Skip to content
2000
image of Synthesis, Development, and Applications of Chiral Salen Ligands in Asymmetric Catalysis

Abstract

Chiral salen ligands, distinguished by their exceptional spatial and electronic tunability, serve as pivotal scaffolds in asymmetric catalysis, forming stable complexes with diverse metal ions through a robust [O,N,N,O] tetradentate coordination motif derived from the condensation of vicinal diamines with salicylaldehyde derivatives; this review consolidates advances over the past two decades, encompassing synthetic methodologies, structural evolution, and catalytic applications, where Mn-salen complexes facilitate enantioselective oxidations with high stereocontrol, exemplified by oxidative kinetic resolution of secondary alcohols and sulfide oxidations, Co-salen complexes exhibit unparalleled efficiency in hydrolytic kinetic resolution and CO/epoxide copolymerization, achieving quantitative conversions and exceptional enantiomeric excesses ( >99%), and Ti-salen systems deliver high enantioselectivity in sulfide oxidations across diverse substrates due to broad electronic tolerance. Innovative extensions include enantioselective olefin epoxidation, asymmetric nitroalkene cyanation, and sustainable polycarbonate synthesis from CO, offering significant advantages such as low toxicity, recyclability, and operational efficiency in aqueous media, while computational studies provide mechanistic insights, elucidating atomic-level behavior and the electronic origins of catalytic performance; future research priorities emphasize machine learning-guided design of programmable derivatives, development of redox-tunable electrocatalytic platforms, and lifecycle-optimized synthesis to enhance stability, selectivity, and reusability, thereby underscoring the structural versatility of salen scaffolds in advancing green chemistry, pharmaceutical synthesis, and CO utilization, with interdisciplinary innovation addressing current challenges to unlock full potential in sustainable catalysis and refine performance metrics for practical implementation.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728400759250909051426
2025-10-03
2025-11-06
Loading full text...

Full text loading...

References

  1. Yu J. Yang G. Gao M.L. Wang H. Jiang H.L. Chiral ligand‐decorated rhodium nanoparticles incorporated in covalent organic framework for asymmetric catalysis. Angew. Chem. Int. Ed. 2024 63 46 e202412643 10.1002/anie.202412643 39101718
    [Google Scholar]
  2. Pessoa J.C. Correia I. Salan vs. salen metal complexes in catalysis and medicinal applications: Virtues and pitfalls. Coord. Chem. Rev. 2019 388 227 247 10.1016/j.ccr.2019.02.035
    [Google Scholar]
  3. Shaw S. White J.D. Asymmetric catalysis using chiral salen-metal complexes: Recent advances. Chem. Rev. 2019 119 16 9381 9426 10.1021/acs.chemrev.9b00074 31184109
    [Google Scholar]
  4. Yuan Y.C. Mellah M. Schulz E. David O.R.P. Making chiral salen complexes work with organocatalysts. Chem. Rev. 2022 122 9 8841 8883 10.1021/acs.chemrev.1c00912 35266711
    [Google Scholar]
  5. Asatkar A. Tripathi M. Asatkar D. Salen and Related Ligands. Stability and Applications of Coordination Compounds. IntechOpen 2020 1 25 10.5772/intechopen.88593
    [Google Scholar]
  6. Schiff H.J.A.C. Communications from the University laboratory in Pisa: A new range of organic bases. Ann. Chem. Pharm. 1864 131 1 118 119 10.1002/jlac.18641310113
