Skip to content
2000
image of Synthesis and Estimation of the Antibacterial Potency of a Series of Azithromycin-Siderophore Conjugates

Abstract

The increasing threat of antimicrobial resistance (AMR) has driven the need for novel antibacterial agents. Conjugating antibiotics with siderophores may expand their spectrum of activity or enhance their efficacy against AMR strains. In this study, we developed a synthetic route for azithromycin derivatives bound with siderophore moieties containing one or two 2,3-dihydroxybenzamide residues, yielding two series of hybrid molecules (, , , and , , ). Derivatives , , and , which bear a single siderophore fragment, exhibited MIC values comparable to those of azithromycin against the majority of tested pathogens. Notably, compounds demonstrated increased activity under iron-deficient conditions against Gram-negative and strains. In contrast, azotochelin-containing conjugates ( and ) were found to be completely inactive. Although the introduction of a siderophore did not significantly enhance the potency of macrolides in this study, further optimization of the conjugation strategy, linker structure, or chelating moieties may lead to more effective siderophore-macrolide antibiotics.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728404096250908065829
2025-09-26
2025-11-06
Loading full text...

Full text loading...

References

  1. Akram F. Imtiaz M. Haq I. Emergent crisis of antibiotic resistance: A silent pandemic threat to 21st century. Microb. Pathog. 2023 174 105923 10.1016/j.micpath.2022.105923 36526035
    [Google Scholar]
  2. Frieri M. Kumar K. Boutin A. Antibiotic resistance. J. Infect. Public Health 2017 10 4 369 378 10.1016/j.jiph.2016.08.007 27616769
    [Google Scholar]
  3. Aslam B. Wang W. Arshad M.I. Khurshid M. Muzammil S. Rasool M.H. Nisar M.A. Alvi R.F. Aslam M.A. Qamar M.U. Salamat M.K.F. Baloch Z. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 2018 11 1645 1658 10.2147/IDR.S173867 30349322
    [Google Scholar]
  4. Bonomo R.A. Perez F. Hujer A.M. Hujer K.M. Vila A.J. The real crisis in antimicrobial resistance: failure to anticipate and respond. Clin. Infect. Dis. 2024 78 6 1429 1433 10.1093/cid/ciad758 38289748
    [Google Scholar]
  5. Aljeldah M.M. Antimicrobial resistance and its spread is a global threat. Antibiotics 2022 11 8 1082 10.3390/antibiotics11081082 36009948
    [Google Scholar]
  6. Toner E. Adalja A. Gronvall G.K. Cicero A. Inglesby T.V. Antimicrobial resistance is a global health emergency. Health Secur. 2015 13 3 153 155 10.1089/hs.2014.0088 26042858
    [Google Scholar]
  7. Inoue H. Strategic approach for combating antimicrobial resistance (AMR). Glob. Health Med. 2019 1 2 61 64 10.35772/ghm.2019.01026 33330756
    [Google Scholar]
  8. Bo L. Sun H. Li Y.D. Zhu J. Wurpel J.N.D. Lin H. Chen Z.S. Combating antimicrobial resistance: the silent war. Front. Pharmacol. 2024 15 1347750 10.3389/fphar.2024.1347750 38420197
    [Google Scholar]
  9. Majumder M.A.A. Rahman S. Cohall D. Bharatha A. Singh K. Haque M. Gittens-St Hilaire M. Antimicrobial stewardship: fighting antimicrobial resistance and protecting global public health. Infect. Drug Resist. 2020 13 4713 4738 10.2147/IDR.S290835 33402841
    [Google Scholar]
