Skip to content
2000
Volume 30, Issue 6
  • ISSN: 1385-2728
  • E-ISSN: 1875-5348

Abstract

Nitrogen-containing heterocycles play a crucial role in medicinal chemistry and drug discovery, as several anticancer FDA-approved medicines are based on these compounds. Their structural and biological properties significantly impact their anticancer activity. Pyrazole and pyrimidine scaffolds show great anticancer potential. This review summarizes the synthesis and anticancer activity of several pyrazole and pyrimidine-based compounds, which exhibit great potential as cancer treatment candidates. The structural and biological characteristics of pyrazole and pyrimidine rings make them suitable scaffolds for designing novel anticancer agents. This review describes various synthetic routes for the preparation of pyrazole and pyrimidine derivatives, as well as their mechanisms of action in cancer therapy. These compounds exhibit potent cytotoxicity against breast, lung, and colon cancer cell lines. A detailed synthesis scheme shows how to incorporate pyrazole and pyrimidine scaffolds into medicinal compounds. Recent studies suggest that these derivatives exhibit substantial antitumor effects, supporting their development as targeted cancer therapies. Through the detailed description of synthesis, mechanisms of action, and anticancer activity, this review provides useful information on pyrazole and pyrimidine derivatives as potential future anticancer agents, highlighting their therapeutic potential in cancer treatment.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728402678250728094527
2025-08-21
2026-02-22
Loading full text...

Full text loading...

References

  1. YounesianS. MohammadiM.H. YounesianO. MomenyM. GhaffariS.H. BashashD. DNA methylation in human diseases.Heliyon20241011e3236610.1016/j.heliyon.2024.e32366 38933971
    [Google Scholar]
  2. ZhangW. XuJ. DNA methyltransferases and their roles in tumorigenesis.Biomark. Res.201751110.1186/s40364‑017‑0081‑z 28127428
    [Google Scholar]
  3. Tommasini-GhelfiS. MurnanK. KouriF.M. MahajanA.S. MayJ.L. SteghA.H. Cancer-associated mutation and beyond: The emerging biology of isocitrate dehydrogenases in human disease.Sci. Adv.201955eaaw454310.1126/sciadv.aaw4543 31131326
    [Google Scholar]
  4. MatteiA.L. BaillyN. MeissnerA. DNA methylation: A historical perspective.Trends Genet.202238767670710.1016/j.tig.2022.03.010 35504755
    [Google Scholar]
  5. ShehataS.A. ToraihE.A. IsmailE.A. HagrasA.M. ElmorsyE. FawzyM.S. Vaping, environmental toxicants exposure, and lung cancer risk.Cancers20231518452510.3390/cancers15184525 37760496
    [Google Scholar]
  6. ZaniniS. RenziS. LimongiA.R. BellaviteP. GiovinazzoF. BermanoG. A review of lifestyle and environment risk factors for pancreatic cancer.Eur. J. Cancer2021145537010.1016/j.ejca.2020.11.040 33423007
    [Google Scholar]
  7. MbemiA. KhannaS. NjikiS. YedjouC.G. TchounwouP.B. Impact of gene-environment interactions on cancer development.Int. J. Environ. Res. Public Health20201721808910.3390/ijerph17218089 33153024
    [Google Scholar]
  8. ZouK. SunP. HuangH. ZhuoH. QieR. XieY. LuoJ. LiN. LiJ. HeJ. Aschebrook-KilfoyB. ZhangY. Etiology of lung cancer: Evidence from epidemiologic studies.J. Natl. Cancer Cent.20222421622510.1016/j.jncc.2022.09.004 39036545
    [Google Scholar]
  9. RaderJ.S. TsaihS.W. FullinD. MurrayM.W. IdenM. ZimmermannM.T. FlisterM.J. Genetic variations in human papillomavirus and cervical cancer outcomes.Int. J. Cancer201914492206221410.1002/ijc.32038 30515767
    [Google Scholar]
  10. PešutE. ĐukićA. LulićL. SkelinJ. ŠimićI. Milutin GašperovN. TomaićV. SabolI. GrceM. Human papillomaviruses-associated cancers: An update of current knowledge.Viruses20211311223410.3390/v13112234 34835040
    [Google Scholar]
  11. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  12. MarinoP. MininniM. DeianaG. MarinoG. DivellaR. BochicchioI. GiulianoA. LapadulaS. LettiniA.R. SanseverinoF. Healthy lifestyle and cancer risk: Modifiable risk factors to prevent cancer.Nutrients202416680010.3390/nu16060800 38542712
    [Google Scholar]
  13. LiuB. ZhouH. TanL. SiuK.T.H. GuanX.Y. Exploring treatment options in cancer: Tumor treatment strategies.Signal Transduct. Target. Ther.20249117510.1038/s41392‑024‑01856‑7 39013849