    [Google Scholar]
  7. Mellor D.P. Maley L. Order of stability of metal complexes. Nature 1948 161 4090 436 437 10.1038/161436b0
    [Google Scholar]
  8. Zahariev F. Ash T. Karunaratne E. Stender E. Gordon M.S. Windus T.L. Pérez García M. Prediction of stability constants of metal-ligand complexes by machine learning for the design of ligands with optimal metal ion selectivity. J. Chem. Phys. 2024 160 4 042502 10.1063/5.0176000 38284991
    [Google Scholar]
  9. Larrow J.F. Jacobsen E.N. Asymmetric processes catalyzed by chiral (salen)metal complexes. Organometallics in Process. Chemistry. Springer 2020 123 152 10.5772/intechopen.88593
    [Google Scholar]
  10. Bisht K.K. Parmar B. Rachuri Y. Kathalikattil A.C. Suresh E. Progress in the synthetic and functional aspects of chiral metal-organic frameworks. CrystEngComm 2015 17 29 5341 5356 10.1039/C5CE00776C
    [Google Scholar]
  11. Wang C. Wang Z. Mao S. Chen Z. Wang Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. Chin. J. Catal. 2022 43 4 928 955 10.1016/S1872‑2067(21)63924‑4
    [Google Scholar]
  12. Belokon Y.N. North M. Churkina T.D. Ikonnikov N.S. Maleev V.I. Chiral salen-metal complexes as novel catalysts for the asymmetric synthesis of α-amino acids under phase transfer catalysis conditions. Tetrahedron 2001 57 13 2491 2498 10.1016/S0040‑4020(01)00072‑2
    [Google Scholar]
  13. Cozzi P.G. Hilgraf R. Zimmermann N. Enantioselective catalytic formation of quaternary stereogenic centers. Eur. J. Org. Chem. 2007 2007 36 5969 5994 10.1002/ejoc.200700318
    [Google Scholar]
  14. Cozzi P.G. Metal-Salen Schiff base complexes in catalysis: Practical aspects. Chem. Soc. Rev. 2004 33 7 410 421 10.1039/B307853C 15354222
    [Google Scholar]
  15. Shi R. Zhang Z. Luo F. N-doped graphene-based CuO/WO3/Cu composite material with performances of catalytic decomposition 4-nitrophenol and photocatalytic degradation of organic dyes. Inorg. Chem. Commun. 2020 121 108246 10.1016/j.inoche.2020.108246
    [Google Scholar]
  16. Jacobsen E.N. Zhang W. Muci A.R. Ecker J.R. Deng L. Highly enantioselective epoxidation catalysts derived from 1,2-diaminocyclohexane. J. Am. Chem. Soc. 1991 113 18 7063 7064 10.1021/ja00018a068
    [Google Scholar]
  17. An X. Yu J.C. Graphene-based photocatalytic composites. RSC Advances 2011 1 8 1426 1434 10.1039/c1ra00382h
    [Google Scholar]
  18. De S. Jain A. Barman P. Recent advances in the catalytic applications of chiral schiff‐base ligands and metal complexes in asymmetric organic transformations. ChemistrySelect 2022 7 7 e202104334 10.1002/slct.202104334
    [Google Scholar]
  19. Katsuki T. Sharpless K.B. The first practical method for asymmetric epoxidation. J. Am. Chem. Soc. 1980 102 18 5974 5976 10.1021/ja00538a077
    [Google Scholar]
  20. Yuan Y. Zheng Z. Wang Y. Chang K. Yan W. Song Z. Xie Z. Jiang Z. Kuang Q. Asymmetric diatomic site catalysts for highly efficient industrial-level CO2 electroreduction. Appl. Catal. B 2025 365 124975 10.1016/j.apcatb.2024.124975
    [Google Scholar]
  21. Achard T.R.J. Clegg W. Harrington R.W. North M. Chiral salen ligands designed to form polymetallic complexes. Tetrahedron 2012 68 1 133 144 10.1016/j.tet.2011.10.084
    [Google Scholar]
  22. Shiryaev K.A. Recent advances in chiral catalysis using metal salen complexes. Curr. Org. Chem. 2012 16 15 1788 1807 10.2174/138527212802651340
    [Google Scholar]