  10. Imchen M. Moopantakath J. Kumavath R. Barh D. Tiwari S. Ghosh P. Azevedo V. Current trends in experimental and computational approaches to combat antimicrobial resistance. Front. Genet. 2020 11 563975 10.3389/fgene.2020.563975 33240317
    [Google Scholar]
  11. Nolte O. Antimicrobial resistance in the 21st century: a multifaceted challenge. Protein Pept. Lett. 2014 21 4 330 335 10.2174/09298665113206660106 24164264
    [Google Scholar]
  12. Fischbach M.A. Walsh C.T. Antibiotics for emerging pathogens. Science 2009 325 5944 1089 1093 10.1126/science.1176667 19713519
    [Google Scholar]
  13. Nazli A. He D.L. Liao D. Khan M.Z.I. Huang C. He Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv. Drug Deliv. Rev. 2022 189 114502 10.1016/j.addr.2022.114502 35998828
    [Google Scholar]
  14. Michael C.A. Dominey-Howes D. Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front. Public Health 2014 2 145 10.3389/fpubh.2014.00145 25279369
    [Google Scholar]
  15. Casadevall A. Crisis in infectious diseases: 2 Decades later. Clin. Infect. Dis. 2017 64 7 823 828 10.1093/cid/cix067 28362950
    [Google Scholar]
  16. Murugaiyan J. Kumar P.A. Rao G.S. Iskandar K. Hawser S. Hays J.P. Mohsen Y. Adukkadukkam S. Awuah W.A. Jose R.A.M. Sylvia N. Nansubuga E.P. Tilocca B. Roncada P. Roson-Calero N. Moreno-Morales J. Amin R. Kumar B.K. Kumar A. Toufik A.R. Zaw T.N. Akinwotu O.O. Satyaseela M.P. van Dongen M.B.M. Progress in alternative strategies to combat antimicrobial resistance: focus on antibiotics. Antibiotics 2022 11 2 200 10.3390/antibiotics11020200 35203804
    [Google Scholar]
  17. Swami O.C. Kohli G.S. Katekhaye V.M. Swami O.C. Strategies to combat antimicrobial resistance. J. Clin. Diagn. Res. 2014 8 7 ME01 ME04 10.7860/JCDR/2014/8925.4529 25177596
    [Google Scholar]
  18. Paphitou N.I. Antimicrobial resistance: action to combat the rising microbial challenges. Int. J. Antimicrob. Agents 2013 42 S25 S28 10.1016/j.ijantimicag.2013.04.007 23684003
    [Google Scholar]
  19. Thakur R.K. Aggarwal K. Sood N. Kumar A. Joshi S. Jindal P. Maurya R. Patel P. Kurmi B.D. Harnessing advances in mechanisms, detection, and strategies to combat antimicrobial resistance. Sci. Total Environ. 2025 982 179641 10.1016/j.scitotenv.2025.179641 40373688
    [Google Scholar]
  20. Cheng G. Dai M. Ahmed S. Hao H. Wang X. Yuan Z. Antimicrobial drugs in fighting against antimicrobial resistance. Front. Microbiol. 2016 7 470 10.3389/fmicb.2016.00470 27092125
    [Google Scholar]
  21. Ribeiro M. Simões M. Advances in the antimicrobial and therapeutic potential of siderophores. Environ. Chem. Lett. 2019 17 4 1485 1494 10.1007/s10311‑019‑00887‑9
    [Google Scholar]
  22. Rodríguez D. González-Bello C. Siderophores: Chemical tools for precise antibiotic delivery. Bioorg. Med. Chem. Lett. 2023 87 129282 10.1016/j.bmcl.2023.129282 37031730
    [Google Scholar]
  23. Miethke M. Marahiel M.A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 2007 71 3 413 451 10.1128/MMBR.00012‑07 17804665
    [Google Scholar]
  24. Ahmed E. Holmström S.J.M. Siderophores in environmental research: roles and applications. Microb. Biotechnol. 2014 7 3 196 208 10.1111/1751‑7915.12117 24576157
    [Google Scholar]
  25. Kramer J. Özkaya Ö. Kümmerli R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 2020 18 3 152 163 10.1038/s41579‑019‑0284‑4 31748738
