Skip to content
2000
image of Pyrazole and Pyrimidine Scaffolds as Promising Anticancer Agents

Abstract

Nitrogen-containing heterocycles play a crucial role in medicinal chemistry and drug discovery, as several anticancer FDA-approved medicines are based on these compounds. Their structural and biological properties significantly impact their anticancer activity. Pyrazole and pyrimidine scaffolds show great anticancer potential. This review summarizes the synthesis and anticancer activity of several pyrazole and pyrimidine-based compounds, which exhibit great potential as cancer treatment candidates. The structural and biological characteristics of pyrazole and pyrimidine rings make them suitable scaffolds for designing novel anticancer agents. This review describes various synthetic routes for the preparation of pyrazole and pyrimidine derivatives, as well as their mechanisms of action in cancer therapy. These compounds exhibit potent cytotoxicity against breast, lung, and colon cancer cell lines. A detailed synthesis scheme shows how to incorporate pyrazole and pyrimidine scaffolds into medicinal compounds. Recent studies suggest that these derivatives exhibit substantial antitumor effects, supporting their development as targeted cancer therapies. Through the detailed description of synthesis, mechanisms of action, and anticancer activity, this review provides useful information on pyrazole and pyrimidine derivatives as potential future anticancer agents, highlighting their therapeutic potential in cancer treatment.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728402678250728094527
2025-08-21
2025-11-06
Loading full text...

Full text loading...

References

  1. Younesian S. Mohammadi M.H. Younesian O. Momeny M. Ghaffari S.H. Bashash D. DNA methylation in human diseases. Heliyon 2024 10 11 e32366 10.1016/j.heliyon.2024.e32366 38933971
    [Google Scholar]
  2. Zhang W. Xu J. DNA methyltransferases and their roles in tumorigenesis. Biomark. Res. 2017 5 1 1 10.1186/s40364‑017‑0081‑z 28127428
    [Google Scholar]
  3. Tommasini-Ghelfi S. Murnan K. Kouri F.M. Mahajan A.S. May J.L. Stegh A.H. Cancer-associated mutation and beyond: The emerging biology of isocitrate dehydrogenases in human disease. Sci. Adv. 2019 5 5 eaaw4543 10.1126/sciadv.aaw4543 31131326
    [Google Scholar]
  4. Mattei A.L. Bailly N. Meissner A. DNA methylation: A historical perspective. Trends Genet. 2022 38 7 676 707 10.1016/j.tig.2022.03.010 35504755
    [Google Scholar]
  5. Shehata S.A. Toraih E.A. Ismail E.A. Hagras A.M. Elmorsy E. Fawzy M.S. Vaping, environmental toxicants exposure, and lung cancer risk. Cancers 2023 15 18 4525 10.3390/cancers15184525 37760496
    [Google Scholar]
  6. Zanini S. Renzi S. Limongi A.R. Bellavite P. Giovinazzo F. Bermano G. A review of lifestyle and environment risk factors for pancreatic cancer. Eur. J. Cancer 2021 145 53 70 10.1016/j.ejca.2020.11.040 33423007
    [Google Scholar]
  7. Mbemi A. Khanna S. Njiki S. Yedjou C.G. Tchounwou P.B. Impact of gene-environment interactions on cancer development. Int. J. Environ. Res. Public Health 2020 17 21 8089 10.3390/ijerph17218089 33153024
    [Google Scholar]
  8. Zou K. Sun P. Huang H. Zhuo H. Qie R. Xie Y. Luo J. Li N. Li J. He J. Aschebrook-Kilfoy B. Zhang Y. Etiology of lung cancer: Evidence from epidemiologic studies. J. Natl Cancer Cent 2022 2 4 216 225 10.1016/j.jncc.2022.09.004 39036545
    [Google Scholar]
  9. Rader J.S. Tsaih S.W. Fullin D. Murray M.W. Iden M. Zimmermann M.T. Flister M.J. Genetic variations in human papillomavirus and cervical cancer outcomes. Int. J. Cancer 2019 144 9 2206 2214 10.1002/ijc.32038 30515767
    [Google Scholar]
  10. Pešut E. Đukić A. Lulić L. Skelin J. Šimić I. Milutin Gašperov N. Tomaić V. Sabol I. Grce M. Human papillomaviruses-associated cancers: An update of current knowledge. Viruses 2021 13 11 2234 10.3390/v13112234 34835040
    [Google Scholar]
  11. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  12. Marino P. Mininni M. Deiana G. Marino G. Divella R. Bochicchio I. Giuliano A. Lapadula S. Lettini A.R. Sanseverino F. Healthy lifestyle and cancer risk: Modifiable risk factors to prevent cancer. Nutrients 2024 16 6 800 10.3390/nu16060800 38542712
    [Google Scholar]
  13. Liu B. Zhou H. Tan L. Siu K.T.H. Guan X.Y. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct. Target. Ther. 2024 9 1 175 10.1038/s41392‑024‑01856‑7 39013849