  23. Solomon M.B. Chan B. Kubiak C.P. Jolliffe K.A. D’Alessandro D.M. The spectroelectrochemical behaviour of redox-active manganese salen complexes. Dalton Trans. 2019 48 11 3704 3713 10.1039/C8DT02676A 30801575
    [Google Scholar]
  24. Tian W. Zhong W. Yang Z. Chen L. Lin S. Li Y. Wang Y. Yang P. Long X. Synthesis, characterization and discovery of multiple anticancer mechanisms of dibutyltin complexes based on salen-like ligands. J. Inorg. Biochem. 2024 251 112434 10.1016/j.jinorgbio.2023.112434 38029537
    [Google Scholar]
  25. Clarke R.M. Storr T. The chemistry and applications of multimetallic salen complexes. Dalton Trans. 2014 43 25 9380 9391 10.1039/c4dt00591k 24722684
    [Google Scholar]
  26. Roy T. Barik S. Kumar M. Kureshy R.I. Ganguly B. Khan N.H. Abdi S.H.R. Bajaj H.C. Asymmetric hydrolytic kinetic resolution with recyclable polymeric Co(iii)-salen complexes: A practical strategy in the preparation of (S)-metoprolol, (S)-toliprolol and (S)-alprenolol: computational rationale for enantioselectivity. Catal. Sci. Technol. 2014 4 11 3899 3908 10.1039/C4CY00594E
    [Google Scholar]
  27. Zhang W. Loebach J.L. Wilson S.R. Jacobsen E.N. Enantioselective epoxidation of unfunctionalized olefins catalyzed by salen manganese complexes. J. Am. Chem. Soc. 1990 112 7 2801 2803 10.1021/ja00163a052
    [Google Scholar]
  28. North M. Quek S.C.Z. Pridmore N.E. Whitwood A.C. Wu X. Aluminum(salen) complexes as catalysts for the kinetic resolution of terminal epoxides via CO2 coupling. ACS Catal. 2015 5 6 3398 3402 10.1021/acscatal.5b00235
    [Google Scholar]
  29. Zhang R. Klaine S. Alcantar C. Bratcher F. Visible light generation of high-valent metal-oxo intermediates and mechanistic insights into catalytic oxidations. J. Inorg. Biochem. 2020 212 111246 10.1016/j.jinorgbio.2020.111246 33059321
    [Google Scholar]
  30. Zhang B. Qin Y. Interface tailoring of heterogeneous catalysts by atomic layer deposition. ACS Catal. 2018 8 11 10064 10081 10.1021/acscatal.8b02659
    [Google Scholar]
  31. Chen Z. Zhang J. Zhang C. Cui R. Tan M. Guo S. Wang H. Jiao J. Lu T. Regulating the coordination metal center in immobilized molecular complexes as single-atomic electrocatalysts for highly active, selective and durable electrochemical CO2 reduction. J. Power Sources 2022 519 230788 10.1016/j.jpowsour.2021.230788
    [Google Scholar]
  32. Venkataramanan N.S. Kuppuraj G. Rajagopal S. Metal-salen complexes as efficient catalysts for the oxygenation of heteroatom containing organic compounds—synthetic and mechanistic aspects. Coord. Chem. Rev. 2005 249 11-12 1249 1268 10.1016/j.ccr.2005.01.023
    [Google Scholar]
  33. Bahramian B. Mirkhani V. Moghadam M. Amin A.H. Water-soluble manganese(III) salen complex as a mild and selective catalyst for oxidation of alcohols. Appl. Catal. A Gen. 2006 315 52 57 10.1016/j.apcata.2006.08.037
    [Google Scholar]
  34. Bera P.K. Maity N.C. Abdi S.H.R. Khan N.H. Kureshy R.I. Bajaj H.C. Macrocyclic Mn(III) salen complexes as recyclable catalyst for oxidative kinetic resolution of secondary alcohols. Appl. Catal. A Gen. 2013 467 542 551 10.1016/j.apcata.2013.07.055
    [Google Scholar]
  35. Yamamoto H Oda S.J.S Asymmetric cyanation of nitroalkenes catalyzed by a salen-titanium catalyst Synfacts 2012 8 4 0400 10.1055/s‑0031‑1290517
    [Google Scholar]
  36. Tang X. Chen E.Y.X. Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide. Nat. Commun. 2018 9 1 2345 10.1038/s41467‑018‑04734‑3 29891896