    [Google Scholar]
  14. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.202192050312121103436610.1177/20503121211034366 34408877
    [Google Scholar]
  15. YamagiwaY. TanakaS. AbeS.K. ShimazuT. InoueM. A cross-sectional survey on awareness of cancer risk factors, information sources and health behaviors for cancer prevention in Japan.Sci. Rep.20221211460610.1038/s41598‑022‑18853‑x 36028524
    [Google Scholar]
  16. CaoC. WangX. YangN. SongX. DongX. Recent advances of cancer chemodynamic therapy based on Fenton/Fenton-like chemistry.Chem. Sci. (Camb.)202213486388910.1039/D1SC05482A 35211255
    [Google Scholar]
  17. LinC. TsaiS.C.S. HuangJ.Y. LinF.C.F. HPV infection and breast cancer risk: Insights from a nationwide population study in Taiwan.Front. Oncol.202313121038110.3389/fonc.2023.1210381 37519781
    [Google Scholar]
  18. YeF. DewanjeeS. LiY. JhaN.K. ChenZ.S. KumarA. Vishakha; Behl, T.; Jha, S.K.; Tang, H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer.Mol. Cancer202322110510.1186/s12943‑023‑01805‑y 37415164
    [Google Scholar]
  19. WangD.R. WuX.L. SunY.L. Therapeutic targets and biomarkers of tumor immunotherapy: Response versus non-response.Signal Transduct. Target. Ther.20227133110.1038/s41392‑022‑01136‑2 36123348
    [Google Scholar]
  20. TufailM. HuJ.J. LiangJ. HeC.Y. WanW.D. HuangY.Q. JiangC.H. WuH. LiN. Hallmarks of cancer resistance.iScience202427610997910.1016/j.isci.2024.109979 38832007
    [Google Scholar]
  21. KondaP. GarinetS. Van AllenE.M. ViswanathanS.R. Genome-guided discovery of cancer therapeutic targets.Cell Rep.202342811297810.1016/j.celrep.2023.112978 37572322
    [Google Scholar]
  22. Taruneshwar JhaK. ShomeA. Chahat; Chawla, P.A. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship.Bioorg. Chem.202313810668010.1016/j.bioorg.2023.106680 37336103
    [Google Scholar]
  23. KerruN. GummidiL. MaddilaS. GanguK.K. JonnalagaddaS.B. A review on recent advances in nitrogen-containing molecules and their biological applications.Molecules2020258190910.3390/molecules25081909 32326131
    [Google Scholar]
  24. GroverG. NathR. BhatiaR. AkhtarM.J. Synthetic and therapeutic perspectives of nitrogen containing heterocycles as anti-convulsants.Bioorg. Med. Chem.2020281511558510.1016/j.bmc.2020.115585 32631563
    [Google Scholar]
  25. LangD.K. KaurR. AroraR. SainiB. AroraS. Nitrogen-containing heterocycles as anticancer agents: An overview.Anticancer. Agents Med. Chem.202020182150216810.2174/1871520620666200705214917 32628593
    [Google Scholar]
  26. VitakuE. SmithD.T. NjardarsonJ.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals.J. Med. Chem.20145724102571027410.1021/jm501100b 25255204
    [Google Scholar]
  27. HeraviM.M. ZadsirjanV. Prescribed drugs containing nitrogen heterocycles: an overview.RSC Advances20201072442474431110.1039/D0RA09198G 35557843
    [Google Scholar]
  28. MarshallC.M. FedericeJ.G. BellC.N. CoxP.B. NjardarsonJ.T. An update on the nitrogen heterocycle compositions and properties of U.S. FDA-Approved Pharmaceuticals (2013-2023).J. Med. Chem.20246714116221165510.1021/acs.jmedchem.4c01122 38995264
    [Google Scholar]
  29. EbenezerO. JordaanM.A. CarenaG. BonoT. ShapiM. TuszynskiJ.A. An overview of the biological evaluation of selected nitrogen-containing heterocycle medicinal chemistry compounds.Int. J. Mol. Sci.20222315811710.3390/ijms23158117 35897691
    [Google Scholar]
  30. KumarA. SinghA.K. SinghH. VijayanV. KumarD. NaikJ. TharejaS. YadavJ.P. PathakP. GrishinaM. VermaA. KhalilullahH. JaremkoM. EmwasA.H. KumarP. Nitrogen containing heterocycles as anticancer agents: A medicinal chemistry perspective.Pharmaceuticals202316229910.3390/ph16020299 37259442
    [Google Scholar]
  31. GomtsyanA. Heterocycles in drugs and drug discovery.Chem. Heterocycl. Compd.201248171010.1007/s10593‑012‑0960‑z
    [Google Scholar]
  32. JampilekJ. Heterocycles in medicinal chemistry.Molecules20192421383910.3390/molecules24213839 31731387
    [Google Scholar]
  33. KabirE. UzzamanM. A review on biological and medicinal impact of heterocyclic compounds.Results Chem.2022410060610.1016/j.rechem.2022.100606
    [Google Scholar]
  34. OverbeekD.L. Beta-blockers. In: Reference Module in Biomedical Sciences.Elsevier201810.1016/B978‑0‑12‑824315‑2.00525‑X