    [Google Scholar]
  14. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 20503121211034366 10.1177/20503121211034366 34408877
    [Google Scholar]
  15. Yamagiwa Y. Tanaka S. Abe S.K. Shimazu T. Inoue M. A cross-sectional survey on awareness of cancer risk factors, information sources and health behaviors for cancer prevention in Japan. Sci. Rep. 2022 12 1 14606 10.1038/s41598‑022‑18853‑x 36028524
    [Google Scholar]
  16. Cao C. Wang X. Yang N. Song X. Dong X. Recent advances of cancer chemodynamic therapy based on Fenton/Fenton-like chemistry. Chem. Sci. (Camb.) 2022 13 4 863 889 10.1039/D1SC05482A 35211255
    [Google Scholar]
  17. Lin C. Tsai S.C.S. Huang J.Y. Lin F.C.F. HPV infection and breast cancer risk: Insights from a nationwide population study in Taiwan. Front. Oncol. 2023 13 1210381 10.3389/fonc.2023.1210381 37519781
    [Google Scholar]
  18. Ye F. Dewanjee S. Li Y. Jha N.K. Chen Z.S. Kumar A. Vishakha; Behl, T.; Jha, S.K.; Tang, H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol. Cancer 2023 22 1 105 10.1186/s12943‑023‑01805‑y 37415164
    [Google Scholar]
  19. Wang D.R. Wu X.L. Sun Y.L. Therapeutic targets and biomarkers of tumor immunotherapy: Response versus non-response. Signal Transduct. Target. Ther. 2022 7 1 331 10.1038/s41392‑022‑01136‑2 36123348
    [Google Scholar]
  20. Tufail M. Hu J.J. Liang J. He C.Y. Wan W.D. Huang Y.Q. Jiang C.H. Wu H. Li N. Hallmarks of cancer resistance. iScience 2024 27 6 109979 10.1016/j.isci.2024.109979 38832007
    [Google Scholar]
  21. Konda P. Garinet S. Van Allen E.M. Viswanathan S.R. Genome-guided discovery of cancer therapeutic targets. Cell Rep. 2023 42 8 112978 10.1016/j.celrep.2023.112978 37572322
    [Google Scholar]
  22. Taruneshwar Jha K. Shome A. Chahat; Chawla, P.A. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg. Chem. 2023 138 106680 10.1016/j.bioorg.2023.106680 37336103
    [Google Scholar]
  23. Kerru N. Gummidi L. Maddila S. Gangu K.K. Jonnalagadda S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 2020 25 8 1909 10.3390/molecules25081909 32326131
    [Google Scholar]
  24. Grover G. Nath R. Bhatia R. Akhtar M.J. Synthetic and therapeutic perspectives of nitrogen containing heterocycles as anti-convulsants. Bioorg. Med. Chem. 2020 28 15 115585 10.1016/j.bmc.2020.115585 32631563
    [Google Scholar]
  25. Lang D.K. Kaur R. Arora R. Saini B. Arora S. Nitrogen-containing heterocycles as anticancer agents: An overview. Anticancer. Agents Med. Chem. 2020 20 18 2150 2168 10.2174/1871520620666200705214917 32628593
    [Google Scholar]
  26. Vitaku E. Smith D.T. Njardarson J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 2014 57 24 10257 10274 10.1021/jm501100b 25255204
    [Google Scholar]
  27. Heravi M.M. Zadsirjan V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Advances 2020 10 72 44247 44311 10.1039/D0RA09198G 35557843
    [Google Scholar]
  28. Marshall C.M. Federice J.G. Bell C.N. Cox P.B. Njardarson J.T. An update on the nitrogen heterocycle compositions and properties of U.S. FDA-Approved Pharmaceuticals (2013-2023). J. Med. Chem. 2024 67 14 11622 11655 10.1021/acs.jmedchem.4c01122 38995264
    [Google Scholar]
  29. Ebenezer O. Jordaan M.A. Carena G. Bono T. Shapi M. Tuszynski J.A. An overview of the biological evaluation of selected nitrogen-containing heterocycle medicinal chemistry compounds. Int. J. Mol. Sci. 2022 23 15 8117 10.3390/ijms23158117 35897691
    [Google Scholar]
  30. Kumar A. Singh A.K. Singh H. Vijayan V. Kumar D. Naik J. Thareja S. Yadav J.P. Pathak P. Grishina M. Verma A. Khalilullah H. Jaremko M. Emwas A.H. Kumar P. Nitrogen containing heterocycles as anticancer agents: A medicinal chemistry perspective. Pharmaceuticals 2023 16 2 299 10.3390/ph16020299 37259442
    [Google Scholar]
  31. Gomtsyan A. Heterocycles in drugs and drug discovery. Chem. Heterocycl. Compd. 2012 48 1 7 10 10.1007/s10593‑012‑0960‑z
    [Google Scholar]
  32. Jampilek J. Heterocycles in medicinal chemistry. Molecules 2019 24 21 3839 10.3390/molecules24213839 31731387
    [Google Scholar]
  33. Kabir E. Uzzaman M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem. 2022 4 100606 10.1016/j.rechem.2022.100606
    [Google Scholar]
  34. Overbeek D.L. Beta-blockers. Reference Module in Biomedical Sciences. Elsevier 2018 10.1016/B978‑0‑12‑824315‑2.00525‑X
    [Google Scholar]