    [Google Scholar]
  37. Baleizão C. Garcia H. Chiral salen complexes: An overview to recoverable and reusable homogeneous and heterogeneous catalysts. Chem. Rev. 2006 106 9 3987 4043 10.1021/cr050973n 16967927
    [Google Scholar]
  38. Matsumoto K. Saito B. Katsuki T. Asymmetric catalysis of metal complexes with non-planar ONNO ligands: salen, salalen and salan. Chem. Commun. (Camb.) 2007 35 3619 3627 10.1039/b701431g 17728874
    [Google Scholar]
  39. Ali S. Ara T. Danish M. Shujah S. Slawin A.M.Z. Tin(IV) Complexes with salen type schiff base: synthesis, spectroscopic characterization, crystal structure, antibacterial screening and cytotoxicity. Russ. J. Coord. Chem. 2019 45 12 889 898 10.1134/S1070328419120017
    [Google Scholar]
  40. Asatkar A. Tripathi M. Asatkar D. Multinuclear salen complexes in tandem catalysis: Design strategies and mechanistic insights. Adv. Catal. 2024 64 1 25 10.1016/bs.acat.2024.06.001
    [Google Scholar]
  41. Korusenko P.M. Petrova O.V. Vinogradov A.S. Atomic and electronic structure of metal-salen complexes [M(salen)], their polymers and composites based on them with carbon Nanostructures: Review of X-ray spectroscopy studies. Appl. Sci. 2024 14 3 1178 10.3390/app14031178
    [Google Scholar]
  42. Meng Q. Qin T. Miao H. Zhang G. Zhang Q. Cobalt(III) hydride HAT mediated enantioselective intramolecular hydroamination access to chiral pyrrolidines. Sci. China Chem. 2024 67 6 2002 2008 10.1007/s11426‑023‑1882‑5
    [Google Scholar]
  43. Hutchings G.J. Armstrong R.D. Hammond C. He Q. Jenkins R.L. Dimitratos N. Lopez-Sanchez J.A. Challenges and strategies in the scaling-up of catalytic processes for industrial chemical production. Chem. Soc. Rev. 2023 52 7 2211 2247 10.1039/D2CS00931D
    [Google Scholar]
  44. Elbert S.M. Mastalerz M. Metal Salen- and salphen-containing organic polymers: Synthesis and applications. Org. Mater. 2020 2 2 182 203 10.1055/s‑0040‑1708501
    [Google Scholar]
  45. Zhong Z. Dijkstra P.J. Feijen J. [(salen)Al]-Mediated, controlled and stereoselective ring-opening polymerization of lactide in solution and without solvent: Synthesis of highly isotactic polylactide stereocopolymers from racemic D,L-lactide. Angew. Chem. Int. Ed. 2002 41 23 4510 4513 10.1002/1521‑3773(20021202)41:23<4510:AID‑ANIE4510>3.0.CO;2‑L 12458522
    [Google Scholar]
  46. Longo J.M. Sanford M.J. Coates G.W. Ring-Opening copolymerization of epoxides and cyclic anhydrides with discrete metal complexes: Structure-property relationships. Chem. Rev. 2016 116 24 15167 15197 10.1021/acs.chemrev.6b00553 27936619
    [Google Scholar]
  47. Darensbourg D.J. Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem. Rev. 2007 107 6 2388 2410 10.1021/cr068363q 17447821
    [Google Scholar]
  48. Raman S.K. Brulé E. Tschan M.J.L. Thomas C.M. Tandem catalysis: A new approach to polypeptides and cyclic carbonates. Chem. Commun. (Camb.) 2014 50 89 13773 13776 10.1039/C4CC05730A 25251079
    [Google Scholar]
  49. Duan R. Hu C. Sun Z. Zhang H. Pang X. Chen X. Conjugated tri-nuclear salen-Co complexes for the copolymerization of epoxides/CO 2: Cocatalyst-free catalysis. Green Chem. 2019 21 17 4723 4731 10.1039/C9GC02045D
    [Google Scholar]
  50. Huang H.Y. Xiong W. Huang Y.T. Li K. Cai Z. Zhu J.B. Spiro-salen catalysts enable the chemical synthesis of stereoregular polyhydroxyalkanoates. Nat. Catal. 2023 6 8 720 728 10.1038/s41929‑023‑01001‑7
    [Google Scholar]