    [Google Scholar]
  26. Wandersman C. Delepelaire P. Bacterial iron sources: from siderophores to hemophores. Annu. Rev. Microbiol. 2004 58 1 611 647 10.1146/annurev.micro.58.030603.123811 15487950
    [Google Scholar]
  27. Albelda-Berenguer M. Monachon M. Joseph E. Siderophores: From natural roles to potential applications. Adv. Appl. Microbiol. 2019 106 193 225 10.1016/bs.aambs.2018.12.001 30798803
    [Google Scholar]
  28. Prabhakar P.K. Bacterial siderophores and their potential applications: a review. Curr. Mol. Pharmacol. 2020 13 4 295 305 10.2174/1874467213666200518094445 32418535
    [Google Scholar]
  29. Rayner B. Verderosa A.D. Ferro V. Blaskovich M.A.T. Siderophore conjugates to combat antibiotic-resistant bacteria. RSC Med. Chem. 2023 14 5 800 822 10.1039/D2MD00465H 37252105
    [Google Scholar]
  30. Al Shaer D. Al Musaimi O. de la Torre B.G. Albericio F. Hydroxamate siderophores: Natural occurrence, chemical synthesis, iron binding affinity and use as Trojan horses against pathogens. Eur. J. Med. Chem. 2020 208 112791 10.1016/j.ejmech.2020.112791 32947228
    [Google Scholar]
  31. Negash K.H. Norris J.K.S. Hodgkinson J.T. Siderophore-Antibiotic conjugate design: new drugs for bad bugs? Molecules 2019 24 18 3314 10.3390/molecules24183314 31514464
    [Google Scholar]
  32. Saha M. Sarkar S. Sarkar B. Sharma B.K. Bhattacharjee S. Tribedi P. Microbial siderophores and their potential applications: a review. Environ. Sci. Pollut. Res. Int. 2016 23 5 3984 3999 10.1007/s11356‑015‑4294‑0 25758420
    [Google Scholar]
  33. Miller M.J. Liu R. Design and syntheses of new antibiotics inspired by nature’s quest for iron in an oxidative climate. Acc. Chem. Res. 2021 54 7 1646 1661 10.1021/acs.accounts.1c00004 33684288
    [Google Scholar]
  34. Budzikiewicz H. Siderophore-antibiotic conjugates used as trojan horses against Pseudomonas aeruginosa. Curr. Top. Med. Chem. 2001 1 1 73 82 10.2174/1568026013395524 11895295
    [Google Scholar]
  35. Roosenberg J. Lin Y.M. Lu Y. Miller M. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr. Med. Chem. 2000 7 2 159 197 10.2174/0929867003375353 10637361
    [Google Scholar]
  36. Ghosh M. Miller M.J. Synthesis and in vitro antibacterial activity of spermidine-based mixed catechol- and hydroxamate-containing siderophore—Vancomycin conjugates. Bioorg. Med. Chem. 1996 4 1 43 48 10.1016/0968‑0896(95)00161‑1 8689237
    [Google Scholar]
  37. Ghosh A. Ghosh M. Niu C. Malouin F. Moellmann U. Miller M.J. Iron transport-mediated drug delivery using mixed-ligand siderophore-β-lactam conjugates. Chem. Biol. 1996 3 12 1011 1019 10.1016/S1074‑5521(96)90167‑2 9000006
    [Google Scholar]
  38. Pandey A. Savino C. Ahn S.H. Yang Z. Van Lanen S.G. Boros E. Theranostic gallium siderophore ciprofloxacin conjugate with broad spectrum antibiotic potency. J. Med. Chem. 2019 62 21 9947 9960 10.1021/acs.jmedchem.9b01388 31580658
    [Google Scholar]
  39. Sato T. Yamawaki K. Cefiderocol: Discovery, chemistry, and in vivo profiles of a novel siderophore cephalosporin. Clin. Infect. Dis. 2019 69 S538 S543 10.1093/cid/ciz826 31724047
    [Google Scholar]
  40. Wencewicz T.A. Long T.E. Möllmann U. Miller M.J. Trihydroxamate siderophore-fluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus. Bioconjug. Chem. 2013 24 3 473 486 10.1021/bc300610f 23350642