  35. Strauss M.H. Hall A.S. Narkiewicz K. The combination of beta-blockers and ACE inhibitors across the spectrum of cardiovascular diseases. Cardiovasc. Drugs Ther. 2023 37 4 757 770 10.1007/s10557‑021‑07248‑1 34533690
    [Google Scholar]
  36. Spencer A.C. Panda S.S. DNA gyrase as a target for quinolones. Biomedicines 2023 11 2 371 10.3390/biomedicines11020371 36830908
    [Google Scholar]
  37. Brar R.K. Jyoti U. Patil R.K. Patil H.C. Fluoroquinolone antibiotics: An overview. Adesh Univ J. Med. Sci. Res. 2020 2 26 30
    [Google Scholar]
  38. Puranik N. Song M. Therapeutic role of heterocyclic compounds in neurodegenerative diseases: insights from Alzheimer’s and Parkinson’s diseases. Neurol. Int. 2025 17 2 26 10.3390/neurolint17020026 39997657
    [Google Scholar]
  39. Gulevich A.V. Dudnik A.S. Chernyak N. Gevorgyan V. Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem. Rev. 2013 113 5 3084 3213 10.1021/cr300333u 23305185
    [Google Scholar]
  40. Roy S. Das S.K. Khatua H. Das S. Chattopadhyay B. Road Map for the Construction of High-Valued N -Heterocycles via Denitrogenative Annulation. Acc. Chem. Res. 2021 54 23 4395 4409 10.1021/acs.accounts.1c00563 34761918
    [Google Scholar]
  41. Kumari S. Maddeboina K. Bachu R.D. Boddu S.H.S. Trippier P.C. Tiwari A.K. Pivotal role of nitrogen heterocycles in Alzheimer’s disease drug discovery. Drug Discov. Today 2022 27 10 103322 10.1016/j.drudis.2022.07.007 35868626
    [Google Scholar]
  42. Sahu D. Sreekanth P.S.R. Behera P.K. Pradhan M.K. Patnaik A. Salunkhe S. Cep R. Advances in synthesis, medicinal properties and biomedical applications of pyridine derivatives: A comprehensive review. Eur J. Med. Chem. Rep 2024 12 100210 10.1016/j.ejmcr.2024.100210
    [Google Scholar]
  43. Qadir T. Amin A. Sharma P.K. Jeelani I. Abe H. A review on medicinally important heterocyclic compounds. Open Med. Chem. J. 2022 16 1 e187410452202280 10.2174/18741045‑v16‑e2202280
    [Google Scholar]
  44. Chernyshov V.V. Popadyuk I.I. Yarovaya O.I. Salakhutdinov N.F. Nitrogen-containing heterocyclic compounds obtained from monoterpenes or their derivatives: Synthesis and properties. Top. Curr. Chem. (Cham) 2022 380 5 42 10.1007/s41061‑022‑00399‑1 35951263
    [Google Scholar]
  45. Pérez-Mayoral E. Godino-Ojer M. Pastrana-Martínez L.M. Morales-Torres S. Maldonado-Hódar F.J. Eco‐sustainable Synthesis of N ‐containing Heterocyclic Systems Using Porous Carbon Catalysts. ChemCatChem 2023 15 23 e202300961 10.1002/cctc.202300961
    [Google Scholar]
  46. Costa R.F. Turones L.C. Cavalcante K.V.N. Rosa Júnior I.A. Xavier C.H. Rosseto L.P. Napolitano H.B. Castro P.F.S. Neto M.L.F. Galvão G.M. Menegatti R. Pedrino G.R. Costa E.A. Martins J.L.R. Fajemiroye J.O. Heterocyclic compounds: Pharmacology of pyrazole analogs from rational structural considerations. Front. Pharmacol. 2021 12 666725 10.3389/fphar.2021.666725 34040529
    [Google Scholar]
  47. Chauhan S. Paliwal S. Chauhan R. Anticancer activity of pyrazole via different biological mechanisms. Synth. Commun. 2014 44 10 1333 1374 10.1080/00397911.2013.837186
    [Google Scholar]
  48. Zhang Y. Wu C. Zhang N. Fan R. Ye Y. Xu J. Recent advances in the development of pyrazole derivatives as anticancer agents. Int. J. Mol. Sci. 2023 24 16 12724 10.3390/ijms241612724 37628906
    [Google Scholar]
  49. Zawadzińska-Wrochniak K. Zavecz I. Hirka S. The recent progress in the field of the applications of isoxazoles and their hydrogenated analogs: Mini review. Scientiae Radices 2024 3 4 228 247 10.58332/scirad2024v3i4a01
    [Google Scholar]
  50. Sadowski M. Synkiewicz-Musialska B. Kula K. (1E,3E)-1,4-Dinitro-1,3-butadiene—synthesis, spectral characteristics and computational study based on MEDT, ADME and PASS simulation. Molecules 2024 29 2 542 10.3390/molecules29020542 38276620
    [Google Scholar]
  51. Kurban B. Sağlık B.N. Osmaniye D. Levent S. Özkay Y. Kaplancıklı Z.A. Synthesis and anticancer activities of pyrazole-thiadiazole-based EGFR inhibitors. ACS Omega 2023 8 34 31500 31509 10.1021/acsomega.3c04635 37663500
    [Google Scholar]
  52. Kumar H. Saini D. Jain S. Jain N. Pyrazole scaffold: A remarkable tool in the development of anticancer agents. Eur. J. Med. Chem. 2013 70 248 258 10.1016/j.ejmech.2013.10.004 24161702
    [Google Scholar]
  53. Bhusare N. Kumar M. A review on potential heterocycles for the treatment of glioblastoma targeting receptor tyrosine kinases. Oncol. Res. 2024 32 5 849 875 10.32604/or.2024.047042 38686058
    [Google Scholar]