  51. Mukherjee P. Biswas C. Drew M.G.B. Ghosh A. Structural variations in Ni(II) complexes of salen type di-Schiff base ligands. Polyhedron 2007 26 13 3121 3128 10.1016/j.poly.2007.02.006
    [Google Scholar]
  52. Meng X. Qin C. Wang X.L. Su Z.M. Li B. Yang Q.H. Chiral salen-metal derivatives of polyoxometalates with asymmetric catalytic and photocatalytic activities. Dalton Trans. 2011 40 39 9964 9966 10.1039/c1dt11227a 21904746
    [Google Scholar]
  53. Noyori R. Asymmetric catalysis: Science and opportunities (Nobel lecture). Angew. Chem. Int. Ed. 2002 41 12 2008 2022 10.1002/1521‑3773(20020617)41:12<2008:AID‑ANIE2008>3.0.CO;2‑4 19746595
    [Google Scholar]
  54. Patra S.G. Asymmetric catalysis by chiral FLPs: A computational mini‐review. Chirality 2024 36 5 e23671 10.1002/chir.23671 38660756
    [Google Scholar]
  55. Leung W.H. Che C.M. Oxidation chemistry of ruthenium-salen complexes. Inorg. Chem. 1989 28 26 4619 4622 10.1021/ic00325a016
    [Google Scholar]
  56. Garnovskii A.D. Vasilchenko I.S. Garnovskii D.A. Kharisov B.I. Molecular design of mononuclear complexes of acyclic Schiff-base ligands. J. Coord. Chem. 2009 62 2 151 204 10.1080/00958970802398178
    [Google Scholar]
  57. Smith J.M. Boyle P.D. Synthesis of heterobimetallic aluminates via schiff base alkoxide precursors. Dalton Trans. 2018 47 29 10227 10236 10.1039/C8DT00835C
    [Google Scholar]
  58. Gao B. Feng X. Meng W. Du H. Asymmetric hydrogenation of ketones and enones with chiral lewis base derived frustrated lewis pairs. Angew. Chem. Int. Ed. 2020 59 11 4498 4504 10.1002/anie.201914568 31863715
    [Google Scholar]
  59. O’Connor K.J. Wey S.J. Burrows C.J. Alkene aziridination and epoxidation catalyzed by chiral metal salen complexes. Tetrahedron Lett. 1992 33 8 1001 1004 10.1016/S0040‑4039(00)91844‑6
    [Google Scholar]
  60. Xia S. Jiang Z. Huang Y. Li D. Cui Y. Li Y. Xia Y. Synthesis of titanium complexes supported by carbinolamide- and amide-containing ligands derived from Ti(NMe2)4-Mediated selective amidations of carbonyl groups. Inorg. Chem. 2020 59 19 14031 14041 10.1021/acs.inorgchem.0c01831 32955246
    [Google Scholar]
  61. Nguyen T.C.T. Huynh T.K.C. Truong H.B. Nguyen T.H.A. Nguyen H.P. Ton A.K. Nguyen V.T. Nguyen T.H.N. Hoang T.K.D. Rapid and efficient dual detection of Zn2+ Ions and oxytetracycline hydrochloride using a responsive fluorescent “on‐off” sensor based on simple salen‐type schiff base ligand. Chem. Asian J. 2024 19 23 e202400636 10.1002/asia.202400636 39171792
    [Google Scholar]
  62. Hipolito J. Alves L. Martins A. Synthesis and characterization of Ti(IV), Zr(IV) and Al(III) salen-based complexes. Eur. J. Chem. 2021 12 2 216 221 10.5155/eurjchem.12.2.216‑221.2101
    [Google Scholar]
  63. Xu D. Wang S. Shen Z. Xia C. Sun W. Enantioselective oxidation of racemic secondary alcohols catalyzed by chiral Mn(iii)-salen complexes with N-bromosuccinimide as a powerful oxidant. Org. Biomol. Chem. 2012 10 14 2730 2732 10.1039/c2ob07087a 22391591
    [Google Scholar]
  64. Zhang Y. Zhou Q. Ma W. Zhao J. Enantioselective oxidation of racemic secondary alcohols catalyzed by chiral Mn(III)-salen complex with sodium hypochlorite as oxidant. Catal. Commun. 2014 45 114 117 10.1016/j.catcom.2013.11.007
    [Google Scholar]
  65. Zhang Y. Gao B. Zhou Q. Zhao J. Oxidative kinetic resolution of secondary alcohols with Salen-Mn(III)/NBS/NaClO System. Catal. Lett. 2014 144 11 1797 1802 10.1007/s10562‑014‑1339‑9
