Skip to content
2000
image of A Recent Review on Aqua Mediated Synthesis of DHPMs via the Biginelli Reaction

Abstract

The Biginelli Reaction stands out as a highly versatile one-pot cyclocondensation process that effectively combines β-keto esters, urea, and aromatic aldehydes in the presence of a catalyst. This powerful reaction yields various 3,4-dihydro-2(H)-pyrimidinones (DHPMs), known for their significant pharmacological applications in synthetic and natural forms. In recent years, this reaction has been expertly refined to improve efficiency and reduce environmental impact. By employing a range of catalysts and green solvents, such as water, researchers achieve high yields of DHPMs in an environmentally friendly manner. In this review, we have thoroughly explored the literature on Biginelli reactions carried out under aqueous conditions, utilizing various reaction promoters, including catalysts, polymers, and enzymes, all in an eco-conscious way. The article encompasses the advantages of the use of ‘in water’ synthesis in various facets and highlights a sustainable pathway for the Biginelli reaction, facilitating the efficient synthesis of bioactive compounds while prioritizing environmental preservation.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728403897250831200808
2025-09-19
2025-11-06
Loading full text...

Full text loading...

References

  1. Marinescu M. Biginelli reaction mediated synthesis of antimicrobial pyrimidine derivatives and their therapeutic properties. Molecules 2021 26 19 6022 10.3390/molecules26196022 34641566
    [Google Scholar]
  2. de Fátima Â. Braga T.C. Neto L.S. Terra B.S. Oliveira B.G.F. da Silva D.L. Modolo L.V. A mini-review on Biginelli adducts with notable pharmacological properties. J. Adv. Res. 2015 6 3 363 373 10.1016/j.jare.2014.10.006 26257934
    [Google Scholar]
  3. Kappe C.O. Biologically active dihydropyrimidones of the Biginelli-type - a literature survey. Eur. J. Med. Chem. 2000 35 12 1043 1052 10.1016/S0223‑5234(00)01189‑2 11248403
    [Google Scholar]
  4. Kappe C.O. The generation of dihydropyrimidine libraries utilizing biginelli multicomponent chemistry. Wiley 2003 22 6 630 645 10.1002/qsar.200320001
    [Google Scholar]
  5. Suresh; Sandhu, J.S. Past, present and future of the Biginelli reaction: A critical perspective. ARKIVOC 2011 2012 1 66 133 10.3998/ark.5550190.0013.103
    [Google Scholar]
  6. Heravi M.M. Zadsirjan V. Recent advances in biginelli-type reactions. Curr. Org. Chem. 2020 24 12 1331 1366 10.2174/1385272824999200616111228
    [Google Scholar]
  7. Heravi M.M. Moradi R. Mohammadkhani L. Moradi B. Current progress in asymmetric Biginelli reaction: An update. Mol. Divers. 2018 22 3 751 767 10.1007/s11030‑018‑9841‑4 29936682
    [Google Scholar]
  8. Heravi M.M. Asadi S. Lashkariani B.M. Recent progress in asymmetric biginelli reaction. Mol. Divers. 2013 17 2 389 407 10.1007/s11030‑013‑9439‑9 23588897
    [Google Scholar]