  54. Bhullar K.S. Lagarón N.O. McGowan E.M. Parmar I. Jha A. Hubbard B.P. Rupasinghe H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer 2018 17 1 48 10.1186/s12943‑018‑0804‑2 29455673
    [Google Scholar]
  55. Yuan K. Wang X. Dong H. Min W. Hao H. Yang P. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs. Acta Pharm. Sin. B 2021 11 1 30 54 10.1016/j.apsb.2020.05.001 33532179
    [Google Scholar]
  56. Hruba L. Das V. Hajduch M. Dzubak P. Nucleoside-based anticancer drugs: Mechanism of action and drug resistance. Biochem. Pharmacol. 2023 215 115741 10.1016/j.bcp.2023.115741 37567317
    [Google Scholar]
  57. Fadaly W.A.A. Nemr M.T.M. Kahk N.M. Discovery of novel pyrazole based Urea/Thiourea derivatives as multiple targeting VEGFR-2, EGFRWT, EGFRT790M tyrosine kinases and COX-2 Inhibitors, with anti-cancer and anti-inflammatory activities. Bioorg. Chem. 2024 147 107403 10.1016/j.bioorg.2024.107403 38691909
    [Google Scholar]
  58. Kasiotis K.M. Tzanetou E.N. Haroutounian S.A. Pyrazoles as potential anti-angiogenesis agents: A contemporary overview. Front Chem. 2014 2 78 10.3389/fchem.2014.00078 25250310
    [Google Scholar]
  59. Kandhasamy K. Surajambika R.R. Velayudham P.K. Pyrazolo - Pyrimidines as targeted anticancer scaffolds: A comprehensive review. Med. Chem. 2024 20 3 293 310 10.2174/0115734064251256231018104623 37885114
    [Google Scholar]
  60. Bebb D.G. Agulnik J. Albadine R. Banerji S. Bigras G. Butts C. Couture C. Cutz J.C. Desmeules P. Ionescu D.N. Leighl N.B. Melosky B. Morzycki W. Rashid-Kolvear F. Sekhon H.S. Smith A.C. Stockley T.L. Torlakovic E. Xu Z. Tsao M.S. Tsao M.S. Crizotinib inhibition of ROS1-positive tumours in advanced non-small-cell lung cancer: A Canadian perspective. Curr. Oncol. 2019 26 4 551 557 10.3747/co.26.5137 31548824
    [Google Scholar]
  61. Ostojic A. Vrhovac R. Verstovsek S. Ruxolitinib: A new JAK1/2 inhibitor that offers promising options for treatment of myelofibrosis. Future Oncol. 2011 7 9 1035 1043 10.2217/fon.11.81 21919691
    [Google Scholar]
  62. Furumoto Y. Gadina M. The arrival of JAK inhibitors: Advancing the treatment of immune and hematologic disorders. BioDrugs 2013 27 5 431 438 10.1007/s40259‑013‑0040‑7 23743669
    [Google Scholar]
  63. Paik P.K. Felip E. Veillon R. Sakai H. Cortot A.B. Garassino M.C. Mazieres J. Viteri S. Senellart H. Van Meerbeeck J. Raskin J. Reinmuth N. Conte P. Kowalski D. Cho B.C. Patel J.D. Horn L. Griesinger F. Han J.Y. Kim Y.C. Chang G.C. Tsai C.L. Yang J.C.H. Chen Y.M. Smit E.F. van der Wekken A.J. Kato T. Juraeva D. Stroh C. Bruns R. Straub J. Johne A. Scheele J. Heymach J.V. Le X. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations. N. Engl. J. Med. 2020 383 10 931 943 10.1056/NEJMoa2004407 32469185
    [Google Scholar]
  64. Sethy C. Kundu C.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed. Pharmacother. 2021 137 111285 10.1016/j.biopha.2021.111285 33485118
    [Google Scholar]
  65. Chintala L. Vaka S. Baranda J. Williamson S.K. Capecitabine versus 5-fluorouracil in colorectal cancer: Where are we now? Oncol. Rev. 2011 5 2 129 140 10.1007/s12156‑011‑0074‑3
    [Google Scholar]
  66. Buqué A. Aresti U. Calvo B.Sh. Muhialdin J. Muñoz A. Carrera S. Thymidylate synthase expression determines pemetrexed targets and resistance development in tumour cells. PLoS One 2013 8 5 e63338 10.1371/journal.pone.0063338
    [Google Scholar]
  67. Zhou H.Q. Zhang Y.X. Chen G. Yu Q.T. Zhang H. Wu G.W. Wu D. Lin Y.C. Zhu J.F. Chen J.H. Hu X.H. Lan B. Zhou Z.Q. Lin H.F. Wang Z.B. Lei X.L. Pan S.M. Chen L.M. Zhang J. Kong T.D. Yao J.C. Zheng X. Li F. Zhang L. Fang W.F. Gefitinib (an EGFR tyrosine kinase inhibitor) plus anlotinib (an multikinase inhibitor) for untreated, EGFR-mutated, advanced non-small cell lung cancer (FL-ALTER): a multicenter phase III trial. Signal Transduct. Target. Ther. 2024 9 1 215 10.1038/s41392‑024‑01927‑9 39134529
    [Google Scholar]
  68. White P.T. Cohen M.S. The discovery and development of sorafenib for the treatment of thyroid cancer. Expert Opin. Drug Discov. 2015 10 4 427 439 10.1517/17460441.2015.1006194 25662396
    [Google Scholar]
  69. Wilson Z. Odedra R. Wallez Y. Wijnhoven P.W.G. Hughes A.M. Gerrard J. Jones G.N. Bargh-Dawson H. Brown E. Young L.A. O’Connor M.J. Lau A. ATR inhibitor AZD6738 (Ceralasertib) exerts antitumor activity as a monotherapy and in combination with chemotherapy and the PARP inhibitor olaparib. Cancer Res. 2022 82 6 1140 1152 10.1158/0008‑5472.CAN‑21‑2997 35078817
