Skip to content
2000
image of Oxidation of Aniline Under Modified Boyland-Sims Conditions

Abstract

The Boyland-Sims peroxydisulfate oxidation is a highly effective method for the introduction of a hydroxyl function into aromatic amines. The simplicity of the process, as well as the absence of the need to protect sensitive functional groups, are the reaction's defining characteristics. Nevertheless, the low yield of the target products restricts the practical application of the reaction. The present study investigates the peroxydisulfate oxidation of aniline under modified conditions of the Boyland-Sims reaction. The yield and ratio of - and -aminophenols formed in the oxidation of aniline were found to depend on the reaction conditions. Previous studies on this reaction have been conducted at ambient temperature. It was determined that these temperature conditions are inadequate for the complete oxidation of aniline. It was found that increasing the temperature to 45°C resulted in a twofold increase (up to 35%) in the yield of reaction products, which, however, remains inadequate for the practical application of the reaction. Consequently, modifications to the Boyland-Sims reaction conditions were proposed. These comprised the use of metallophthalocyanine catalysts or a second oxidizing agent, hydrogen peroxide. Both modifications enabled a substantial augmentation in the yield of reaction products, - and -aminophenols. In the presence of metallophthalocyanines, the yield of intermediate 2(4)-aminophenylsulfates increased to 54-85%. Among the studied catalysts, cobalt phthalocyanine proved to be the most active. Its addition allowed increasing the yield of 2(4)-aminophenylsulfates up to 85%, while the ratio of - and -aminophenols in the mixture was shifted towards the -isomer, with a ratio of 1:7. However, the utilization of a combination of two oxidizing agents, ammonium persulfate and hydrogen peroxide, led to the unexpected formation of -aminophenol as the predominant reaction product, accompanied by the presence of trace amounts of the -isomer.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728396301250709210814
2025-07-30
2025-11-04
Loading full text...

Full text loading...