    [Google Scholar]
  41. Braun V. Pramanik A. Gwinner T. Köberle M. Bohn E. Sideromycins: tools and antibiotics. Biometals 2009 22 1 3 13 10.1007/s10534‑008‑9199‑7 19130258
    [Google Scholar]
  42. Liu R. Miller P.A. Vakulenko S.B. Stewart N.K. Boggess W.C. Miller M.J. A synthetic dual drug sideromycin induces gram-negative bacteria to commit suicide with a gram-positive antibiotic. J. Med. Chem. 2018 61 9 3845 3854 10.1021/acs.jmedchem.8b00218 29554424
    [Google Scholar]
  43. Travin D.Y. Severinov K. Dubiley S. Natural Trojan horse inhibitors of aminoacyl-tRNA synthetases. RSC Chem. Biol. 2021 2 2 468 485 10.1039/D0CB00208A 34382000
    [Google Scholar]
  44. Gause G.F. Brazhnikova M.G. The action of albomycin on bacteria. A new antibiotic—albomycin (Experimental data and use in pediatrics). Novos. Medits. 1951 23 3 7
    [Google Scholar]
  45. Gause G.F. Recent studies on albomycin, a new antibiotic. BMJ 1955 2 4949 1177 1179 10.1136/bmj.2.4949.1177 13269824
    [Google Scholar]
  46. Pramanik A. Stroeher U. Krejci J. Standish A. Bohn E. Paton J. Autenrieth I. Braun V. Albomycin is an effective antibiotic, as exemplified with Yersinia enterocolitica and Streptococcus pneumoniae. Int. J. Med. Microbiol. 2007 297 6 459 469 10.1016/j.ijmm.2007.03.002 17459767
    [Google Scholar]
  47. Aoki T. Yoshizawa H. Yamawaki K. Yokoo K. Sato J. Hisakawa S. Hasegawa Y. Kusano H. Sano M. Sugimoto H. Nishitani Y. Sato T. Tsuji M. Nakamura R. Nishikawa T. Yamano Y. Cefiderocol (S-649266), A new siderophore cephalosporin exhibiting potent activities against Pseudomonas aeruginosa and other gram-negative pathogens including multi-drug resistant bacteria: Structure activity relationship. Eur. J. Med. Chem. 2018 155 847 868 10.1016/j.ejmech.2018.06.014 29960205
    [Google Scholar]
  48. McCreary E.K. Heil E.L. Tamma P.D. New perspectives on antimicrobial agents: cefiderocol. Antimicrob. Agents Chemother. 2021 65 8 e02171 e20 10.1128/AAC.02171‑20 34031052
    [Google Scholar]
  49. Syed Y.Y. Cefiderocol: A review in serious gram-negative bacterial infections. Drugs 2021 81 13 1559 1571 10.1007/s40265‑021‑01580‑4 34427896
    [Google Scholar]
  50. Page M.G.P. The role of iron and siderophores in infection, and the development of siderophore antibiotics. Clin. Infect. Dis. 2019 69 S529 S537 10.1093/cid/ciz825 31724044
    [Google Scholar]
  51. Ghosh M. Miller M.J. Design, synthesis, and biological evaluation of isocyanurate-based antifungal and macrolide antibiotic conjugates: Iron transport-mediated drug delivery. Bioorg. Med. Chem. 1995 3 11 1519 1525 10.1016/0968‑0896(95)00134‑3 8634832
    [Google Scholar]
  52. Tevyashova A.N. Korolev A.M. Mirchink E.P. Isakova E.B. Osterman I.A. Synthesis and evaluation of biological activity of benzoxaborole derivatives of azithromycin. J. Antibiot. 2019 72 1 22 33 10.1038/s41429‑018‑0107‑2 30315257
    [Google Scholar]
  53. Pavlović D. Mutak S. Discovery of 4′'-ether linked azithromycin-quinolone hybrid series: influence of the central linker on the antibacterial activity. ACS Med. Chem. Lett. 2011 2 5 331 336 10.1021/ml100253p 24900314
    [Google Scholar]
  54. Zhang L. Chai X. Wang B. Yu S. Hu H. Zou Y. Zhao Q. Meng Q. Wu Q. Design, synthesis and biological evaluation of azithromycin glycosyl derivatives as potential antibacterial agents. Bioorg. Med. Chem. Lett. 2013 23 18 5057 5060 10.1016/j.bmcl.2013.07.042 23937982