    [Google Scholar]
  70. Ettrich T.J. Seufferlein T. Regorafenib. Small molecules in oncology. Cham, Switzerland Springer International Publishing 2018 45 56 10.1007/978‑3‑319‑91442‑8_3
    [Google Scholar]
  71. Yamamoto Y. Matsui J. Matsushima T. Obaishi H. Miyazaki K. Nakamura K. Tohyama O. Semba T. Yamaguchi A. Hoshi S. Mimura F. Haneda T. Fukuda Y. Kamata J. Takahashi K. Matsukura M. Wakabayashi T. Asada M. Nomoto K. Watanabe T. Dezso Z. Yoshimatsu K. Funahashi Y. Tsuruoka A. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc. Cell 2014 6 1 18 10.1186/2045‑824X‑6‑18 25197551
    [Google Scholar]
  72. Bennani F.E. Doudach L. Cherrah Y. Ramli Y. Karrouchi K. Ansar M. Faouzi M.E.A. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg. Chem. 2020 97 103470 10.1016/j.bioorg.2019.103470 32120072
    [Google Scholar]
  73. Doan N.Q.H. Nguyen N.T.K. Duong V.B. Nguyen H.T.T. Vong L.B. Duong D.N. Nguyen N.T.T. Nguyen T.L.T. Do T.T.H. Truong T.N. Synthesis, biological evaluation, and molecular modeling studies of 1-Aryl-1 H -pyrazole-fused curcumin analogues as anticancer agents. ACS Omega 2022 7 38 33963 33984 10.1021/acsomega.2c02933 36188331
    [Google Scholar]
  74. Murugan R. Nayak S.P.R.R. Haridevamuthu B. Priya D. Rajagopal R. Pasupuleti M. Guru A. Kumaradoss K.M. Arockiaraj J. Multifaceted evaluation of pyrazole derivative (T4)-chitosan (CS) nanoparticles: Morphology, drug release, and anti-tumor efficacy in a rat model. Int. J. Biol. Macromol. 2024 283 Pt 3 137702 10.1016/j.ijbiomac.2024.137702 39549794
    [Google Scholar]
  75. Alam M.J. Alam O. Naim M.J. Nawaz F. Manaithiya A. Imran M. Thabet H.K. Alshehri S. Ghoneim M.M. Alam P. Shakeel F. Recent advancement in drug design and discovery of pyrazole biomolecules as cancer and inflammation therapeutics. Molecules 2022 27 24 8708 10.3390/molecules27248708 36557840
    [Google Scholar]
  76. Salem M.G. Nafie M.S. Elzamek A.A. Elshihawy H.A. Sofan M.A. Negm E. Design, synthesis, and biological investigations of new pyrazole derivatives as VEGFR2/CDK-2 inhibitors targeting liver cancer. BMC Chem. 2024 18 1 208 10.1186/s13065‑024‑01314‑z 39449145
    [Google Scholar]
  77. Paul M.K. Mukhopadhyay A.K. Tyrosine kinase - Role and significance in Cancer. Int. J. Med. Sci. 2004 1 2 101 115 10.7150/ijms.1.101 15912202
    [Google Scholar]
  78. Mermer A. Orhan İ.E. Ye G. Kumar N.A. Danac R. Editorial: Five-membered ring heterocyclic compounds as anticancer drug candidates. Front Chem. 2025 13 1599140 10.3389/fchem.2025.1599140 40242658
    [Google Scholar]
  79. Kumar S. Deep A. Narasimhan B. A review on synthesis, anticancer and antiviral potentials of pyrimidine derivatives. Curr. Bioact. Compd. 2019 15 3 289 303 10.2174/1573407214666180124160405
    [Google Scholar]
  80. Kaur R. Kaur P. Sharma S. Singh G. Mehndiratta S. Bedi P. Nepali K. Anti-cancer pyrimidines in diverse scaffolds: A review of patent literature. Recent Patents Anticancer Drug Discov. 2014 10 1 23 71 10.2174/1574892809666140917104502 25230072
    [Google Scholar]
  81. Amr A.G.E. Mohamed A.M. Mohamed S.F. Abdel-Hafez N.A. Hammam A.E.F.G. Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorg. Med. Chem. 2006 14 16 5481 5488 10.1016/j.bmc.2006.04.045 16713269
    [Google Scholar]
  82. Mahapatra A. Prasad T. Sharma T. Pyrimidine: A review on anticancer activity with key emphasis on SAR. Future J. Pharm. Sci. 2021 7 1 123 10.1186/s43094‑021‑00274‑8
    [Google Scholar]
  83. Zhang N. Yin Y. Xu S.J. Chen W.S. 5-Fluorouracil: Mechanisms of resistance and reversal strategies. Molecules 2008 13 8 1551 1569 10.3390/molecules13081551 18794772
    [Google Scholar]
  84. Elgemeie G.H. Mohamed-Ezzat R.A. Pyrimidine-based anticancer drugs. New Strategies Targeting Cancer Metabolism. Elsevier 2022 107 142 10.1016/B978‑0‑12‑821783‑2.00006‑6
    [Google Scholar]
  85. Kula K. Dobosz J. Jasiński R. Kącka-Zych A. Łapczuk-Krygier A. Mirosław B. Demchuk O.M. [3+2] Cycloaddition of diaryldiazomethanes with (E)-3,3,3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct. 2020 1203 127473 10.1016/j.molstruc.2019.127473
    [Google Scholar]
  86. Kula K. Łapczuk A. Sadowski M. Kras J. Zawadzińska K. Demchuk O.M. Gaurav G.K. Wróblewska A. Jasiński R. On the question of the formation of nitro-functionalized 2,4-pyrazole analogs on the basis of Nitrylimine molecular systems and 3,3,3-Trichloro-1-Nitroprop-1-Ene. Molecules 2022 27 23 8409 10.3390/molecules27238409 36500503