    [Google Scholar]
  66. Brown M.K. Blewett M.M. Colombe J.R. Corey E.J. Mechanism of the enantioselective oxidation of racemic secondary alcohols catalyzed by chiral Mn(III)-salen complexes. J. Am. Chem. Soc. 2010 132 32 11165 11170 10.1021/ja103103d 20666410
    [Google Scholar]
  67. Krishnaveni N.S. Surendra K. Rama Rao K. A simple and highly selective biomimetic oxidation of alcohols and epoxides with N ‐Bromosuccinimide in the presence of β‐Cyclodextrin in water. Adv. Synth. Catal. 2004 346 2-3 346 350 10.1002/adsc.200303164
    [Google Scholar]
  68. Venkatasubramanian N. Thiagarajan V. A kinetic study of the oxidation of isopropyl alcohol by N-bromo succinimide. Tetrahedron Lett. 1967 8 35 3349 3354 10.1016/S0040‑4039(01)89842‑7
    [Google Scholar]
  69. Venkatasubramanian N. Thiagarajan V. The mechanism of oxidation of alcohols by bromine. Tetrahedron Lett. 1968 9 14 1711 1714 10.1016/S0040‑4039(01)99034‑3
    [Google Scholar]
  70. Kruse P.F. Grist K.L. McCoy T.A. Studies with N -Halo Reagents. Anal. Chem. 1954 26 8 1319 1322 10.1021/ac60092a016
    [Google Scholar]
  71. Venkatasubramanian N. Thiagarajan V. Mechanism of oxidation of alcohols with N-bromo succinimide. Can. J. Chem. 1969 47 4 694 697 10.1139/v69‑108
    [Google Scholar]
  72. Kokubo C. Katsuki T. Highly enantioselective catalytic oxidation of alkyl aryl sulfides using Mn-salen catalyst. Tetrahedron 1996 52 44 13895 13900 10.1016/0040‑4020(96)00851‑4
    [Google Scholar]
  73. Fujisaki J. Matsumoto K. Matsumoto K. Katsuki T. Catalytic asymmetric oxidation of cyclic dithioacetals: highly diastereo- and enantioselective synthesis of the S-oxides by a chiral aluminum(salalen) complex. J. Am. Chem. Soc. 2011 133 1 56 61 10.1021/ja106877x 21142029
    [Google Scholar]
  74. Bulman Page P.C. Gareh N.T. Porter R.A. Asymmetric oxidation of dithiane derivatives: Enantiomerically pure 1,3-dithiane 1-oxide. Tetrahedron Asymmetry 1993 4 10 2139 2142 10.1016/S0957‑4166(00)80059‑2
    [Google Scholar]
  75. Sternson L.A. Coviello D.A. Egan R.S. Nuclear magnetic resonance study of the conformation of 1,3-dithiolanes. J. Am. Chem. Soc. 1971 93 24 6529 6532 10.1021/ja00753a033
    [Google Scholar]
  76. Asadollahi P. Bikas R. Krawczyk M.S. Lis T. Catalytic oxidation of styrene by dinuclear Mn(III) coordination compound with asymmetric tridentate half-Salen type NNO-donor ligand. Polyhedron 2022 211 115537 10.1016/j.poly.2021.115537
    [Google Scholar]
  77. Chen L. Cheng F. Jia L. Wang L. Wei J. Zhang J. Yao L. Tang N. Wu J. Manganese(III) complexes of novel chiral unsymmetrical BINOL-Salen ligands: Synthesis, characterization, and application in asymmetric epoxidation of olefins. Appl. Catal. A Gen. 2012 415-416 40 46 10.1016/j.apcata.2011.12.001
    [Google Scholar]
  78. Ballistreri F. Gangemi C. Pappalardo A. Tomaselli G. Toscano R. Trusso Sfrazzetto G. (Salen)Mn(III) catalyzed asymmetric epoxidation reactions by hydrogen peroxide in water: A green protocol. Int. J. Mol. Sci. 2016 17 7 1112 10.3390/ijms17071112 27420047
    [Google Scholar]
  79. Finney N.S. Pospisil P.J. Chang S. Palucki M. Konsler R.G. Hansen K.B. Jacobsen E.N. On the viability of oxametallacyclic intermediates in the (salen)Mn-catalyzed asymmetric epoxidation. Angew. Chem. Int. Ed. Engl. 1997 36 16 1720 1723 10.1002/anie.199717201
    [Google Scholar]