    [Google Scholar]
  35. StraussM.H. HallA.S. NarkiewiczK. The combination of beta-blockers and ACE inhibitors across the spectrum of cardiovascular diseases.Cardiovasc. Drugs Ther.202337475777010.1007/s10557‑021‑07248‑1 34533690
    [Google Scholar]
  36. SpencerA.C. PandaS.S. DNA gyrase as a target for quinolones.Biomedicines202311237110.3390/biomedicines11020371 36830908
    [Google Scholar]
  37. BrarR.K. JyotiU. PatilR.K. PatilH.C. Fluoroquinolone antibiotics: An overview.Adesh. Univ. J. Med. Sci. Res.202022630
    [Google Scholar]
  38. PuranikN. SongM. Therapeutic role of heterocyclic compounds in neurodegenerative diseases: insights from Alzheimer’s and Parkinson’s diseases.Neurol. Int.20251722610.3390/neurolint17020026 39997657
    [Google Scholar]
  39. GulevichA.V. DudnikA.S. ChernyakN. GevorgyanV. Transition metal-mediated synthesis of monocyclic aromatic heterocycles.Chem. Rev.201311353084321310.1021/cr300333u 23305185
    [Google Scholar]
  40. RoyS. DasS.K. KhatuaH. DasS. ChattopadhyayB. Road Map for the Construction of High-Valued N -Heterocycles via Denitrogenative Annulation.Acc. Chem. Res.202154234395440910.1021/acs.accounts.1c00563 34761918
    [Google Scholar]
  41. KumariS. MaddeboinaK. BachuR.D. BodduS.H.S. TrippierP.C. TiwariA.K. Pivotal role of nitrogen heterocycles in Alzheimer’s disease drug discovery.Drug Discov. Today2022271010332210.1016/j.drudis.2022.07.007 35868626
    [Google Scholar]
  42. SahuD. SreekanthP.S.R. BeheraP.K. PradhanM.K. PatnaikA. SalunkheS. CepR. Advances in synthesis, medicinal properties and biomedical applications of pyridine derivatives: A comprehensive review.Eur J. Med. Chem. Rep.20241210021010.1016/j.ejmcr.2024.100210
    [Google Scholar]
  43. QadirT. AminA. SharmaP.K. JeelaniI. AbeH. A review on medicinally important heterocyclic compounds.Open Med. Chem. J.2022161e18741045220228010.2174/18741045‑v16‑e2202280
    [Google Scholar]
  44. ChernyshovV.V. PopadyukI.I. YarovayaO.I. SalakhutdinovN.F. Nitrogen-containing heterocyclic compounds obtained from monoterpenes or their derivatives: Synthesis and properties.Top. Curr. Chem. (Cham)202238054210.1007/s41061‑022‑00399‑1 35951263
    [Google Scholar]
  45. Pérez-MayoralE. Godino-OjerM. Pastrana-MartínezL.M. Morales-TorresS. Maldonado-HódarF.J. Eco‐sustainable Synthesis of N ‐containing Heterocyclic Systems Using Porous Carbon Catalysts.ChemCatChem20231523e20230096110.1002/cctc.202300961
    [Google Scholar]
  46. CostaR.F. TuronesL.C. CavalcanteK.V.N. Rosa JúniorI.A. XavierC.H. RossetoL.P. NapolitanoH.B. CastroP.F.S. NetoM.L.F. GalvãoG.M. MenegattiR. PedrinoG.R. CostaE.A. MartinsJ.L.R. FajemiroyeJ.O. Heterocyclic compounds: Pharmacology of pyrazole analogs from rational structural considerations.Front. Pharmacol.20211266672510.3389/fphar.2021.666725 34040529
    [Google Scholar]
  47. ChauhanS. PaliwalS. ChauhanR. Anticancer activity of pyrazole via different biological mechanisms.Synth. Commun.201444101333137410.1080/00397911.2013.837186
    [Google Scholar]
  48. ZhangY. WuC. ZhangN. FanR. YeY. XuJ. Recent advances in the development of pyrazole derivatives as anticancer agents.Int. J. Mol. Sci.202324161272410.3390/ijms241612724 37628906
    [Google Scholar]
  49. Zawadzińska-WrochniakK. ZaveczI. HirkaS. The recent progress in the field of the applications of isoxazoles and their hydrogenated analogs: Mini review.Scientiae Radices20243422824710.58332/scirad2024v3i4a01
    [Google Scholar]
  50. SadowskiM. Synkiewicz-MusialskaB. KulaK. (1E,3E)-1,4-Dinitro-1,3-butadiene—synthesis, spectral characteristics and computational study based on MEDT, ADME and PASS simulation.Molecules202429254210.3390/molecules29020542 38276620
    [Google Scholar]
  51. KurbanB. SağlıkB.N. OsmaniyeD. LeventS. ÖzkayY. KaplancıklıZ.A. Synthesis and anticancer activities of pyrazole-thiadiazole-based EGFR inhibitors.ACS Omega2023834315003150910.1021/acsomega.3c04635 37663500
    [Google Scholar]
  52. KumarH. SainiD. JainS. JainN. Pyrazole scaffold: A remarkable tool in the development of anticancer agents.Eur. J. Med. Chem.20137024825810.1016/j.ejmech.2013.10.004 24161702
    [Google Scholar]
  53. BhusareN. KumarM. A review on potential heterocycles for the treatment of glioblastoma targeting receptor tyrosine kinases.Oncol. Res.202432584987510.32604/or.2024.047042 38686058