    [Google Scholar]
  87. Luo W.J. Liang X. Chen M. Wang K.H. Huang D. Wang J. Chen D.P. Hu Y. [3 + 2] cycloaddition reaction of Vinylsulfonium salts with hydrazonoyl halides: Synthesis of pyrazoles. J. Org. Chem. 2024 89 14 10066 10076 10.1021/acs.joc.4c00910 38953547
    [Google Scholar]
  88. Kumara Swamy K.C. Sandeep K. Sanjeeva Kumar A. Qureshi A.A. (3+2) Cycloadditions of vinyl sulfonyl fluorides with ethyl diazoacetate or azides: Metal-free synthesis of pyrazole and triazole scaffolds via SO2 elimination. Synthesis 2022 54 18 4111 4119 10.1055/s‑0041‑1737485
    [Google Scholar]
  89. Zou X. Zheng L. Zhuo X. Zhong Y. Wu Y. Yang B. He Q. Guo W. Copper-promoted aerobic oxidative [3+2] cycloaddition reactions of n,n-disubstituted hydrazines with alkynoates: Access to substituted pyrazoles. J. Org. Chem. 2023 88 4 2190 2206 10.1021/acs.joc.2c02610 36724037
    [Google Scholar]
  90. Liu J. Jia X. Zhang Y. Phosphine-Free [3+2] Cycloaddition of Propargylamines with Dialkyl Azodicarboxylates: An efficient access to pyrazole backbone. Synthesis 2018 50 17 3499 3505 10.1055/s‑0037‑1610168
    [Google Scholar]
  91. Pellarin I. Dall’Acqua A. Favero A. Segatto I. Rossi V. Crestan N. Karimbayli J. Belletti B. Baldassarre G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct. Target. Ther. 2025 10 1 11 10.1038/s41392‑024‑02080‑z 39800748
    [Google Scholar]
  92. Łukasik P. Załuski M. Gutowska I. Cyclin-Dependent Kinases (CDK) and their role in diseases development-review. Int. J. Mol. Sci. 2021 22 6 2935 10.3390/ijms22062935 33805800
    [Google Scholar]
  93. Mosadegh M. Noori Goodarzi N. Erfani Y. A comprehensive insight into apoptosis: Molecular mechanisms, signaling pathways, and modulating therapeutics. Cancer Invest. 2025 43 1 33 58 10.1080/07357907.2024.2445528 39760426
    [Google Scholar]
  94. Wani A.K. Akhtar N. Mir T.G. Singh R. Jha P.K. Mallik S.K. Sinha S. Tripathi S.K. Jain A. Jha A. Devkota H.P. Prakash A. Targeting apoptotic pathway of cancer cells with phytochemicals and plant-based nanomaterials. Biomolecules 2023 13 2 194 10.3390/biom13020194 36830564
    [Google Scholar]
  95. Almilaibary A. Phyto-therapeutics as anti-cancer agents in breast cancer: Pathway targeting and mechanistic elucidation. Saudi J. Biol. Sci. 2024 31 3 103935 10.1016/j.sjbs.2024.103935 38327657
    [Google Scholar]
  96. Walter M. Herr P. Re-discovery of pyrimidine salvage as target in cancer therapy. Cells 2022 11 4 739 10.3390/cells11040739 35203388
    [Google Scholar]
  97. Wang W.B. Yang Y. Zhao Y.P. Zhang T.P. Liao Q. Shu H. Recent studies of 5-fluorouracil resistance in pancreatic cancer. World J. Gastroenterol. 2014 20 42 15682 15690 10.3748/wjg.v20.i42.15682 25400452
    [Google Scholar]
  98. Roskoski R. Cyclin-dependent protein kinase inhibitors including palbociclib as anticancer drugs. Pharmacol. Res. 2016 107 249 275 10.1016/j.phrs.2016.03.012 26995305
    [Google Scholar]
  99. Borrego E.A. Guerena C.D. Schiaffino Bustamante A.Y. Gutierrez D.A. Valenzuela C.A. Betancourt A.P. Varela-Ramirez A. Aguilera R.J. A novel pyrazole exhibits potent anticancer cytotoxicity via apoptosis, cell cycle arrest, and the inhibition of tubulin polymerization in triple-negative breast cancer cells. Cells 2024 13 14 1225 10.3390/cells13141225 39056806
    [Google Scholar]
  100. Pistritto G. Trisciuoglio D. Ceci C. Garufi A. D’Orazi G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2016 8 4 603 619 10.18632/aging.100934 27019364
    [Google Scholar]
  101. Peng F. Liao M. Qin R. Zhu S. Peng C. Fu L. Chen Y. Han B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct. Target. Ther. 2022 7 1 286 10.1038/s41392‑022‑01110‑y 35963853
    [Google Scholar]
  102. Liu Z.L. Chen H.H. Zheng L.L. Sun L.P. Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023 8 1 198 10.1038/s41392‑023‑01460‑1 37169756
    [Google Scholar]
  103. Zhan J.L. Wu M.W. Chen F. Han B. Cu-Catalyzed [3 + 3] Annulation for the synthesis of pyrimidines via β-C(sp3)-H functionalization of saturated ketones. J. Org. Chem. 2016 81 23 11994 12000 10.1021/acs.joc.6b02181 27805404
    [Google Scholar]
  104. Wang X. Yan H. Jia C. Fang Z. Duan J. Guo K. Synthesis of 2,4,6-trisubstituted pyrimidines through Copper-Catalyzed [4 + 2] Annulation of α,β-Unsaturated Ketoximes with activated nitriles. J. Org. Chem. 2023 88 17 12236 12243 10.1021/acs.joc.3c00687 37610229