  9. Chopda L.V. Dave P.N. Recent Advances in Homogeneous and Heterogeneous Catalyst in Biginelli Reaction from 2015‐19: A Concise Review. ChemistrySelect 2020 5 19 5552 5572 10.1002/slct.202000742
    [Google Scholar]
  10. Patil R.V. Chavan J.U. Dalal D.S. Shinde V.S. Beldar A.G. Biginelli reaction: Polymer supported catalytic approaches. ACS Comb. Sci. 2019 21 3 105 148 10.1021/acscombsci.8b00120 30645098
    [Google Scholar]
  11. Kazemi M. Magnetically reusable nanocatalysts in biginelli synthesis of dihydropyrimidinones (DHPMs). Synth. Commun. 2020 50 10 1409 1445 10.1080/00397911.2020.1720740
    [Google Scholar]
  12. Panda S. Biginelli Reaction: A Green Perspective. Curr. Org. Chem. 2012 16 4 507 520 10.2174/138527212799499859
    [Google Scholar]
  13. Nagarajaiah H. Mukhopadhyay A. Moorthy J.N. Biginelli reaction: An overview. Tetrahedron Lett. 2016 57 47 5135 5149 10.1016/j.tetlet.2016.09.047
    [Google Scholar]
  14. Ma Z. Wang B. Tao L. Stepping further from coupling tools: Development of functional polymers via the biginelli reaction. Molecules 2022 27 22 7886 10.3390/molecules27227886 36431987
    [Google Scholar]
  15. Butler R.N. Coyne A.G. Water: Nature’s reaction enforcer--comparative effects for organic synthesis “in-water” and “on-water”. Chem. Rev. 2010 110 10 6302 6337 10.1021/cr100162c 20815348
    [Google Scholar]
  16. Rahmati A. Pashmforoush N. Synthesis of various heterocyclic compounds via multi-component reactions in water. J. Indian Chem. Soc. 2015 12 6 993 1036 10.1007/s13738‑014‑0562‑z
    [Google Scholar]
  17. Kumaravel K. Vasuki G. Multi-component reactions in water. Curr. Org. Chem. 2009 13 18 1820 1841 10.2174/138527209789630514
    [Google Scholar]
  18. Singh A. Bhutani C. Khanna P. Talwar S. Singh S.K. Khanna L. Recent report on indoles as a privileged anti-viral scaffold in drug discovery. Eur. J. Med. Chem. 2025 281 117017 10.1016/j.ejmech.2024.117017 39509946
    [Google Scholar]
  19. Yadav S. Mansi; Misra, N.; Khanna, P.; Khanna, L. Novel 10,11-dihydro-5H-dibenzo[b,f]azepine triazoles hybrids: Synthesis, in vitro antioxidant activity and xanthine oxidase inhibition and computational study. J. Mol. Struct. 2024 1312 138639 10.1016/j.molstruc.2024.138639
    [Google Scholar]
  20. Khanna P. Panda S.S. Khanna L. Jain S.C. Aqua mediated synthesis of spirocyclic compounds. Mini Rev. Org. Chem. 2014 11 1 73 86 10.2174/1570193X1101140402101831
    [Google Scholar]
  21. Khanna L. Mansi; Yadav, S.; Misra, N.; Khanna, P. “In water” synthesis of bis(indolyl)methanes: A review. Synth. Commun. 2021 51 19 2892 2923 10.1080/00397911.2021.1957113
    [Google Scholar]
  22. Kidwai M. Singhal K. Kukreja S. One-pot green synthesis for pyrimido[4,5-d]pyrimidine derivatives. Z. Naturforsch. B. J. Chem. Sci. 2007 62 5 732 736 10.1515/znb‑2007‑0518
    [Google Scholar]
  23. Yadav J.S. Reddy B.V.S. Sridhar P. Reddy J.S.S. Nagaiah K. Lingaiah N. Saiprasad P.S. Green protocol for the biginelli three‐component reaction: Ag3PW12O40 as a novel, water‐tolerant heteropolyacid for the synthesis of 3,4‐dihydropyrimidinones. Eur. J. Org. Chem. 2004 2004 3 552 557 10.1002/ejoc.200300559