    [Google Scholar]
  55. Li X. Ma S. Yan M. Wang Y. Ma S. Synthesis and antibacterial evaluation of novel 11,4″-disubstituted azithromycin analogs with greatly improved activity against erythromycin-resistant bacteria. Eur. J. Med. Chem. 2013 59 209 217 10.1016/j.ejmech.2012.11.028 23229056
    [Google Scholar]
  56. Yan M. Xu L. Wang Y. Wan J. Chenchen; Li, Q.; Wang, R. Synthesis and antibacterial activity of 11,12-cyclic carbonate 4″-O-aralkylacetylhydrazineacyl azithromycin derivatives. Bioorg. Chem. 2020 94 103475 10.1016/j.bioorg.2019.103475 31791683
    [Google Scholar]
  57. Wang Y. Cong C. Chai W.C. Dong R. Jia L. Song D. Zhou Z. Ma S. Synthesis and antibacterial activity of novel 4″-O-(1-aralkyl-1,2,3-triazol-4-methyl-carbamoyl) azithromycin analogs. Bioorg. Med. Chem. Lett. 2017 27 16 3872 3877 10.1016/j.bmcl.2017.06.044 28655423
    [Google Scholar]
  58. Zhang Q. Jin B. Shi Z. Wang X. Liu Q. Lei S. Peng R. Novel enterobactin analogues as potential therapeutic chelating agents: Synthesis, thermodynamic and antioxidant studies. Sci. Rep. 2016 6 1 34024 10.1038/srep34024 27671769
    [Google Scholar]
  59. McKee J.A. Sharma S.K. Miller M.J. Iron transport mediated drug delivery systems: synthesis and antibacterial activity of spermidine- and lysine-based siderophore -. beta.-lactam conjugates. Bioconjug. Chem. 1991 2 4 281 291 10.1021/bc00010a013 1837735
    [Google Scholar]
  60. Chimiak A. Neilands J.B. Lysine analogues of siderophores. In: Berlin, Heidelberg Springer Berlin Heidelberg 1984 89 96 10.1007/BFb0111311
    [Google Scholar]
  61. Volynkina I.A. Bychkova E.N. Karakchieva A.O. Tikhomirov A.S. Zatonsky G.V. Solovieva S.E. Martynov M.M. Grammatikova N.E. Tereshchenkov A.G. Paleskava A. Konevega A.L. Sergiev P.V. Dontsova O.A. Osterman I.A. Shchekotikhin A.E. Tevyashova A.N. Hybrid molecules of azithromycin with chloramphenicol and metronidazole: synthesis and study of antibacterial properties. Pharmaceuticals 2024 17 2 187 10.3390/ph17020187 38399402
    [Google Scholar]
  62. Ma S. Ma R. Liu Z. Ma C. Shen X. Synthesis and antibacterial activity of novel 15-membered macrolide derivatives: 4″-Carbamate, 11,12-cyclic carbonate-4″-carbamate and 11,4″-di-O-arylcarbamoyl analogs of azithromycin. Eur. J. Med. Chem. 2009 44 10 4010 4020 10.1016/j.ejmech.2009.04.030 19464769
    [Google Scholar]
  63. Yan M. Ma X. Dong R. Li X. Zhao C. Guo Z. Shen Y. Liu F. Ma R. Ma S. Synthesis and antibacterial activity of 4″-O-(trans-β-arylacrylamido)carbamoyl azithromycin analogs. Eur. J. Med. Chem. 2015 103 506 515 10.1016/j.ejmech.2015.09.020 26402728
    [Google Scholar]
  64. Fajdetić A. Čipčić Paljetak H. Lazarevski G. Hutinec A. Alihodžić S. Đerek M. Štimac V. Andreotti D. Šunjić V. Berge J.M. Mutak S. Dumić M. Lociuro S. Holmes D.J. Maršić N. Eraković Haber V. Spaventi R. 4″-O-(ω-Quinolylamino-alkylamino)propionyl derivatives of selected macrolides with the activity against the key erythromycin resistant respiratory pathogens. Bioorg. Med. Chem. 2010 18 17 6559 6568 10.1016/j.bmc.2010.06.049 20634078
    [Google Scholar]
