tetrahedron Lett. 2004 45 10 2107 2111 10.1016/j.tetlet.2004.01.056
    [Google Scholar]
  35. Chen B.C. Sundeen J.E. Guo P. Bednarz M.S. Zhao R. Novel triethylsilane mediated reductive N -alkylation of amines: Improved synthesis of 1-(4-imidazolyl)methyl-4-sulfonylbenzodiazepines, new farnesyltransferase inhibitors. Tetrahedron Lett. 2001 42 7 1245 1246 10.1016/S0040‑4039(00)02257‑7
    [Google Scholar]
  36. Jones G.B. Hynd G. Wright J.M. Sharma A. On the selective deprotection of trityl ethers. J. Org. Chem. 2000 65 1 263 265 10.1021/jo9913255 10813927
    [Google Scholar]
  37. Rele S. Nayak S.K. Low-valent titanium mediated reductive cleavage of O / N -trityl bonds via free radical pathway. Synth. Commun. 2002 32 22 3533 3540 10.1081/SCC‑120014795
    [Google Scholar]
  38. Hwu J.R. Jain M.L. Tsai F.Y. Tsay S.C. Balakumar A. Hakimelahi G.H. Ceric ammonium nitrate on silica gel for efficient and selective removal of trityl and silyl groups. J. Org. Chem. 2000 65 17 5077 5088 10.1021/jo000024o 10993330
    [Google Scholar]
  39. Pathak A.K. Pathak V. Seitz L.E. Tiwari K.N. Akhtar M.S. Reynolds R.C. A facile method for deprotection of trityl ethers using column chromatography. Tetrahedron Lett. 2001 42 44 7755 7757 10.1016/S0040‑4039(01)01645‑8
    [Google Scholar]
  40. Sabitha G. Venkata Reddy E. Swapna R. Mallikarjun Reddy N. Yadav J.S. Bismuth(III) chloride catalyzed efficient and selective cleavage of trityl ethers. Synlett 2004 7 1276 1278 10.1055/s‑2004‑825602
    [Google Scholar]
  41. Das B. Srinivas K.V.N.S. Conversion of berberine into berberrubine by selective demethylation under microwave irradiation. Synth. Commun. 2002 32 19 3027 3029 10.1081/SCC‑120012993
    [Google Scholar]
  42. Imagawa H. Tsuchihashi T. Singh R.K. Yamamoto H. Sugihara T. Nishizawa M. Triethyl- (or trimethyl-)silyl triflate-catalyzed reductive cleavage of triphenylmethyl (trityl) ethers with triethylsilane. Org. Lett. 2003 5 2 153 155 10.1021/ol0271988 12529128
    [Google Scholar]
  43. Pfeifer J.R. Reiß P. Koert U. Crown ether-gramicidin hybrid ion channels: Dehydration-assisted ion selectivity. Angew. Chem. Int. Ed. 2006 45 3 501 504 10.1002/anie.200502570 16342124
    [Google Scholar]
  44. Bindschädler P. Adibekian A. Grünstein D. Seeberger P.H. De novo synthesis of differentially protected l-iduronic acid glycosylating agents. Carbohydr. Res. 2010 345 7 948 955 10.1016/j.carres.2010.02.004 20193949
    [Google Scholar]
  45. Pearson D.A. Blanchette M. Baker M.L. Guindon C.A. Trialkylsilanes as scavengers for the trifluoroacetic acid deblocking of protecting groups in peptide synthesis. Tetrahedron Lett. 1989 30 21 2739 2742 10.1016/S0040‑4039(00)99113‑5
    [Google Scholar]
  46. Harding R.L. Henshaw J. Tilling J. Bugg T.D.H. Thioester analogues of peptidoglycan fragment MurNAc-L-Ala-γ-D-Glu as substrates for peptidoglycan hydrolase MurNAc-L-Ala amidase. J. Chem. Soc., Perkin Trans. 1 2002 14 14 1714 1722 10.1039/b200921h