    [Google Scholar]
  24. Polshettiwar V. Varma R.S. Biginelli reaction in aqueous medium: A greener and sustainable approach to substituted 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett. 2007 48 41 7343 7346 10.1016/j.tetlet.2007.08.031
    [Google Scholar]
  25. Azzam S.H.S. Siddekha A. Nizam A. Pasha M.A. Pasha M.A. SiO2-NaHSO4 as an efficient reusable heterogeneous catalyst for the one-pot three-component synthesis of octahydro-quinazolin-2,5-diones in water. Chin. J. Catal. 2012 33 4-6 677 680 10.1016/S1872‑2067(11)60366‑5
    [Google Scholar]
  26. Suppan T. Mahendran H.P. Jeyaraj S. Mohanta K. Bhattacharjee R.R. Phosphotungstic Acid - Jeffamine® hybrid catalyst for one-pot biginelli reaction starting from benzyl alcohol. Appl. Catal. A 2020 603 28 117734 10.1016/j.apcata.2020.117734
    [Google Scholar]
  27. Janković N. Stefanović S. Petronijević J. Joksimović N. Novaković S.B. Bogdanović G.A. Muškinja J. Vraneš M. Ratković Z. Bugarčić Z. Water-tuned tautomer-selective tandem synthesis of the 5,6-dihydropyrimidin-4(3H)-ones, driven under the umbrella of sustainable chemistry. 2018 6 10 13358 13366 10.1021/acssuschemeng.8b03127
    [Google Scholar]
  28. Sinija P.S. Sreekumar K. Facile synthesis of pyranopyrazoles and 3,4-dihydropyrimidin-2(1H)-ones by a Ti-grafted polyamidoamine dendritic silica hybrid catalyst via a dual activation route. RSC Advances 2015 5 123 101776 101788 10.1039/C5RA16723J
    [Google Scholar]
  29. Rahmatpour A. Polyvinylsulfonic Acid: An efficient, water-soluble and reusable brønsted acid catalyst for the three-component synthesis of 3,4-dihydropyrimidin-2(1h)-ones/thiones in water and ethanol. Catal. Lett. 2012 142 12 1505 1511 10.1007/s10562‑012‑0873‑6
    [Google Scholar]
  30. Borik R.M. A comparison on microwave and ultrasound accelerated synthetic route to dihydropyrimidinones catalyzed by sulfanilic acid in water. Aust. J. Basic Appl. Sci. 2013 7 1 543 547
    [Google Scholar]
  31. Gaikwad D.D. Haridas T. Sayyed H. Farooqui M. Full paper silica sulfuric acid catalyzed one-pot synthesis of biginelli reaction in water. Orbital:Electron. J. Chem. 2013 5 1 17 22
    [Google Scholar]
  32. Nakhaei A. Shojaee S. Yaghoobi E. Ramezani S. Fast and green synthesis of 3,4-dihydropyrimidin-2(1H)-ones and thiones using nanometasilica disulfuric acid as recyclable catalyst in water. Heterocyclic Lett. 2017 7 2 323 331
    [Google Scholar]
  33. Sarkate A.P. Jadhav M.R. Ansari H.S.H. Waghmare M.P. Maleic acid as a versatile catalyst for one pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones and their thione analogues. Pharma Chem. 2016 8 2 204 209
    [Google Scholar]
  34. Abd El Aleem Ali Ali El-Remaily M. Elhady O.M. Green bio‐organic and recoverable catalyst taurine (2‐aminoethanesulfonic acid) for synthesis of bio‐active compounds 3,4‐dihydropyrimidin derivatives in aqueous medium. ChemistrySelect 2020 5 39 12098 12102 10.1002/slct.202002575
    [Google Scholar]