    [Google Scholar]
  54. BhullarK.S. LagarónN.O. McGowanE.M. ParmarI. JhaA. HubbardB.P. RupasingheH.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions.Mol. Cancer20181714810.1186/s12943‑018‑0804‑2 29455673
    [Google Scholar]
  55. YuanK. WangX. DongH. MinW. HaoH. YangP. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs.Acta Pharm. Sin. B2021111305410.1016/j.apsb.2020.05.001 33532179
    [Google Scholar]
  56. HrubaL. DasV. HajduchM. DzubakP. Nucleoside-based anticancer drugs: Mechanism of action and drug resistance.Biochem. Pharmacol.202321511574110.1016/j.bcp.2023.115741 37567317
    [Google Scholar]
  57. FadalyW.A.A. NemrM.T.M. KahkN.M. Discovery of novel pyrazole based Urea/Thiourea derivatives as multiple targeting VEGFR-2, EGFRWT, EGFRT790M tyrosine kinases and COX-2 Inhibitors, with anti-cancer and anti-inflammatory activities.Bioorg. Chem.202414710740310.1016/j.bioorg.2024.107403 38691909
    [Google Scholar]
  58. KasiotisK.M. TzanetouE.N. HaroutounianS.A. Pyrazoles as potential anti-angiogenesis agents: A contemporary overview.Front Chem.201427810.3389/fchem.2014.00078 25250310
    [Google Scholar]
  59. KandhasamyK. SurajambikaR.R. VelayudhamP.K. Pyrazolo - Pyrimidines as targeted anticancer scaffolds: A comprehensive review.Med. Chem.202420329331010.2174/0115734064251256231018104623 37885114
    [Google Scholar]
  60. BebbD.G. AgulnikJ. AlbadineR. BanerjiS. BigrasG. ButtsC. CoutureC. CutzJ.C. DesmeulesP. IonescuD.N. LeighlN.B. MeloskyB. MorzyckiW. Rashid-KolvearF. SekhonH.S. SmithA.C. StockleyT.L. TorlakovicE. XuZ. TsaoM.S. TsaoM.S. Crizotinib inhibition of ROS1-positive tumours in advanced non-small-cell lung cancer: A Canadian perspective.Curr. Oncol.201926455155710.3747/co.26.5137 31548824
    [Google Scholar]
  61. OstojicA. VrhovacR. VerstovsekS. Ruxolitinib: A new JAK1/2 inhibitor that offers promising options for treatment of myelofibrosis.Future Oncol.2011791035104310.2217/fon.11.81 21919691
    [Google Scholar]
  62. FurumotoY. GadinaM. The arrival of JAK inhibitors: Advancing the treatment of immune and hematologic disorders.BioDrugs201327543143810.1007/s40259‑013‑0040‑7 23743669
    [Google Scholar]
  63. PaikP.K. FelipE. VeillonR. SakaiH. CortotA.B. GarassinoM.C. MazieresJ. ViteriS. SenellartH. Van MeerbeeckJ. RaskinJ. ReinmuthN. ConteP. KowalskiD. ChoB.C. PatelJ.D. HornL. GriesingerF. HanJ.Y. KimY.C. ChangG.C. TsaiC.L. YangJ.C.H. ChenY.M. SmitE.F. van der WekkenA.J. KatoT. JuraevaD. StrohC. BrunsR. StraubJ. JohneA. ScheeleJ. HeymachJ.V. LeX. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations.N. Engl. J. Med.20203831093194310.1056/NEJMoa2004407 32469185
    [Google Scholar]
  64. SethyC. KunduC.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition.Biomed. Pharmacother.202113711128510.1016/j.biopha.2021.111285 33485118
    [Google Scholar]
  65. ChintalaL. VakaS. BarandaJ. WilliamsonS.K. Capecitabine versus 5-fluorouracil in colorectal cancer: Where are we now?Oncol. Rev.20115212914010.1007/s12156‑011‑0074‑3
    [Google Scholar]
  66. BuquéA. ArestiU. CalvoB.Sh. MuhialdinJ. MuñozA. CarreraS. Thymidylate synthase expression determines pemetrexed targets and resistance development in tumour cells.PLoS One201385e6333810.1371/journal.pone.0063338
    [Google Scholar]
  67. ZhouH.Q. ZhangY.X. ChenG. YuQ.T. ZhangH. WuG.W. WuD. LinY.C. ZhuJ.F. ChenJ.H. HuX.H. LanB. ZhouZ.Q. LinH.F. WangZ.B. LeiX.L. PanS.M. ChenL.M. ZhangJ. KongT.D. YaoJ.C. ZhengX. LiF. ZhangL. FangW.F. Gefitinib (an EGFR tyrosine kinase inhibitor) plus anlotinib (an multikinase inhibitor) for untreated, EGFR-mutated, advanced non-small cell lung cancer (FL-ALTER): a multicenter phase III trial.Signal Transduct. Target. Ther.20249121510.1038/s41392‑024‑01927‑9 39134529
    [Google Scholar]
  68. WhiteP.T. CohenM.S. The discovery and development of sorafenib for the treatment of thyroid cancer.Expert Opin. Drug Discov.201510442743910.1517/17460441.2015.1006194 25662396
    [Google Scholar]
  69. WilsonZ. OdedraR. WallezY. WijnhovenP.W.G. HughesA.M. GerrardJ. JonesG.N. Bargh-DawsonH. BrownE. YoungL.A. O’ConnorM.J. LauA. ATR inhibitor AZD6738 (Ceralasertib) exerts antitumor activity as a monotherapy and in combination with chemotherapy and the PARP inhibitor olaparib.Cancer Res.20228261140115210.1158/0008‑5472.CAN‑21‑2997 35078817