    [Google Scholar]
  47. Lin K.S. Debnath M.L. Mathis C.A. Klunk W.E. Synthesis and β-amyloid binding properties of rhenium 2-phenylbenzothiazoles. Bioorg. Med. Chem. Lett. 2009 19 8 2258 2262 10.1016/j.bmcl.2009.02.096 19285394
    [Google Scholar]
  48. Mignani S. Aszodi J. Babin D. Liutkus M. Bedel O. Synthesis of new macromolecular, functionalized carboxylic-acid–PEG–DHLA surface ligands. Tetrahedron Lett. 2010 51 41 5364 5367 10.1016/j.tetlet.2010.07.118
    [Google Scholar]
  49. Sidoryk K. Michalak O. Kubiszewski M. Leś A. Cybulski M. Stolarczyk E.U. Doubsky J. Synthesis of thiol derivatives of biological active compounds for nanotechnology application. Molecules 2020 25 15 3470 10.3390/molecules25153470 32751592
    [Google Scholar]
  50. Vedejs E. Klapars A. Warner D.L. Weiss A.H. Reductive deprotection of N -tritylaziridines. J. Org. Chem. 2001 66 22 7542 7546 10.1021/jo0106243 11681978
    [Google Scholar]
  51. Peng H. Carrico D. Thai V. Blaskovich M. Bucher C. Pusateri E.E. Sebti S.M. Hamilton A.D. Synthesis and evaluation of potent, highly-selective, 3-aryl-piperazinone inhibitors of protein geranylgeranyltransferase-I. Org. Biomol. Chem. 2006 4 9 1768 1784 10.1039/b517572k 16633570
    [Google Scholar]
  52. Bornholdt J. Felding J. Kristensen J.L. Synthesis of enantiopure 3-substituted morpholines. J. Org. Chem. 2010 75 21 7454 7457 10.1021/jo101339g 20879782
    [Google Scholar]
  53. Vedejs E. Little J. Aziridinomitosenes by anionic cyclization: Deuterium as a removable blocking group. J. Am. Chem. Soc. 2002 124 5 748 749 10.1021/ja0120835 11817939
    [Google Scholar]
  54. Chen L. Petrelli R. Gao G. Wilson D.J. McLean G.T. Jayaram H.N. Sham Y.Y. Pankiewicz K.W. Dual inhibitors of inosine monophosphate dehydrogenase and histone deacetylase based on a cinnamic hydroxamic acid core structure. Bioorg. Med. Chem. 2010 18 16 5950 5964 10.1016/j.bmc.2010.06.081 20650640
    [Google Scholar]
  55. Xu Q. Katkevica D. Rozners E. Toward amide-modified RNA: Synthesis of 3′-aminomethyl-5′-carboxy-3′,5′-dideoxy nucleosides. J. Org. Chem. 2006 71 16 5906 5913 10.1021/jo060457c 16872171
    [Google Scholar]
  56. Ravikumar V. Krotz A.H. Cole D.L. Efficient synthesis of deoxyribonucleotide phosphorothioates by the use of DMT cation scavenger. Tetrahedron Lett. 1995 36 3 6587 6590 10.1016/0040‑4039(95)01346‑J
    [Google Scholar]
  57. Sampson P.B. Honek J.F. Oxidative deprotection of diphenylmethylamines. Org. Lett. 1999 1 9 1395 1397 10.1021/ol990956i
    [Google Scholar]
  58. Tu J. Sang L. Cheng H. Ai N. Zhang J. Continuous hydrogenolysis of N -diphenylmethyl groups in a micropacked-bed reactor. Org. Process Res. Dev. 2020 24 1 59 66 10.1021/acs.oprd.9b00416
    [Google Scholar]
  59. Saudi M. Aerschot A. A straightforward diphenylmethyl protection method and deprotection of some pyrimidine nucleosides. Molecules 2013 18 7 8524 8534 10.3390/molecules18078524 23873390