  35. Roy D.K. Tamuli K.J. Bordoloi M. Exploiting silver trifluoromethanesulfonate as efficient and reusable catalyst for the synthesis of dihydropyrimidine derivatives under different reaction environments. J. Heterocycl. Chem. 2019 56 12 3313 3323 10.1002/jhet.3728
    [Google Scholar]
  36. Handique S. Sharma P. Extensive Biginelli Reaction: activated charcoal promoted green approach for one pot synthesis of 4h-pyrimido[2,1-b][1,3]benzothiazole-3-carboxylate derivatives. Results Chem. 2022 2023 5 11 14 10.1016/j.rechem.2023.100781
    [Google Scholar]
  37. Anchan H.N. Naik C.P. Bhat N.S. Kumari M. Dutta S. Efficient synthesis of novel biginelli and hantzsch products sourced from biorenewable furfurals using gluconic acid aqueous solution as the green organocatalyst. ACS Omega 2023 8 37 34077 34083 10.1021/acsomega.3c05106 37744814
    [Google Scholar]
  38. Shams Y.M. Hosseinn M. Samrai M. The Role of HCl in carrying out biginelli reaction for the synthesis of 3, 4 ‐ dihydropyrimidine ‐ 2 ‐(1 ‐ (h) ones derivatives. J. Synth. Chem. 2024 2 4 288 298 10.22034/jsc.2024.436022.1062
    [Google Scholar]
  39. Abd-Elnabi H. Mohamed Abdel Hameed A. Ahmed Mekheimer R. Awed R. Garlic clove catalyzed biginelli reaction in water at ambient temperature. Green Sustain. Chem. 2013 3 4 141 145 10.4236/gsc.2013.34017
    [Google Scholar]
  40. Ramesh Kumar R. Kannappan N. Devilal J.A. Novel, efficient, cost-effective, and green methodology for biginelli-reaction: soy lecithin-catalyzed synthesis of 4-aryl-1, 2, 3, 4-tetrahydropyrimidine-2(1h)-ones/thiones in water. Int. J. Pharm. Biol. Sci. 2019 9 2 811 818
    [Google Scholar]
  41. Tamaddon F. Ghazi S. Urease: A highly biocompatible catalyst for switchable Biginelli reaction and synthesis of 1,4-dihydropyridines from the in situ formed ammonia. Catal. Commun. 2015 72 63 67 10.1016/j.catcom.2015.09.006
    [Google Scholar]
  42. Zhang W. Wang N. Yang Z.J. Li Y.R. Yu Y. Pu X.M. Yu X.Q. Lipase‐Initiated tandem biginelli reactions via in situ‐formed acetaldehydes in one pot: discovery of single‐ring deep blue luminogens. Adv. Synth. Catal. 2017 359 19 3397 3406 10.1002/adsc.201700599
    [Google Scholar]
  43. Yu Y. Lu W.F. Yang Z.J. Wang N. Yu X.Q. Combining photo-redox and enzyme catalysis for the synthesis of 4H-pyrimido[2,1-b] benzothiazole derivatives in one pot. Bioorg. Chem. 2021 107 104534 10.1016/j.bioorg.2020.104534 33339664
    [Google Scholar]
  44. Azzallou R. Ait Taleb M. Mamouni R. Lazar S. Benlhachemi A. Bakiz B. Villain S. Animal bone meal as a new efficient heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2-ones/thiones. Moroccan J Chem. 2019 10.48317/imist.prsm/morjchem‑v7i2.15441
    [Google Scholar]
  45. Sethiya A. Soni J. Manhas A. Jha P.C. Agarwal S. Green and highly efficient MCR strategy for the synthesis of pyrimidine analogs in water via C-C and C-N bond formation and docking studies. Res. Chem. Intermed. 2021 47 11 4477 4496 10.1007/s11164‑021‑04529‑0
    [Google Scholar]
  46. Sayyahi S. Jahanbakhshi S. Dehghani Z. A Green and efficient method for the preparation of 3,4‐dihydropyrimidin‐2(1h)‐ones using quaternary ammonium‐treated clay in water. J. Chem. 2013 2013 1 605324 10.1155/2013/605324