References

  1. Nadgeri J.M. Biradar N.S. Patil P.B. Jadkar S.T. Garade A.C. Rode C.V. Control of competing hydrogenation of phenylhydroxylamine to aniline in a single-step hydrogenation of nitrobenzene to p -Aminophenol. Ind. Eng. Chem. Res. 2011 50 9 5478 5484 10.1021/ie102544a
    [Google Scholar]
  2. Rode C.V. Vaidya M.J. Chaudhari R.V. Synthesis of p-aminophenol by catalytic hydrogenation of nitrobenzene. Org. Process Res. Dev. 1999 3 6 465 470 10.1021/op990040r
    [Google Scholar]
  3. Takasaki M. Motoyama Y. Higashi K. Yoon S.H. Mochida I. Nagashima H. Chemoselective hydrogenation of nitroarenes with carbon nanofiber-supported platinum and palladium nanoparticles. Org. Lett. 2008 10 8 1601 1604 10.1021/ol800277a 18338901
    [Google Scholar]
  4. Tanielyan S.K. Nair J.J. Marin N. Alvez G. McNair R.J. Wang D. Augustine R.L. Hydrogenation of nitrobenzene to 4-aminophenol over supported Pt catalysts. Org. Process Res. Dev. 2007 11 4 681 688 10.1021/op700049p
    [Google Scholar]
  5. Joncour R. Ferreira A. Duguet N. Lemaire M. Preparation of para -Aminophenol from nitrobenzene through bamberger rearrangement using a mixture of heterogeneous and homogeneous acid catalysts. Org. Process Res. Dev. 2018 22 3 312 320 10.1021/acs.oprd.7b00354
    [Google Scholar]
  6. Behrman E.J. The Elbs & boyland-sims oxidations: Reactions of peroxydisulfate-An updated literature survey. Mini Rev. Org. Chem. 2021 18 5 621 625 10.2174/1570193X17999200813153655
    [Google Scholar]
  7. Boyland E. Manson D. Sims P. 729. The preparation of o-aminophenyl sulphates. J. Chem. Soc. 1953 3623 3623 10.1039/jr9530003623
    [Google Scholar]
  8. Boyland E. Sims P. The oxidation of some aromatic amines with persulphate. J. Chem. Soc. 1954 980 980 10.1039/jr9540000980
    [Google Scholar]
  9. Boyland E. Sims P. The oxidation of aromatic amines. Part VII. The action of persulphate on some aromatic amines. J. Chem. Soc. 1954 19548 4198 10.1039/JR9580004190
    [Google Scholar]
  10. Sakaue S. Tsubakino T. Nishiyama Y. Ishii Y. Oxidation of aromatic amines with hydrogen peroxide catalyzed by cetylpyridinium heteropolyoxometalates. J. Org. Chem. 1993 58 14 3633 3638 10.1021/jo00066a012
    [Google Scholar]
  11. Liu J. Li J. Ren J. Zeng B-B. Oxidation of aromatic amines into nitroarenes with m-CPBA. Tetrahedron Lett. 2014 55 9 1581 1584 10.1016/j.tetlet.2014.01.073
    [Google Scholar]
  12. Yan G. Yang M. Recent advances in the synthesis of aromatic nitro compounds. Org. Biomol. Chem. 2013 11 16 2554 2566 10.1039/c3ob27354g 23443836
    [Google Scholar]
  13. Reddy K.R. Maheswari C.U. Venkateshwar M. Kantam M.L. Selective oxidation of aromatic amines to nitro derivatives using potassium iodide‐ tert ‐Butyl hydroperoxide catalytic system. Adv. Synth. Catal. 2009 351 1-2 93 96 10.1002/adsc.200800641
    [Google Scholar]
  14. Emmons W.D. The oxidation of amines with peracetic acid. J. Am. Chem. Soc. 1957 79 20 5528 5530 10.1021/ja01577a053
    [Google Scholar]
  15. Patil V.V. Shankarling G.S. Steric-hindrance-induced regio- and chemoselective oxidation of aromatic amines. J. Org. Chem. 2015 80 16 7876 7883 10.1021/acs.joc.5b00582 26212905
    [Google Scholar]
  16. Firouzabadi H. Amani N.I.K. Tungstophosphoric acid catalyzed oxidation of aromatic amines to nitro compounds with sodium perborate in micellar media. Green Chem. 2001 3 131 132 10.1039/b100955i
    [Google Scholar]
  17. Jayachandran B. Sasidharan M. Sudalai A. Ravindranathan T. Chromium silicalite-2 (CrS-2): An efficient catalyst for the direct oxidation of primary amines to nitro compounds with TBHP. J. Chem. Soc. Chem. Commun. 1995 1523–1524 15 1523 10.1039/c39950001523
    [Google Scholar]
  18. Ratnikov M.O. Farkas L.E. McLaughlin E.C. Chiou G. Choi H. El-Khalafy S.H. Doyle M.P. Dirhodium-catalyzed phenol and aniline oxidations with T-HYDRO. Substrate scope and mechanism of oxidation. J. Org. Chem. 2011 76 8 2585 2593 10.1021/jo1024865 21413678
    [Google Scholar]