    [Google Scholar]
  60. Tang X. Cai T. Wang P.G. Synthesis of beta-Lactamase activated nitric oxide donors. Bioorg. Med. Chem. Lett. 2003 13 10 1687 1690 10.1016/S0960‑894X(03)00242‑7 12729642
    [Google Scholar]
  61. Jin H. Wright M. Pastor R. Mish M. Metobo S. Jabri S. Lansdown R. Cai R. Pyun P. Tsiang M. Chen X. Kim C.U. Tricyclic HIV integrase inhibitors: Potent and orally bioavailable C5-aza analogs. Bioorg. Med. Chem. Lett. 2008 18 4 1388 1391 10.1016/j.bmcl.2008.01.018 18207398
    [Google Scholar]
  62. Jin H. Metobo S. Jabri S. Mish M. Lansdown R. Chen X. Tsiang M. Wright M. Kim C.U. Tricyclic HIV integrase inhibitors V. SAR studies on the benzyl moiety. Bioorg. Med. Chem. Lett. 2009 19 8 2263 2265 10.1016/j.bmcl.2009.02.092 19285389
    [Google Scholar]
  63. Yamagiwa N. Watanuki S. Nishina T. Suto Y. Iwasaki G. Asymmetric synthesis of CP-99,994 by ring-expanding amination of monosubstituted prolinols. Chem. Lett. 2016 45 1 54 56 10.1246/cl.150940
    [Google Scholar]
  64. Yadav JS Subba Reddy BV A mild and selective cleavage of p-methoxybenzyl ethers by CBr4-MeOH. Chem Lett 2000 29 5 566 567 10.1246/cl.2000.566
    [Google Scholar]
  65. Ahn D.K. Kang Y.W. Woo S.K. Oxidative deprotection of p -methoxybenzyl ethers via metal-free photoredox catalysis. J. Org. Chem. 2019 84 6 3612 3623 10.1021/acs.joc.8b02951 30781954
    [Google Scholar]
  66. Walsh K. Sneddon H.F. Moody C.J. Sustainable, mild and efficient p -methoxybenzyl ether deprotections utilizing catalytic DDQ. Tetrahedron 2014 70 40 7380 7387 10.1016/j.tet.2014.07.003
    [Google Scholar]
  67. Barfoot C.W. Brown P. Dabbs S. Davies D.T. Hennessy A.J. Miles T.J. Pearson N.D. The design of efficient and selective routes to pyridyl analogues of 2,3-dihydro-1,4-benzodioxin-6-carbaldehyde. Tetrahedron Lett. 2010 51 38 5038 5040 10.1016/j.tetlet.2010.07.099
    [Google Scholar]
  68. Kitas E.A. Galley G. Jakob-Roetne R. Flohr A. Wostl W. Mauser H. Alker A.M. Czech C. Ozmen L. David-Pierson P. Reinhardt D. Jacobsen H. Substituted 2-oxo-azepane derivatives are potent, orally active γ-secretase inhibitors. Bioorg. Med. Chem. Lett. 2008 18 1 304 308 10.1016/j.bmcl.2007.10.074 17983746
    [Google Scholar]
  69. Sakya S.M. Van Den Berg M. Pouwer K. Humphrey J.M. Helal C.J. O’Donnell C.J. A facile synthesis of 2,3-azaisoindoline. Tetrahedron Lett. 2010 51 45 5859 5860 10.1016/j.tetlet.2010.08.091
    [Google Scholar]
  70. Chen L. Petrelli R. Olesiak M. Wilson D.J. Labello N.P. Pankiewicz K.W. Bis(sulfonamide) isosters of mycophenolic adenine dinucleotide analogues: Inhibition of inosine monophosphate dehydrogenase. Bioorg. Med. Chem. 2008 16 15 7462 7469 10.1016/j.bmc.2008.06.003 18583139
    [Google Scholar]
  71. Mehta A. Jaouhari R. Benson T.J. Douglas K.T. Improved efficiency and selectivity in peptide synthesis: Use of triethylsilane as a carbocation scavenger in deprotection of t -butyl esters and t -butoxycarbonyl-protected sites. Tetrahedron Lett. 1992 33 37 5441 5444 10.1016/S0040‑4039(00)79116‑7