    [Google Scholar]
  47. Slimi H. Saïd K. Moussaoui Y. Salem R.B. Slimi H. Saïd K. Moussaoui Y. Ben Salem R. Phase transfer catalysis improved synthesis of 3,4-dihydropyrimidinones. Int. J. Org. Chem. (Irvine) 2013 3 3 96 100 10.4236/ijoc.2013.33A009
    [Google Scholar]
  48. Rimaz M. Khalafy J. Mousavi H. A green organocatalyzed one-pot protocol for efficient synthesis of new substituted pyrimido[4,5-d]pyrimidinones using a Biginelli-like reaction. Res. Chem. Intermed. 2016 42 12 8185 8200 10.1007/s11164‑016‑2588‑6
    [Google Scholar]
  49. Rimaz M. Khalafy J. Mousavi H. Bohlooli S. Khalili B. Two different green catalytic systems for one‐pot regioselective and chemoselective synthesis of some pyrimido[4,5‐ d]pyrimidinone derivatives in water. J. Heterocycl. Chem. 2017 54 6 3174 3186 10.1002/jhet.2932
    [Google Scholar]
  50. Hassanpour A. Khanmiri R.H. Abolhasani J. ZnO nanoparticles as an efficient, heterogeneous, reusable, and ecofriendly catalyst for one-pot, three-component synthesis of 3,4-dihydropyrimidin-2(1 h)-(thio)one derivatives in water. Synth. Commun. 2015 45 6 727 733 10.1080/00397911.2014.987350
    [Google Scholar]
  51. Vessally E. Hassanpour A. Hosseinzadeh-Khanmiri R. Babazadeh M. Abolhasani J. Green and recyclable sulfonated graphene and graphene oxide nanosheet catalysts for the syntheses of 3,4-dihydropyrimidinones. Monatsh. Chem. 2017 148 2 321 326 10.1007/s00706‑016‑1762‑2
    [Google Scholar]
  52. Surendrakumar R. Idhayadhulla A. Alarifi S. Ahamed N.A. Sathish Kumar C. Antioxidant activity of telmisartan-cu(ii) nanoparticles connected 2‐pyrimidinamine and their evaluation of cytotoxicity activities. BioMed Res. Int. 2020 2020 1 8872479 10.1155/2020/8872479 33282956
    [Google Scholar]
  53. Li X. Lv C. Jia X. Cheng M. Wang K. Hu Z. Nanoparticle based on poly(ionic liquid) as an efficient solid immobilization catalyst for aldol reaction and multicomponent reaction in water. ACS Appl. Mater. Interfaces 2017 9 1 827 835 10.1021/acsami.6b12334 27966886
    [Google Scholar]
  54. Mohammad Zaheri H. Javanshir S. Hemmati B. Dolatkhah Z. Fardpour M. Magnetic core-shell Carrageenan moss/Fe3O4: A polysaccharide-based metallic nanoparticles for synthesis of pyrimidinone derivatives via Biginelli reaction. Chem. Cent. J. 2018 12 1 108 10.1186/s13065‑018‑0477‑3 29318401
    [Google Scholar]
  55. Safa K.D. Esmaili M. Allahvirdinesbat M. Aqua-mediated one-pot synthesis of Biginelli dihydropyrimidinone/thiones (DHPMs), Hantzsch dihydropyridines (DHPs), and polysubstituted pyridines sonocatalyzed by metal-supported nanocatalysts. J. Indian Chem. Soc. 2016 13 2 267 277 10.1007/s13738‑015‑0734‑5
    [Google Scholar]
  56. Ghanbarian M. Beheshtiha S.Y.S. Heravi M.M. Mirzaei M. Zadsirjan V. Lotfian N. A nano-sized nd-ag@polyoxometalate catalyst for catalyzing the multicomponent hantzsch and Biginelli reactions. J. Cluster Sci. 2020 31 6 1295 1306 10.1007/s10876‑019‑01739‑w
    [Google Scholar]