    [Google Scholar]
  105. Wang C. Wu C. Bian X. Wang L. Zhang Y. Na2CO3-Mediated [3+3] annulation reaction of substituted benzamidines with 2-benzylidenemalononitriles: Access to substituted pyrimidine-4,6-diamines. Synthesis 2023 55 3 457 464 10.1055/a‑1942‑7191
    [Google Scholar]
  106. Qin Z. Ma Y. Li F. Construction of a pyrimidine framework through [3 + 2 + 1] Annulation of amidines, ketones, and N, N -Dimethylaminoethanol as One Carbon Donor. J. Org. Chem. 2021 86 19 13734 13743 10.1021/acs.joc.1c01847 34541847
    [Google Scholar]
  107. Liu F. Zhang X. Qian Q. Yang C. A Concise and efficient approach to 2,6-disubstituted 4-Fluoro¬pyrimidines from α-CF3 Aryl Ketones. Synthesis 2020 52 2 273 280 10.1055/s‑0039‑1690248
    [Google Scholar]
  108. Islam F. Quadery T.M. Bai R. Luckett-Chastain L.R. Hamel E. Ihnat M.A. Gangjee A. Novel pyrazolo[4,3-d]pyrimidine microtubule targeting agents (MTAs): Synthesis, structure-activity relationship, in vitro and in vivo evaluation as antitumor agents. Bioorg. Med. Chem. Lett. 2021 41 127923 10.1016/j.bmcl.2021.127923 33705908
    [Google Scholar]
  109. Hoelder S. Clarke P.A. Workman P. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol. 2012 6 2 155 176 10.1016/j.molonc.2012.02.004 22440008
    [Google Scholar]
  110. Shamroukh A.H. Rashad A.E. Abdel-Megeid R.E. Ali H.S. Ali M.M. Some pyrazole and pyrazolo[3,4-d]pyrimidine derivatives: synthesis and anticancer evaluation. Arch. Pharm. (Weinheim) 2014 347 8 559 565 10.1002/ardp.201400064 24801813
    [Google Scholar]
  111. Ramoba L.V. Nzondomyo W.J. Serala K. Macharia L.W. Biswas S. Prince S. Malan F.P. Alexander O.T. Manicum A.L.E. Derivatives of pyrazole-based compounds as prospective cancer agents. ACS Omega 2025 10 12 12671 12678 10.1021/acsomega.5c00320 40191378
    [Google Scholar]
  112. Mohammed E.Z. Mahmoud W.R. George R.F. Hassan G.S. Omar F.A. Georgey H.H. Synthesis, in vitro anticancer activity and in silico studies of certain pyrazole-based derivatives as potential inhibitors of cyclin dependent kinases (CDKs). Bioorg. Chem. 2021 116 105347 10.1016/j.bioorg.2021.105347 34555628
    [Google Scholar]
  113. Cui Y.J. Tang L.Q. Zhang C.M. Liu Z.P. Synthesis of novel pyrazole derivatives and their tumor cell growth inhibitory activity. Molecules 2019 24 2 279 10.3390/molecules24020279 30642134
    [Google Scholar]
  114. Othman I.M.M. Alamshany Z.M. Tashkandi N.Y. Gad-Elkareem M.A.M. Anwar M.M. Nossier E.S. New pyrimidine and pyrazole-based compounds as potential EGFR inhibitors: Synthesis, anticancer, antimicrobial evaluation and computational studies. Bioorg. Chem. 2021 114 105078 10.1016/j.bioorg.2021.105078 34161878
    [Google Scholar]
  115. Kuthyala S. Sheikh S. Prabhu A. Rekha P.D. Karikannar N.G. Shankar M.K. Synthesis, characterization, and anticancer studies of some pyrazole‐based hybrid heteroatomics. ChemistrySelect 2020 5 35 10827 10834 10.1002/slct.202002483
    [Google Scholar]
  116. Kamel M.G. Sroor F.M. Hanafy M.K.H. Mahrous K.F. Hassaneen H.M. Design, synthesis and potent anti-pancreatic cancer activity of new pyrazole derivatives bearing chalcone, thiazole and thiadiazole moieties: Gene expression, DNA fragmentation, cell cycle arrest and SAR. RSC Advances 2024 14 37 26954 26970 10.1039/D4RA03005B 39193301
    [Google Scholar]
  117. Baren M.H. Ibrahim S.A. Al-Rooqi M.M. Ahmed S.A. El-Gamil M.M. Hekal H.A. A new class of anticancer activity with computational studies for a novel bioactive aminophosphonates based on pyrazole moiety. Sci. Rep. 2023 13 1 14680 10.1038/s41598‑023‑40265‑8 37673913
    [Google Scholar]
  118. Al-Muntaser S.M. Al-Karmalawy A.A. El-Naggar A.M. Ali A.K. Abd El-Sattar N.E.A. Abbass E.M. Novel 4-thiophenyl-pyrazole, pyridine, and pyrimidine derivatives as potential antitumor candidates targeting both EGFR and VEGFR-2: Design, synthesis, biological evaluations, and in silico studies. RSC Advances 2023 13 18 12184 12203 10.1039/D3RA00416C 37082377
    [Google Scholar]
  119. Saleh N.M. El-Gazzar M.G. Aly H.M. Othman R.A. Novel anticancer fused pyrazole derivatives as EGFR and VEGFR-2 Dual TK inhibitors. Front Chem. 2020 7 917 10.3389/fchem.2019.00917 32039146
    [Google Scholar]
  120. Ren B. Liu R.C. Ji K. Tang J.J. Gao J.M. Design, synthesis and in vitro antitumor evaluation of novel pyrazole-benzimidazole derivatives. Bioorg. Med. Chem. Lett. 2021 43 128097 10.1016/j.bmcl.2021.128097 33979690