  80. Senanayake C.H. Smith G.B. Ryan K.M. Fredenburgh L.E. Liu J. Roberts F.E. Hughes D.L. Larsen R.D. Verhoeven T.R. Reider P.J. The role of 4-(3-phenylpropyl)pyridine N-Oxide (P3NO) in the manganese-salen-catalyzed asymmetric epoxidation of indene. Tetrahedron Lett. 1996 37 19 3271 3274 10.1016/0040‑4039(96)00565‑5
    [Google Scholar]
  81. Choi J.Y. Hwang G.S. Senapati B.K. Efficient asymmetric sulfoxidation of prochiral sulfides catalyzed by chiral Salen-Mn(III) complexes. Bull. Korean Chem. Soc. 2008 29 10 1879 1880 10.5012/bkcs.2008.29.10.1879
    [Google Scholar]
  82. Saito B. Katsuki T. Ti(salen)-catalyzed enantioselective sulfoxidation using hydrogen peroxide as a terminal oxidant. Tetrahedron Lett. 2001 42 23 3873 3876 10.1016/S0040‑4039(01)00590‑1
    [Google Scholar]
  83. Abdellah I. Martini C. Dos Santos A. Dragoe D. Guérineau V. Huc V. Schulz E. Calix[8]arene as new platform for cobalt‐salen complexes immobilization and use in hydrolytic kinetic resolution of epoxides. ChemCatChem 2018 10 20 4761 4767 10.1002/cctc.201801164
    [Google Scholar]
  84. Loy R.N. Jacobsen E.N. Enantioselective intramolecular openings of oxetanes catalyzed by (salen)Co(III) complexes: Access to enantioenriched tetrahydrofurans. J. Am. Chem. Soc. 2009 131 8 2786 2787 10.1021/ja809176m 19199427
    [Google Scholar]
  85. Lidskog A. Li Y. Wärnmark K. Asymmetric ring-opening of epoxides catalyzed by metal-salen complexes. Catalysts 2020 10 6 705 10.3390/catal10060705
    [Google Scholar]
  86. Hansen K.B. Leighton J.L. Jacobsen E.N. On the mechanism of asymmetric nucleophilic ring-opening of epoxides catalyzed by (Salen)CrIII Complexes. J. Am. Chem. Soc. 1996 118 44 10924 10925 10.1021/ja962600x
    [Google Scholar]
  87. Guillaneux D. Zhao S.H. Samuel O. Rainford D. Kagan H.B. Nonlinear effects in asymmetric catalysis. J. Am. Chem. Soc. 1994 116 21 9430 9439 10.1021/ja00100a004
    [Google Scholar]
  88. Wei Y.L. Huang W.S. Cui Y.M. Yang K.F. Xu Z. Xu L.W. Enantioselective cyanosilylation of aldehydes catalyzed by a multistereogenic salen-Mn(iii) complex with a rotatable benzylic group as a helping hand. RSC Advances 2015 5 4 3098 3103 10.1039/C4RA12884B
    [Google Scholar]
  89. Zeng X.P. Cao Z.Y. Wang X. Chen L. Zhou F. Zhu F. Wang C.H. Zhou J. Activation of Chiral (Salen)AlCl complex by phosphorane for highly enantioselective cyanosilylation of ketones and enones. J. Am. Chem. Soc. 2016 138 1 416 425 10.1021/jacs.5b11476 26651389
    [Google Scholar]
  90. Lin L. Yin W. Fu X. Zhang J. Ma X. Wang R. Asymmetric cyanation of nitroalkenes catalyzed by a salen-titanium catalyst. Org. Biomol. Chem. 2012 10 1 83 89 10.1039/C1OB05899A 22042146
    [Google Scholar]
  91. Jakhar A. Sadhukhan A. Khan N.H. Saravanan S. Kureshy R.I. Abdi S.H.R. Bajaj H.C. Asymmetric hydrocyanation of nitroolefins catalyzed by an Aluminum(III) Salen Complex. ChemCatChem 2014 6 9 2656 2661 10.1002/cctc.201402373
    [Google Scholar]
  92. Ren W. Zhang W. Lu X. Highly regio- and stereo-selective copolymerization of CO2 with racemic propylene oxide catalyzed by unsymmetrical (S,S,S)-salenCo(III) complexes. Sci. China Chem. 2010 53 8 1646 1652 10.1007/s11426‑010‑4049‑1
    [Google Scholar]
  93. Liu Y. Ren W.M. Liu J. Lu X.B. Asymmetric copolymerization of CO2 with meso-epoxides mediated by dinuclear cobalt(III) complexes: unprecedented enantioselectivity and activity. Angew. Chem. Int. Ed. 2013 52 44 11594 11598 10.1002/anie.201305154 24019292
    [Google Scholar]