    [Google Scholar]
  70. EttrichT.J. SeufferleinT. Regorafenib. In: Small molecules in oncology.Cham, SwitzerlandSpringer International Publishing2018455610.1007/978‑3‑319‑91442‑8_3
    [Google Scholar]
  71. YamamotoY. MatsuiJ. MatsushimaT. ObaishiH. MiyazakiK. NakamuraK. TohyamaO. SembaT. YamaguchiA. HoshiS. MimuraF. HanedaT. FukudaY. KamataJ. TakahashiK. MatsukuraM. WakabayashiT. AsadaM. NomotoK. WatanabeT. DezsoZ. YoshimatsuK. FunahashiY. TsuruokaA. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage.Vasc. Cell2014611810.1186/2045‑824X‑6‑18 25197551
    [Google Scholar]
  72. BennaniF.E. DoudachL. CherrahY. RamliY. KarrouchiK. AnsarM. FaouziM.E.A. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line.Bioorg. Chem.20209710347010.1016/j.bioorg.2019.103470 32120072
    [Google Scholar]
  73. DoanN.Q.H. NguyenN.T.K. DuongV.B. NguyenH.T.T. VongL.B. DuongD.N. NguyenN.T.T. NguyenT.L.T. DoT.T.H. TruongT.N. Synthesis, biological evaluation, and molecular modeling studies of 1-Aryl-1 H -pyrazole-fused curcumin analogues as anticancer agents.ACS Omega2022738339633398410.1021/acsomega.2c02933 36188331
    [Google Scholar]
  74. MuruganR. NayakS.P.R.R. HaridevamuthuB. PriyaD. RajagopalR. PasupuletiM. GuruA. KumaradossK.M. ArockiarajJ. Multifaceted evaluation of pyrazole derivative (T4)-chitosan (CS) nanoparticles: Morphology, drug release, and anti-tumor efficacy in a rat model.Int. J. Biol. Macromol.2024283Pt 313770210.1016/j.ijbiomac.2024.137702 39549794
    [Google Scholar]
  75. AlamM.J. AlamO. NaimM.J. NawazF. ManaithiyaA. ImranM. ThabetH.K. AlshehriS. GhoneimM.M. AlamP. ShakeelF. Recent advancement in drug design and discovery of pyrazole biomolecules as cancer and inflammation therapeutics.Molecules20222724870810.3390/molecules27248708 36557840
    [Google Scholar]
  76. SalemM.G. NafieM.S. ElzamekA.A. ElshihawyH.A. SofanM.A. NegmE. Design, synthesis, and biological investigations of new pyrazole derivatives as VEGFR2/CDK-2 inhibitors targeting liver cancer.BMC Chem.202418120810.1186/s13065‑024‑01314‑z 39449145
    [Google Scholar]
  77. PaulM.K. MukhopadhyayA.K. Tyrosine kinase - Role and significance in Cancer.Int. J. Med. Sci.20041210111510.7150/ijms.1.101 15912202
    [Google Scholar]
  78. MermerA. Orhanİ.E. YeG. KumarN.A. DanacR. Editorial: Five-membered ring heterocyclic compounds as anticancer drug candidates.Front Chem.202513159914010.3389/fchem.2025.1599140 40242658
    [Google Scholar]
  79. KumarS. DeepA. NarasimhanB. A review on synthesis, anticancer and antiviral potentials of pyrimidine derivatives.Curr. Bioact. Compd.201915328930310.2174/1573407214666180124160405
    [Google Scholar]
  80. KaurR. KaurP. SharmaS. SinghG. MehndirattaS. BediP. NepaliK. Anti-cancer pyrimidines in diverse scaffolds: A review of patent literature.Recent Patents Anticancer Drug Discov.2014101237110.2174/1574892809666140917104502 25230072
    [Google Scholar]
  81. AmrA.G.E. MohamedA.M. MohamedS.F. Abdel-HafezN.A. HammamA.E.F.G. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives.Bioorg. Med. Chem.200614165481548810.1016/j.bmc.2006.04.045 16713269
    [Google Scholar]
  82. MahapatraA. PrasadT. SharmaT. Pyrimidine: A review on anticancer activity with key emphasis on SAR.Future J. Pharm. Sci.20217112310.1186/s43094‑021‑00274‑8
    [Google Scholar]
  83. ZhangN. YinY. XuS.J. ChenW.S. 5-Fluorouracil: Mechanisms of resistance and reversal strategies.Molecules20081381551156910.3390/molecules13081551 18794772
    [Google Scholar]
  84. ElgemeieG.H. Mohamed-EzzatR.A. Pyrimidine-based anticancer drugs. In: New Strategies Targeting Cancer Metabolism.Elsevier202210714210.1016/B978‑0‑12‑821783‑2.00006‑6
    [Google Scholar]
  85. KulaK. DoboszJ. JasińskiR. Kącka-ZychA. Łapczuk-KrygierA. MirosławB. DemchukO.M. [3+2] Cycloaddition of diaryldiazomethanes with (E)-3,3,3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study.J. Mol. Struct.2020120312747310.1016/j.molstruc.2019.127473
    [Google Scholar]
  86. KulaK. ŁapczukA. SadowskiM. KrasJ. ZawadzińskaK. DemchukO.M. GauravG.K. WróblewskaA. JasińskiR. On the question of the formation of nitro-functionalized 2,4-pyrazole analogs on the basis of Nitrylimine molecular systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene.Molecules20222723840910.3390/molecules27238409 36500503