  57. Siddiqui Z.N. Bis[(L)prolinato-N,O]Zn-water: A green catalytic system for the synthesis of 3,4-dihydropyrimidin-2 (1H)-ones via the Biginelli reaction. C. R. Chim. 2012 16 2 183 188 10.1016/j.crci.2012.10.008
    [Google Scholar]
  58. Prosa N. Turgis R. Piccardi R. Scherrmann M.C. Soluble polymer‐supported flow synthesis: A green process for the preparation of heterocycles. Eur. J. Org. Chem. 2012 2012 11 2188 2200 10.1002/ejoc.201101726
    [Google Scholar]
  59. Attar S.R. Sapkal A.C. Dhane N.S. Kamble S.B. Agar supported nio NPs: A sustainable approach for synthesis of 3,4 dihydropyrimidin 2 (1h) ones in aqueous hydrotropic media. Catal. Lett. 2024 154 3 1160 1172 10.1007/s10562‑023‑04375‑2
    [Google Scholar]
  60. Sadjadi S. Koohestani F. Bentonite with high loading of ionic liquid: A potent non-metallic catalyst for the synthesis of dihydropyrimidinones. J. Mol. Liq. 2020 319 114393 10.1016/j.molliq.2020.114393
    [Google Scholar]
  61. Riaz M. Qureshi M.T. Ali F.I. Muhammad S. Bari A. Henderson W. Hashmi I.A. Sulfonic group functionalized task specific ionic liquid as catalyst for biginelli reaction in water and co2+/ni2+ separation from their aqueous mixture. J. Sulfur Chem. 2024 1 19 10.1080/17415993.2024.2440046
    [Google Scholar]
  62. Milović E. Janković N. Vraneš M. Stefanović S. Petronijević J. Joksimović N. Muškinja J. Ratković Z. Green one-pot synthesis of pyrido-dipyrimidine DNA-base hybrids in water. Environ. Chem. Lett. 2021 19 1 729 736 10.1007/s10311‑020‑01076‑9
    [Google Scholar]
  63. Hatvate N.T. Ghodse S.M. Mundlod K.N. Telvekar V.N. Metal-Free synthesis of pyrimidinone derivatives via biginelli reaction using aqueous NaICl2. Lett. Org. Chem. 2020 17 8 613 617 10.2174/1570178617666191126095808
    [Google Scholar]
  64. Ghomi J.S. Bakhtiari A. Ultrasonic accelerated biginelli‐like reaction by the covalently anchored copper‐isatoic anhydride over the modified surface of mesoporous SBA‐15 to the synthesis of pyrimidines. ChemistrySelect 2018 3 44 12704 12711 10.1002/slct.201802435
    [Google Scholar]
  65. Salem M.A. Behalo M.S. Elrazaz E. Green synthesis and 3D pharmacophore study of pyrimidine and glucoside derivatives with in vitro potential anticancer and antioxidant activities. Med. Chem. Res. 2019 28 8 1223 1234 10.1007/s00044‑019‑02367‑9
    [Google Scholar]
  66. Venkatesh T. Bodke Y.D. J, A.R.S. Facile can catalyzed one pot synthesis of novel indol-5,8-pyrimido[4,5-d]pyrimidine derivatives and their pharmacological study. Chemical Data Collections 2020 25 100335 10.1016/j.cdc.2019.100335
    [Google Scholar]
  67. Kumar G. Bhargava G. Kumar Y. Kumar R. Eosin Y. Eosin y photocatalyzed access to biginelli reaction using primary alcohols via domino multicomponent cascade: An approach towards sustainable synthesis of 3,4-dihydropyrimidin-2(1H)-ones. J. Chem. Sci. 2022 134 2 44 10.1007/s12039‑022‑02039‑z
    [Google Scholar]