  94. Shaw S. White J.D. A new iron(III)-salen catalyst for enantioselective Conia-ene carbocyclization. J. Am. Chem. Soc. 2014 136 39 13578 13581 10.1021/ja507853f 25213211
    [Google Scholar]
  95. Kwon H.Y. Park C.M. Lee S.B. Youn J.H. Kang S.H. Asymmetric iodocyclization catalyzed by salen-CrIIICl: Its synthetic application to swainsonine. Chemistry 2008 14 3 1023 1028 10.1002/chem.200701199 17972261
    [Google Scholar]
  96. Joshi-Pangu A. Cohen R.D. Tudge M.T. Chen Y. Dearomatization of electron-deficient nitrogen heterocycles via cobalt-catalyzed asymmetric cyclopropanation. J. Org. Chem. 2016 81 8 3070 3075 10.1021/acs.joc.6b00322 27021027
    [Google Scholar]
  97. DiMauro E.F. Kozlowski M.C. Development of bifunctional salen catalysts: Rapid, chemoselective alkylations of α-ketoesters. J. Am. Chem. Soc. 2002 124 43 12668 12669 10.1021/ja026498h 12392407
    [Google Scholar]
  98. Cozzi P.G. Kotrusz P. Highly enantioselective addition of Me2Zn to aldehydes catalyzed by ClCr(Salen). J. Am. Chem. Soc. 2006 128 15 4940 4941 10.1021/ja057969d 16608313
    [Google Scholar]
  99. Cozzi P.G. Enantioselective alkynylation of ketones catalyzed by Zn(salen) complexes. Angew. Chem. Int. Ed. 2003 42 25 2895 2898 10.1002/anie.200351230 12833352
    [Google Scholar]
  100. Shaw S. White J.D. Regioselective and enantioselective addition of sulfur nucleophiles to acyclic α,β,γ,δ-unsaturated dienones catalyzed by an Iron(III)-. Salen Complex. Org. Lett. 2015 17 18 4564 4567 10.1021/acs.orglett.5b02280 26356405
    [Google Scholar]
  101. Gao L. Ning Z. Jin R. Ding J. Enantioselective iodolactonizations of 4-pentenoic acid derivatives mediated by chiral Salen-Co(II). Complex. Synlett 2009 2009 14 2291 2294 10.1055/s‑0029‑1217806
    [Google Scholar]
  102. Kawatsura M. Hayashi S. Komatsu Y. Hayase S. Itoh T. Enantioselective α-fluorination and chlorination of β-ketoesters by cobalt catalyst. Chem. Lett. 2010 39 5 466 467 10.1246/cl.2010.466
    [Google Scholar]
  103. Omura K. Murakami M. Uchida T. Irie R. Katsuki T. Enantioselective aziridination and amination using p -Toluenesulfonyl Azide in the Presence of Ru(salen)(CO). Complex. Chem. Lett. 2003 32 4 354 355 10.1246/cl.2003.354
    [Google Scholar]
  104. Kim C. Uchida T. Katsuki T. Asymmetric olefin aziridination using a newly designed Ru(CO)(salen) complex as the catalyst. Chem. Commun. (Camb.) 2012 48 57 7188 7190 10.1039/c2cc32997b 22684352
    [Google Scholar]
  105. Chen B.L. Zhu H.W. Xiao Y. Sun Q.L. Wang H. Lu J.X. Asymmetric electrocarboxylation of 1-phenylethyl chloride catalyzed by electrogenerated chiral [CoI(salen)]- complex. Electrochem. Commun. 2014 42 55 59 10.1016/j.elecom.2014.02.009
    [Google Scholar]
  106. Yang L.R. Zhang J.J. Zhao Y.J. Wang Z.L. Wang H. Lu J-X. La1-xSrxFeO3 perovskite electrocatalysts for asymmetric electrocarboxylation of acetophenone with CO2. Electrochim. Acta 2021 398 139308 10.1016/j.electacta.2021.139308
    [Google Scholar]
  107. Xiong R. Wang Y. Zhu J.W. Li M.H. Lu J.X. Wang H. Chiral metal salen complexes as chiral electrocatalysts for asymmetric electrochemical carboxylation of acetophenone. ChemistrySelect 2023 8 29 e202301126 10.1002/slct.202301126
    [Google Scholar]
/content/journals/coc/10.2174/0113852728400759250909051426
Loading
/content/journals/coc/10.2174/0113852728400759250909051426
Loading

Data & Media loading...

Supplements

Supplementary material is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test