    [Google Scholar]
  87. LuoW.J. LiangX. ChenM. WangK.H. HuangD. WangJ. ChenD.P. HuY. [3 + 2] cycloaddition reaction of Vinylsulfonium salts with hydrazonoyl halides: Synthesis of pyrazoles.J. Org. Chem.20248914100661007610.1021/acs.joc.4c00910 38953547
    [Google Scholar]
  88. Kumara SwamyK.C. SandeepK. Sanjeeva KumarA. QureshiA.A. (3+2) Cycloadditions of vinyl sulfonyl fluorides with ethyl diazoacetate or azides: Metal-free synthesis of pyrazole and triazole scaffolds via SO2 elimination.Synthesis202254184111411910.1055/s‑0041‑1737485
    [Google Scholar]
  89. ZouX. ZhengL. ZhuoX. ZhongY. WuY. YangB. HeQ. GuoW. Copper-promoted aerobic oxidative [3+2] cycloaddition reactions of n,n-disubstituted hydrazines with alkynoates: Access to substituted pyrazoles.J. Org. Chem.20238842190220610.1021/acs.joc.2c02610 36724037
    [Google Scholar]
  90. LiuJ. JiaX. ZhangY. Phosphine-Free [3+2] Cycloaddition of Propargylamines with Dialkyl Azodicarboxylates: An efficient access to pyrazole backbone.Synthesis201850173499350510.1055/s‑0037‑1610168
    [Google Scholar]
  91. PellarinI. Dall’AcquaA. FaveroA. SegattoI. RossiV. CrestanN. KarimbayliJ. BellettiB. BaldassarreG. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease.Signal Transduct. Target. Ther.20251011110.1038/s41392‑024‑02080‑z 39800748
    [Google Scholar]
  92. ŁukasikP. ZałuskiM. GutowskaI. Cyclin-Dependent Kinases (CDK) and their role in diseases development-review.Int. J. Mol. Sci.2021226293510.3390/ijms22062935 33805800
    [Google Scholar]
  93. MosadeghM. Noori GoodarziN. ErfaniY. A comprehensive insight into apoptosis: Molecular mechanisms, signaling pathways, and modulating therapeutics.Cancer Invest.2025431335810.1080/07357907.2024.2445528 39760426
    [Google Scholar]
  94. WaniA.K. AkhtarN. MirT.G. SinghR. JhaP.K. MallikS.K. SinhaS. TripathiS.K. JainA. JhaA. DevkotaH.P. PrakashA. Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials.Biomolecules202313219410.3390/biom13020194 36830564
    [Google Scholar]
  95. AlmilaibaryA. Phyto-therapeutics as anti-cancer agents in breast cancer: Pathway targeting and mechanistic elucidation.Saudi J. Biol. Sci.202431310393510.1016/j.sjbs.2024.103935 38327657
    [Google Scholar]
  96. WalterM. HerrP. Re-discovery of pyrimidine salvage as target in cancer therapy.Cells202211473910.3390/cells11040739 35203388
    [Google Scholar]
  97. WangW.B. YangY. ZhaoY.P. ZhangT.P. LiaoQ. ShuH. Recent studies of 5-fluorouracil resistance in pancreatic cancer.World J. Gastroenterol.20142042156821569010.3748/wjg.v20.i42.15682 25400452
    [Google Scholar]
  98. RoskoskiR. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs.Pharmacol. Res.201610724927510.1016/j.phrs.2016.03.012 26995305
    [Google Scholar]
  99. BorregoE.A. GuerenaC.D. Schiaffino BustamanteA.Y. GutierrezD.A. ValenzuelaC.A. BetancourtA.P. Varela-RamirezA. AguileraR.J. A novel pyrazole exhibits potent anticancer cytotoxicity via apoptosis, cell cycle arrest, and the inhibition of tubulin polymerization in triple-negative breast cancer cells.Cells20241314122510.3390/cells13141225 39056806
    [Google Scholar]
  100. PistrittoG. TrisciuoglioD. CeciC. GarufiA. D’OraziG. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies.Aging (Albany NY)20168460361910.18632/aging.100934 27019364
    [Google Scholar]
  101. PengF. LiaoM. QinR. ZhuS. PengC. FuL. ChenY. HanB. Regulated cell death (RCD) in cancer: key pathways and targeted therapies.Signal Transduct. Target. Ther.20227128610.1038/s41392‑022‑01110‑y 35963853
    [Google Scholar]
  102. LiuZ.L. ChenH.H. ZhengL.L. SunL.P. ShiL. Angiogenic signaling pathways and anti-angiogenic therapy for cancer.Signal Transduct. Target. Ther.20238119810.1038/s41392‑023‑01460‑1 37169756
    [Google Scholar]
  103. ZhanJ.L. WuM.W. ChenF. HanB. Cu-Catalyzed [3 + 3] Annulation for the synthesis of pyrimidines via β-C(sp3)-H functionalization of saturated ketones.J. Org. Chem.20168123119941200010.1021/acs.joc.6b02181 27805404
    [Google Scholar]
  104. WangX. YanH. JiaC. FangZ. DuanJ. GuoK. Synthesis of 2,4,6-trisubstituted pyrimidines through Copper-Catalyzed [4 + 2] Annulation of α,β-Unsaturated Ketoximes with activated nitriles.J. Org. Chem.20238817122361224310.1021/acs.joc.3c00687 37610229