  68. Elkanzi N.A.A. Kadry A.M. Ryad R.M. Bakr R.B. Ali El-Remaily M.A.E.A.A. Ali A.M. Efficient and recoverable bio-organic catalyst cysteine for synthesis, docking study, and antifungal activity of new bio-active 3,4-dihydropyrimidin-2(1H)-ones/thiones under microwave irradiation. ACS Omega 2022 7 26 22839 22849 10.1021/acsomega.2c02449 35811927
    [Google Scholar]
  69. Gurav R. Gurav A. Salunkhe-Gawali S. Jadhav S. Choudhari P. Sankpal S. Hangirgekar S. Ficus benghalensis leaf extract in biosynthesis of Fe3O4 for Fe3O4 @Ag‐S‐CH2‐COOH: A novel catalyst for synthesis of new 3,4‐dihydropyrimidin‐2(1H)‐ones and their anticancer evaluation. Appl. Organomet. Chem. 2022 36 3 e6547 10.1002/aoc.6547
    [Google Scholar]
  70. Ghobakhloo F. Azarifar D. Mohammadi M. Ghaemi M. γ‐Fe2O3@Cu3 Al‐LDH/HEPES a novel heterogeneous amphoteric catalyst for synthesis of annulated pyrazolo[3,4‐d]pyrimidines. Appl. Organomet. Chem. 2022 36 10 e6823 10.1002/aoc.6823
    [Google Scholar]
  71. Jagwani D. Joshi P. A Greener chemistry approach for synthesis of 4-(4-hydroxyphenyl)-6-methyl-2-oxo-1,2,3,4 tetrahydropyrimidine-5-carbo-xylic acid ethyl ester. Int. J. Pharm. Sci. Res. 2014 5 12 5548 5555 10.13040/IJPSR.0975‑8232.5(12).5548‑55
    [Google Scholar]
  72. Patra A. Mahapatra T. Environmentally green synthesis of biginelli compounds (IV), some fused (VII) and spiro-fused analogues (IX) and bis(Indolyl)methanes (XII). J. Indian Chem. Soc. 2015 46 10
    [Google Scholar]
  73. Ding Z. Wu Y. Liu L. Qi B. Peng Z. Construction of isocytosine scaffolds via DNA-compatible Biginelli-like reaction. Org. Lett. 2023 25 29 5515 5519 10.1021/acs.orglett.3c01986 37462924
    [Google Scholar]
  74. Paprocki D. Madej A. Koszelewski D. Brodzka A. Ostaszewski R. Multicomponent reactions accelerated by aqueous micelles. Front Chem. 2018 6 502 10.3389/fchem.2018.00502 30406083
    [Google Scholar]
  75. Sharma S.D. Gogoi P. Konwar D. A highly efficient and green method for the synthesis of 3,4-dihydropyrimidin-2-ones and 1,5-benzodiazepines catalyzed by dodecyl sulfonic acid in water. Green Chem. 2007 9 2 153 157 10.1039/B611327C
    [Google Scholar]
  76. Bhattacharjee D. Myrboh B. An efficient, surfactant mediated Biginelli condensation for the one pot synthesis of dihydropyrimidine derivatives. Tetrahedron Lett. 2022 104 154020 10.1016/j.tetlet.2022.154020
    [Google Scholar]
  77. Xu F. Wang J.J. Tian Y.P. New procedure for one‐pot synthesis of 3,4‐dihydropyrimidin‐2(1H)‐ones by Biginelli reaction. Synth. Commun. 2008 38 8 1299 1310 10.1080/00397910701873524
    [Google Scholar]
  78. Bigdeli M.A. Gholami G. Sheikhhosseini E. P-Dodecylbenzenesulfonic acid (DBSA), a Brønsted acid-surfactant catalyst for Biginelli reaction in water and under solvent free conditions. Chin. Chem. Lett. 2011 22 8 903 906 10.1016/j.cclet.2010.12.030
    [Google Scholar]
/content/journals/coc/10.2174/0113852728403897250831200808
Loading
/content/journals/coc/10.2174/0113852728403897250831200808
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: green method ; Multicomponent reaction ; catalyst ; dihydropyrimidinone ; urea ; water
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test