    [Google Scholar]
  121. Alam M.J. Alam O. Perwez A. Rizvi M.A. Naim M.J. Naidu V. Imran M. Ghoneim M.M. Alshehri S. Shakeel F. Design, synthesis, molecular docking, and biological evaluation of pyrazole hybrid chalcone conjugates as potential anticancer agents and tubulin polymerization inhibitors. Pharmaceuticals 2022 15 3 280 10.3390/ph15030280 35337078
    [Google Scholar]
  122. Kumar S. Lathwal E. Kumar G. Saroha B. Kumar S. Mahata S. Sahoo P.K. Nasare V.D. Synthesis of pyrazole based novel aurone analogs and their cytotoxic activity against MCF-7 cell line. Chemical Data Collections 2020 30 100559 10.1016/j.cdc.2020.100559
    [Google Scholar]
  123. Myriagkou M. Papakonstantinou E. Deligiannidou G.E. Patsilinakos A. Kontogiorgis C. Pontiki E. Novel pyrimidine derivatives as antioxidant and anticancer agents: Design, synthesis and molecular modeling studies. Molecules 2023 28 9 3913 10.3390/molecules28093913 37175322
    [Google Scholar]
  124. Al-Mutairi A.A. Hafez H.N. El-Gazzar A.R.B.A. Mohamed M.Y.A. Synthesis and antimicrobial, anticancer and anti-oxidant activities of novel 2,3-dihydropyrido[2,3-d]pyrimidine-4-one and Pyrrolo[2,1-b][1,3]benzothiazole Derivatives via Microwave-Assisted Synthesis. Molecules 2022 27 4 1246 10.3390/molecules27041246 35209034
    [Google Scholar]
  125. Sroor F.M. Tohamy W.M. Zoheir K.M.A. Abdelazeem N.M. Mahrous K.F. Ibrahim N.S. Design, synthesis, in vitro anticancer, molecular docking and SAR studies of new series of pyrrolo[2,3-d]pyrimidine derivatives. BMC Chem. 2023 17 1 106 10.1186/s13065‑023‑01014‑0 37641068
    [Google Scholar]
  126. Hossan A. Alrefaei A.F. Katouah H.A. Bayazeed A. Asghar B.H. Shaaban F. El-Metwaly N.M. Synthesis, anticancer activity, and molecular docking of new pyrazolo[1,5-a]pyrimidine derivatives. J. Saudi Chem. Soc. 2023 27 2 101599 10.1016/j.jscs.2023.101599
    [Google Scholar]
  127. Devidi S. Manickam M.S. Evaluation of anticancer activity of novel pyrimidine aniline molecular hybrids: Synthesis and characterization. Ann. Phytomed. 2023 12 1 303 309
    [Google Scholar]
  128. Al-Tuwaijri H.M. Al-Abdullah E.S. El-Rashedy A.A. Ansari S.A. Almomen A. Alshibl H.M. Haiba M.E. Alkahtani H.M. New indazol-pyrimidine-based derivatives as selective anticancer agents: Design, synthesis, and in silico studies. Molecules 2023 28 9 3664 10.3390/molecules28093664 37175074
    [Google Scholar]
  129. Abdelhamed A.M. Hassan R.A. Kadry H.H. Helwa A.A. Novel pyrazolo[3,4-d]pyrimidine derivatives: design, synthesis, anticancer evaluation, VEGFR-2 inhibition, and antiangiogenic activity. RSC Med. Chem. 2023 14 12 2640 2657 10.1039/D3MD00476G 38107182
    [Google Scholar]
  130. El-Zoghbi M.S. El-Sebaey S.A. AL-Ghulikah, H.A.; Sobh, E.A. Design, synthesis, docking, and anticancer evaluations of new thiazolo[3,2-a] pyrimidines as topoisomerase II inhibitors. J. Enzyme Inhib. Med. Chem. 2023 38 1 2175209 10.1080/14756366.2023.2175209 36776024
    [Google Scholar]
  131. Pattabi V. Raju Veeraboina M. Eppakayala L. Navuluri S. Mulakayala N. Design, synthesis and biological evaluation of aryl urea derivatives of oxazole-pyrimidine as anticancer agents. Results Chem. 2024 7 101442 10.1016/j.rechem.2024.101442
    [Google Scholar]
  132. Siva Reddy B. Purna Chandra Rao G. Ramya Devi E. Prasad K.R.S. Nalla S. Synthesis and biological evaluation of 1,2,3-triazole incorporated pyridin-4-yl)-1H-1,2,4-triazol-3-yl)pyrimidine derivatives as anticancer agents. Results Chem. 2024 8 101598 10.1016/j.rechem.2024.101598
    [Google Scholar]
  133. Kilic-Kurt Z. Ozmen N. Bakar-Ates F. Synthesis and anticancer activity of some pyrimidine derivatives with aryl urea moieties as apoptosis-inducing agents. Bioorg. Chem. 2020 101 104028 10.1016/j.bioorg.2020.104028 32645482
    [Google Scholar]
  134. Haffez H. Taha H. Rabie M.A. Awad S.M. Zohny Y.M. Synthesis, biological evaluation and molecular docking studies of novel thiopyrimidine analogue as apoptotic agent with potential anticancer activity. Bioorg. Chem. 2020 104 104249 10.1016/j.bioorg.2020.104249 32911199
    [Google Scholar]
/content/journals/coc/10.2174/0113852728402678250728094527
Loading
/content/journals/coc/10.2174/0113852728402678250728094527
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: pyrimidine ; anticancer agents ; Cancer ; polymers ; pyrazole ; N-heterocycles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test