    [Google Scholar]
  105. WangC. WuC. BianX. WangL. ZhangY. Na2CO3-Mediated [3+3] annulation reaction of substituted benzamidines with 2-benzylidenemalononitriles: Access to substituted pyrimidine-4,6-diamines.Synthesis202355345746410.1055/a‑1942‑7191
    [Google Scholar]
  106. QinZ. MaY. LiF. Construction of a pyrimidine framework through [3 + 2 + 1] Annulation of amidines, ketones, and N, N -Dimethylaminoethanol as One Carbon Donor.J. Org. Chem.20218619137341374310.1021/acs.joc.1c01847 34541847
    [Google Scholar]
  107. LiuF. ZhangX. QianQ. YangC. A Concise and efficient approach to 2,6-disubstituted 4-Fluoro¬pyrimidines from α-CF3 Aryl Ketones.Synthesis202052227328010.1055/s‑0039‑1690248
    [Google Scholar]
  108. IslamF. QuaderyT.M. BaiR. Luckett-ChastainL.R. HamelE. IhnatM.A. GangjeeA. Novel pyrazolo[4,3-d]pyrimidine microtubule targeting agents (MTAs): Synthesis, structure-activity relationship, in vitro and in vivo evaluation as antitumor agents.Bioorg. Med. Chem. Lett.20214112792310.1016/j.bmcl.2021.127923 33705908
    [Google Scholar]
  109. HoelderS. ClarkeP.A. WorkmanP. Discovery of small molecule cancer drugs: Successes, challenges and opportunities.Mol. Oncol.20126215517610.1016/j.molonc.2012.02.004 22440008
    [Google Scholar]
  110. ShamroukhA.H. RashadA.E. Abdel-MegeidR.E. AliH.S. AliM.M. Some pyrazole and pyrazolo[3,4-d]pyrimidine derivatives: synthesis and anticancer evaluation.Arch. Pharm. (Weinheim)2014347855956510.1002/ardp.201400064 24801813
    [Google Scholar]
  111. RamobaL.V. NzondomyoW.J. SeralaK. MachariaL.W. BiswasS. PrinceS. MalanF.P. AlexanderO.T. ManicumA.L.E. Derivatives of pyrazole-based compounds as prospective cancer agents.ACS Omega20251012126711267810.1021/acsomega.5c00320 40191378
    [Google Scholar]
  112. MohammedE.Z. MahmoudW.R. GeorgeR.F. HassanG.S. OmarF.A. GeorgeyH.H. Synthesis, in vitro anticancer activity and in silico studies of certain pyrazole-based derivatives as potential inhibitors of cyclin dependent kinases (CDKs).Bioorg. Chem.202111610534710.1016/j.bioorg.2021.105347 34555628
    [Google Scholar]
  113. CuiY.J. TangL.Q. ZhangC.M. LiuZ.P. Synthesis of novel pyrazole derivatives and their tumor cell growth inhibitory activity.Molecules201924227910.3390/molecules24020279 30642134
    [Google Scholar]
  114. OthmanI.M.M. AlamshanyZ.M. TashkandiN.Y. Gad-ElkareemM.A.M. AnwarM.M. NossierE.S. New pyrimidine and pyrazole-based compounds as potential EGFR inhibitors: Synthesis, anticancer, antimicrobial evaluation and computational studies.Bioorg. Chem.202111410507810.1016/j.bioorg.2021.105078 34161878
    [Google Scholar]
  115. KuthyalaS. SheikhS. PrabhuA. RekhaP.D. KarikannarN.G. ShankarM.K. Synthesis, characterization, and anticancer studies of some pyrazole‐based hybrid heteroatomics.ChemistrySelect2020535108271083410.1002/slct.202002483
    [Google Scholar]
  116. KamelM.G. SroorF.M. HanafyM.K.H. MahrousK.F. HassaneenH.M. Design, synthesis and potent anti-pancreatic cancer activity of new pyrazole derivatives bearing chalcone, thiazole and thiadiazole moieties: Gene expression, DNA fragmentation, cell cycle arrest and SAR.RSC Advances20241437269542697010.1039/D4RA03005B 39193301
    [Google Scholar]
  117. BarenM.H. IbrahimS.A. Al-RooqiM.M. AhmedS.A. El-GamilM.M. HekalH.A. A new class of anticancer activity with computational studies for a novel bioactive aminophosphonates based on pyrazole moiety.Sci. Rep.20231311468010.1038/s41598‑023‑40265‑8 37673913
    [Google Scholar]
  118. Al-MuntaserS.M. Al-KarmalawyA.A. El-NaggarA.M. AliA.K. Abd El-SattarN.E.A. AbbassE.M. Novel 4-thiophenyl-pyrazole, pyridine, and pyrimidine derivatives as potential antitumor candidates targeting both EGFR and VEGFR-2: Design, synthesis, biological evaluations, and in silico studies.RSC Advances20231318121841220310.1039/D3RA00416C 37082377
    [Google Scholar]
  119. SalehN.M. El-GazzarM.G. AlyH.M. OthmanR.A. Novel anticancer fused pyrazole derivatives as EGFR and VEGFR-2 Dual TK inhibitors.Front Chem.2020791710.3389/fchem.2019.00917 32039146
    [Google Scholar]
  120. RenB. LiuR.C. JiK. TangJ.J. GaoJ.M. Design, synthesis and in vitro antitumor evaluation of novel pyrazole-benzimidazole derivatives.Bioorg. Med. Chem. Lett.20214312809710.1016/j.bmcl.2021.128097 33979690