  65. Zhang L. Song L. Liu Z. Li H. Lu Y. Li Z. Ma S. Synthesis and antibacterial activity of novel 3-O-carbamoyl derivatives of clarithromycin and 11,12-cyclic carbonate azithromycin. Eur. J. Med. Chem. 2010 45 3 915 922 10.1016/j.ejmech.2009.11.032 19945195
    [Google Scholar]
  66. Kohira N. West J. Ito A. Ito-Horiyama T. Nakamura R. Sato T. Rittenhouse S. Tsuji M. Yamano Y. In Vitro Antimicrobial activity of a siderophore cephalosporin, s-649266, against enterobacteriaceae clinical isolates, including carbapenem-resistant strains. Antimicrob. Agents Chemother. 2016 60 2 729 734 10.1128/AAC.01695‑15 26574013
    [Google Scholar]
  67. Ito A. Kohira N. Bouchillon S.K. West J. Rittenhouse S. Sader H.S. Rhomberg P.R. Jones R.N. Yoshizawa H. Nakamura R. Tsuji M. Yamano Y. In vitro antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. J. Antimicrob. Chemother. 2016 71 3 670 677 10.1093/jac/dkv402 26645269
    [Google Scholar]
  68. Lin Y.M. Ghosh M. Miller P.A. Möllmann U. Miller M.J. Synthetic sideromycins (skepticism and optimism): selective generation of either broad or narrow spectrum Gram-negative antibiotics. Biometals 2019 32 3 425 451 10.1007/s10534‑019‑00192‑6 30919118
    [Google Scholar]
  69. Ji C. Miller M.J. Chemical syntheses and in vitro antibacterial activity of two desferrioxamine B-ciprofloxacin conjugates with potential esterase and phosphatase triggered drug release linkers. Bioorg. Med. Chem. 2012 20 12 3828 3836 10.1016/j.bmc.2012.04.034 22608921
    [Google Scholar]
  70. Ma X. Zhang L. Wang R. Cao J. Liu C. Fang Y. Wang J. Ma S. Novel C-4″ modified azithromycin analogs with remarkably enhanced activity against erythromycin-resistant Streptococcus pneumoniae: The synthesis and antimicrobial evaluation. Eur. J. Med. Chem. 2011 46 10 5196 5205 10.1016/j.ejmech.2011.08.001 21855183
    [Google Scholar]
  71. EUCAST Version 7. 2022 Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/Media_preparation_v_7.0_EUCAST_AST_2022.pdf
  72. EUCAST QC v. 14.0. 2024 Available from: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/QC/v_14.0_EUCAST_QC_tables_routine_and_extended_QC.pdf
  73. Huband M.D. Ito A. Tsuji M. Sader H.S. Fedler K.A. Flamm R.K. Cefiderocol MIC quality control ranges in iron-depleted cation-adjusted Mueller-Hinton broth using a CLSI M23-A4 multi-laboratory study design. Diagn. Microbiol. Infect. Dis. 2017 88 2 198 200 10.1016/j.diagmicrobio.2017.03.011 28410852
    [Google Scholar]
  74. Huang Y. Wang W. Huang Q. Wang Z. Xu Z. Tu C. Wan D. He M. Yang X. Xu H. Wang H. Zhao Y. Tu M. Zhou Q. Clinical efficacy and in vitro drug sensitivity test results of azithromycin combined with other antimicrobial therapies in the treatment of MDR P. aeruginosa ventilator-associated pneumonia. Front. Pharmacol. 2022 13 944965 10.3389/fphar.2022.944965 36034783
    [Google Scholar]
  75. Ghosh M. Miller P.A. Möllmann U. Claypool W.D. Schroeder V.A. Wolter W.R. Suckow M. Yu H. Li S. Huang W. Zajicek J. Miller M.J. Targeted antibiotic delivery: selective siderophore conjugation with daptomycin confers potent activity against multidrug resistant Acinetobacter baumannii both in vitro and in vivo. J. Med. Chem. 2017 60 11 4577 4583 10.1021/acs.jmedchem.7b00102 28287735
    [Google Scholar]
/content/journals/coc/10.2174/0113852728404096250908065829
Loading
/content/journals/coc/10.2174/0113852728404096250908065829
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test