    [Google Scholar]
  72. Deboves H.J.C. Montalbetti C.A.G.N. Jackson R.F.W. Direct synthesis of Fmoc-protected amino acids using organozinc chemistry: Application to polymethoxylated phenylalanines and 4-oxoamino acids. J. Chem. Soc., Perkin Trans. 1 2001 16 1876 1884 10.1039/b103832j
    [Google Scholar]
  73. Aguado G.P. Moglioni A.G. Ortuño R.M. Enantiodivergent synthesis of cyclobutyl-(Z)-α,β-dehydro-α-amino acid derivatives from (−)- cis -pinononic acid. Tetrahedron Asymmetry 2003 14 2 217 223 10.1016/S0957‑4166(02)00749‑8
    [Google Scholar]
  74. Izquierdo S. Rúa F. Sbai A. Parella T. Álvarez-Larena Á. Branchadell V. Ortuño R.M. (+)- and (-)-2-aminocyclobutane-1-carboxylic acids and their incorporation into highly rigid β-peptides: Stereoselective synthesis and a structural study. J. Org. Chem. 2005 70 20 7963 7971 10.1021/jo0510843 16277316
    [Google Scholar]
  75. Dane E.L. Swager T.M. Synthesis of a water-soluble 1,3-bis(diphenylene)-2-phenylallyl radical. J. Org. Chem. 2010 75 10 3533 3536 10.1021/jo100577g 20420445
    [Google Scholar]
  76. Raboisson P. de Kock H. Rosenquist Å. Nilsson M. Salvador-Oden L. Lin T.I. Roue N. Ivanov V. Wähling H. Wickström K. Hamelink E. Edlund M. Vrang L. Vendeville S. Van de Vreken W. McGowan D. Tahri A. Hu L. Boutton C. Lenz O. Delouvroy F. Pille G. Surleraux D. Wigerinck P. Samuelsson B. Simmen K. Structure–activity relationship study on a novel series of cyclopentane-containing macrocyclic inhibitors of the hepatitis C virus NS3/4A protease leading to the discovery of TMC435350. Bioorg. Med. Chem. Lett. 2008 18 17 4853 4858 10.1016/j.bmcl.2008.07.088 18678486
    [Google Scholar]
  77. Aissaoui H. Koberstein R. Zumbrunn C. Gatfield J. Brisbare-Roch C. Jenck F. Treiber A. Boss C. N-Glycine-sulfonamides as potent dual orexin 1/orexin 2 receptor antagonists. Bioorg. Med. Chem. Lett. 2008 18 21 5729 5733 10.1016/j.bmcl.2008.09.079 18845436
    [Google Scholar]
  78. Lange J.H.M. van der Neut M.A.W. Borst A.J.M. Yildirim M. van Stuivenberg H.H. van Vliet B.J. Kruse C.G. Probing the cannabinoid CB 1 /CB 2 receptor subtype selectivity limits of 1,2-diarylimidazole-4-carboxamides by fine-tuning their 5-substitution pattern. Bioorg. Med. Chem. Lett. 2010 20 9 2770 2775 10.1016/j.bmcl.2010.03.068 20363132
    [Google Scholar]
  79. Gutiérrez-Abad R. Illa O. Ortuño R.M. Synthesis of chiral cyclobutane containing C 3 -symmetric peptide dendrimers. Org. Lett. 2010 12 14 3148 3151 10.1021/ol1010664 20545312
    [Google Scholar]
  80. Aaseng J.E. Gautun O.R. Synthesis of substituted ( S )-2-aminotetralins via ring-opening of aziridines prepared from l-aspartic acid β - tert -butyl ester. Tetrahedron 2010 66 46 8982 8991 10.1016/j.tet.2010.09.025
    [Google Scholar]
  81. Li X. Danishefsky S.J. New chemistry with old functional groups: On the reaction of isonitriles with carboxylic acids--a route to various amide types. J. Am. Chem. Soc. 2008 130 16 5446 5448 10.1021/ja800612r 18370392