    [Google Scholar]
  121. AlamM.J. AlamO. PerwezA. RizviM.A. NaimM.J. NaiduV. ImranM. GhoneimM.M. AlshehriS. ShakeelF. Design, synthesis, molecular docking, and biological evaluation of pyrazole hybrid chalcone conjugates as potential anticancer agents and tubulin polymerization inhibitors.Pharmaceuticals202215328010.3390/ph15030280 35337078
    [Google Scholar]
  122. KumarS. LathwalE. KumarG. SarohaB. KumarS. MahataS. SahooP.K. NasareV.D. Synthesis of pyrazole based novel aurone analogs and their cytotoxic activity against MCF-7 cell line.Chemical Data Collections20203010055910.1016/j.cdc.2020.100559
    [Google Scholar]
  123. MyriagkouM. PapakonstantinouE. DeligiannidouG.E. PatsilinakosA. KontogiorgisC. PontikiE. Novel pyrimidine derivatives as antioxidant and anticancer agents: Design, synthesis and molecular modeling studies.Molecules2023289391310.3390/molecules28093913 37175322
    [Google Scholar]
  124. Al-MutairiA.A. HafezH.N. El-GazzarA.R.B.A. MohamedM.Y.A. Synthesis and antimicrobial, anticancer and anti-oxidant activities of novel 2,3-dihydropyrido[2,3-d]pyrimidine-4-one and Pyrrolo[2,1-b][1,3]benzothiazole Derivatives via Microwave-Assisted Synthesis.Molecules2022274124610.3390/molecules27041246 35209034
    [Google Scholar]
  125. SroorF.M. TohamyW.M. ZoheirK.M.A. AbdelazeemN.M. MahrousK.F. IbrahimN.S. Design, synthesis, in vitro anticancer, molecular docking and SAR studies of new series of pyrrolo[2,3-d]pyrimidine derivatives.BMC Chem.202317110610.1186/s13065‑023‑01014‑0 37641068
    [Google Scholar]
  126. HossanA. AlrefaeiA.F. KatouahH.A. BayazeedA. AsgharB.H. ShaabanF. El-MetwalyN.M. Synthesis, anticancer activity, and molecular docking of new pyrazolo[1,5-a]pyrimidine derivatives.J. Saudi Chem. Soc.202327210159910.1016/j.jscs.2023.101599
    [Google Scholar]
  127. DevidiS. ManickamM.S. Evaluation of anticancer activity of novel pyrimidine aniline molecular hybrids: Synthesis and characterization.Ann. Phytomed.2023121303309
    [Google Scholar]
  128. Al-TuwaijriH.M. Al-AbdullahE.S. El-RashedyA.A. AnsariS.A. AlmomenA. AlshiblH.M. HaibaM.E. AlkahtaniH.M. New indazol-pyrimidine-based derivatives as selective anticancer agents: Design, synthesis, and in silico studies.Molecules2023289366410.3390/molecules28093664 37175074
    [Google Scholar]
  129. AbdelhamedA.M. HassanR.A. KadryH.H. HelwaA.A. Novel pyrazolo[3,4-d]pyrimidine derivatives: design, synthesis, anticancer evaluation, VEGFR-2 inhibition, and antiangiogenic activity.RSC Med. Chem.202314122640265710.1039/D3MD00476G 38107182
    [Google Scholar]
  130. El-ZoghbiM.S. El-SebaeyS.A. AL-Ghulikah, H.A.; Sobh, E.A. Design, synthesis, docking, and anticancer evaluations of new thiazolo[3,2-a]pyrimidines as topoisomerase II inhibitors.J. Enzyme Inhib. Med. Chem.2023381217520910.1080/14756366.2023.2175209 36776024
    [Google Scholar]
  131. PattabiV. Raju VeeraboinaM. EppakayalaL. NavuluriS. MulakayalaN. Design, synthesis and biological evaluation of aryl urea derivatives of oxazole-pyrimidine as anticancer agents.Results Chem.2024710144210.1016/j.rechem.2024.101442
    [Google Scholar]
  132. Siva ReddyB. Purna Chandra RaoG. Ramya DeviE. PrasadK.R.S. NallaS. Synthesis and biological evaluation of 1,2,3-triazole incorporated pyridin-4-yl)-1H-1,2,4-triazol-3-yl)pyrimidine derivatives as anticancer agents.Results Chem.2024810159810.1016/j.rechem.2024.101598
    [Google Scholar]
  133. Kilic-KurtZ. OzmenN. Bakar-AtesF. Synthesis and anticancer activity of some pyrimidine derivatives with aryl urea moieties as apoptosis-inducing agents.Bioorg. Chem.202010110402810.1016/j.bioorg.2020.104028 32645482
    [Google Scholar]
  134. HaffezH. TahaH. RabieM.A. AwadS.M. ZohnyY.M. Synthesis, biological evaluation and molecular docking studies of novel thiopyrimidine analogue as apoptotic agent with potential anticancer activity.Bioorg. Chem.202010410424910.1016/j.bioorg.2020.104249 32911199
    [Google Scholar]
/content/journals/coc/10.2174/0113852728402678250728094527
Loading
/content/journals/coc/10.2174/0113852728402678250728094527
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anticancer agents; Cancer; N-heterocycles; polymers; pyrazole; pyrimidine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test