    [Google Scholar]
  82. Hidasová D. Slanina T. Triarylamminium radical cation facilitates the deprotection of tert -butyl groups in esters, ethers, carbonates, and carbamates. J. Org. Chem. 2023 88 11 6932 6938 10.1021/acs.joc.3c00238 37126731
    [Google Scholar]
  83. Earle M.J. Vibert A. Jahn U. Tris(4-bromophenyl)aminium hexachloroantimonate. Encyclopedia of Reagents for Organic Synthesis John Wiley & Sons, Ltd Chichester, UK 2011 rt397.pub2
    [Google Scholar]
  84. George N Ofori S Parkin S Awuah S Mild deprotection of the N-tert-butyloxycarbonyl (N-Boc) group using oxalyl chloride. RSC Adv 2020 10 24017 24026 10.1039/D0RA04110F
    [Google Scholar]
  85. Procopio D. Siciliano C. De Rose R. Trombino S. Cassano R. Di Gioia M.L. A Brønsted acidic deep eutectic solvent for N -Boc deprotection. Catalysts 2022 12 11 1480 10.3390/catal12111480
    [Google Scholar]
  86. Aggarwal V.K. Humphries P.S. Fenwick A. Enantioselective deprotonation of 4- tert -butylcyclohexanone by conformationally constrained chiral lithium amide bases. J. Chem. Soc., Perkin Trans. 1 1999 20 2883 2889 10.1039/a905947d
    [Google Scholar]
  87. Neres J. Bonnet P. Edwards P.N. Kotian P.L. Buschiazzo A. Alzari P.M. Bryce R.A. Douglas K.T. Benzoic acid and pyridine derivatives as inhibitors of Trypanosoma cruzi trans -sialidase. Bioorg. Med. Chem. 2007 15 5 2106 2119 10.1016/j.bmc.2006.12.024 17218104
    [Google Scholar]
  88. Janetka J.W. Furness M.S. Zhang X. Coop A. Folk J.E. Mattson M.V. Jacobson A.E. Rice K.C. Enantioconvergent synthesis of (-)-( 2R ,5 S )-1-allyl-2,5-dimethylpiperazine, an intermediate to δ-opioid receptor ligands. J. Org. Chem. 2003 68 10 3976 3980 10.1021/jo0300385 12737580
    [Google Scholar]
  89. Torres E. Gorrea E. Silva E.D. Nolis P. Branchadell V. Ortuño R.M. Prevalence of eight-membered hydrogen-bonded rings in some bis(cyclobutane) β-dipeptides including residues with trans stereochemistry. Org. Lett. 2009 11 11 2301 2304 10.1021/ol900636w 19419187
    [Google Scholar]
  90. Le Thanh G. Abbenante G. Adamson G. Becker B. Clark C. Condie G. Falzun T. Grathwohl M. Gupta P. Hanson M. Huynh N. Katavic P. Kuipers K. Lam A. Liu L. Mann M. Mason J. McKeveney D. Muldoon C. Pearson A. Rajaratnam P. Ryan S. Tometzki G. Verquin G. Waanders J. West M. Wilcox N. Wimmer N. Yau A. Zuegg J. Meutermans W. A versatile synthetic approach toward diversity libraries using monosaccharide scaffolds. J. Org. Chem. 2010 75 1 197 203 10.1021/jo9021919 19961235
    [Google Scholar]
  91. Popp T.A. Uhl E. Ong D.N. Dittrich S. Bracher F. A new approach to monoprotected 1,4-benzodiazepines via a one-pot N -deprotection/reductive cyclization procedure. Tetrahedron 2016 72 13 1668 1674 10.1016/j.tet.2016.02.019
    [Google Scholar]
  92. Pickersgill I.F. Rapoport H. Preparation of functionalized, conformationally constrained DTPA analogues from L- or D-serine and trans -4-hydroxy-L-proline. Hydroxymethyl substituents on the central acetic acid and on the backbone. J. Org. Chem. 2000 65 13 4048 4057 10.1021/jo000071g 10866623
    [Google Scholar]
  93. Lee H.Y. Sohn J.H. Kwon B.M. Development of tripeptidyl farnesyltransferase inhibitors. Bioorg. Med. Chem. Lett. 2002 12 12 1599 1602 10.1016/S0960‑894X(02)00227‑5 12039571
    [Google Scholar]
  94. Fischler M. Sologubenko A. Mayer J. Clever G. Burley G. Gierlich J. Carell T. Simon U. Chain-like assembly of gold nanoparticles on artificial DNA templates via ‘click chemistry’. Chem. Commun.) 2008 2 169 171 10.1039/B715602B 18092076
    [Google Scholar]
  95. Ono M. Ikeoka R. Watanabe H. Kimura H. Fuchigami T. Haratake M. Saji H. Nakayama M. 99mTc/Re complexes based on flavone and aurone as SPECT probes for imaging cerebral β -amyloid plaques. Bioorg. Med. Chem. Lett. 2010 20 19 5743 5748 10.1016/j.bmcl.2010.08.004 20797860
    [Google Scholar]
  96. Li P. Evans C.D. Joullié M.M. A convergent total synthesis of ustiloxin D via an unprecedented copper-catalyzed ethynyl aziridine ring-opening by phenol derivatives. Org. Lett. 2005 7 23 5325 5327 10.1021/ol052287g 16268569
    [Google Scholar]
  97. Embrey K.J. Mehta A. Carrington S.J. Jaouhari R. McKIE J.H. Douglas K.T. Use of transferred nuclear‐Overhauser‐effect spectroscopy to measure the bound conformation of a disulphide‐replaced analogue of glutathione disulphide as an inhibitor of yeast glutathione reductase. Eur. J. Biochem. 1994 221 2 793 799 10.1111/j.1432‑1033.1994.tb18793.x 8174559
    [Google Scholar]
  98. Wiedner S.D. Vedejs E. Aziridinomitosanes via lactam cyclization. Org. Lett. 2010 12 18 4030 4033 10.1021/ol101595u 20738104
    [Google Scholar]
  99. Haag T. Hughes R.A. Ritter G. Schmidt R.R. Carbohydrate‐based VEGF inhibitors. Eur. J. Org. Chem. 2007 2007 36 6016 6033 10.1002/ejoc.200700698
    [Google Scholar]
  100. Crich D. Sasaki K. Reaction of thioacids with isocyanates and isothiocyanates: A convenient amide ligation process. Org. Lett. 2009 11 15 3514 3517 10.1021/ol901370y 19719195
    [Google Scholar]
  101. Tazzari V. Cappelletti G. Casagrande M. Perrino E. Renzi L. Del Soldato P. Sparatore A. New aryldithiolethione derivatives as potent histone deacetylase inhibitors. Bioorg. Med. Chem. 2010 18 12 4187 4194 10.1016/j.bmc.2010.05.011 20576572
    [Google Scholar]
  102. Surprenant S. Lubell W.D. 9-(4-Bromophenyl)-9-fluorenyl as a safety-catch nitrogen protecting group. J. Org. Chem. 2006 71 2 848 851 10.1021/jo0521910 16409010
    [Google Scholar]
  103. Jiang J. Wang Z. Diiodine-triethylsilane system: A practical method for deprotection of arylbenzyl ethers. Synlett 2025 36 7 845 848 10.1055/a‑2414‑7887
    [Google Scholar]
/content/journals/coc/10.2174/0113852728404819251110073007
Loading
/content/journals/coc/10.2174/0113852728404819251110073007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test