  19. Tressler C.M. Stonehouse P. Kyler K.S. Calcium tungstate: A convenient recoverable catalyst for hydrogen peroxide oxidation. Green Chem. 2016 18 18 4875 4878 10.1039/C6GC00725B
    [Google Scholar]
  20. Tanini D. Dalia C. Capperucci A. The polyhedral nature of selenium-catalysed reactions: Se(iv) species instead of Se(vi) species make the difference in the on water selenium-mediated oxidation of arylamines. Green Chem. 2021 23 15 5680 5686 10.1039/D0GC04322B
    [Google Scholar]
  21. Shiraishi Y. Sakamoto H. Fujiwara K. Ichikawa S. Hirai T. Selective photocatalytic oxidation of aniline to nitrosobenzene by Pt nanoparticles supported on TiO2 under visible light irradiation. ACS Catal. 2014 4 8 2418 2425 10.1021/cs500447n
    [Google Scholar]
  22. Xu Z. Liu Q. Zhang H. Liao H. Wei X. Lai W. Dong S. Dai S. Hou Z. Ionic liquid-regulated titanium oxo clusters catalyze selective oxidation of anilines to azoxybenzenes. Ind. Eng. Chem. Res. 2024 63 18 8187 8199 10.1021/acs.iecr.4c00693
    [Google Scholar]
  23. Qin J. Long Y. Sun F. Zhou P.P. Wang W.D. Luo N. Ma J. Zr(OH) 4 ‐Catalyzed controllable selective oxidation of anilines to azoxybenzenes, azobenzenes and nitrosobenzenes. Angew. Chem. Int. Ed. 2022 61 2 202112907 10.1002/anie.202112907 34643982
    [Google Scholar]
  24. Acharyya S.S. Ghosh S. Bal R. Catalytic oxidation of aniline to azoxybenzene over CuCr 2 O 4 spinel nanoparticle catalyst 2014 2 (4) 584 589 10.1021/sc5000545
  25. Ghosh S. Acharyya S.S. Sasaki T. Bal R. Room temperature selective oxidation of aniline to azoxybenzene over a silver supported tungsten oxide nanostructured catalyst. Green Chem. 2015 17 3 1867 1876 10.1039/C4GC02123A
    [Google Scholar]
  26. Paul B. Sharma S.K. Adak S. Khatun R. Singh G. Das D. Joshi V. Bhandari S. Dhar S.S. Bal R. Low-temperature catalytic oxidation of aniline to azoxybenzene over an Ag/Fe2O3 nanoparticle catalyst using H2O2 as an oxidant. New J. Chem. 2019 43 23 8911 8918 10.1039/C9NJ01085H
    [Google Scholar]
  27. Ding B. Xu B. Ding Z. Zhang T. Wang Y. Qiu H. He J. An P. Yao Y. Hou Z. Catalytic selective oxidation of aromatic amines to azoxy derivatives with an ultralow loading of peroxoniobate salts. Catal. Sci. Technol. 2022 12 17 5360 5371 10.1039/D2CY01137A
    [Google Scholar]
  28. Li S. Zhao W. Wang L. Jia Y. Cui Q. Wen B. Chen X. Controllable selective oxidation of anilines to azoxybenzenes and nitrobenzenes by regulating the base. ACS Omega 2024 9 (38) acsomega.4c04820 10.1021/acsomega.4c04820 39346814
    [Google Scholar]
  29. Han S. Cheng Y. Liu S. Tao C. Wang A. Wei W. Yu H. Wei Y. Selective oxidation of anilines to azobenzenes and azoxybenzenes by a molecular Mo oxide catalyst. Angew. Chem. Int. Ed. 2021 60 12 6382 6385 10.1002/anie.202013940 33350553
    [Google Scholar]
  30. Khan A. Xiao S. Xie Y. Kaya S. Zareen S. Muhammad N. Parveen K. Xu D. Rb-promoted Fe/CeO 2 nanocatalyst for aniline conversion into azoxybenzene, DFT calculations and mechanism. New J. Chem. 2025 49 3 921 934 10.1039/D4NJ04200J
    [Google Scholar]
  31. Wang Z. Chen Y. Long Zh. Wang Y. Fan M. Zhang P. Leng Y. Mo2C-derived molybdenum oxycarbides afford controllable oxidation of anilines to azobenzenes and azoxybenzenes. Green Chem. 2025 27 3091 3098 10.1039/D4GC06281G
    [Google Scholar]
  32. Guo Y. Xiao R. Xu N. Liu X. Wang X. Enhanced catalytic oxidation of aniline to azobenzene using Ultrasound-Assisted thermocatalysis with a Phosphomolybdate-Based heterogeneous catalyst. Separ. Purif. Tech. 2025 365 132687 10.1016/j.seppur.2025.132687
    [Google Scholar]
  33. Behrman E.J. The persulfate oxidation of phenols and arylamines (The Elbs and The Boyland-Sims oxidations). Org. React. 1988 35 421 511 10.1002/0471264180.or035.02
    [Google Scholar]
  34. Gimadieva A.R. Khazimullina Y.Z. Abdrakhmanov I.B. Mustafin A.G. A procedure for preparing effective immunomodulators and antioxidants: 5-hydroxy-6-methyluracil and 5-hydroxy-1,3,6-trimethyluracil. Russ. J. Appl. Chem. 2022 95 3 436 441 10.1134/S1070427222030144
    [Google Scholar]
  35. Gimadieva A.R. Khazimullina Y.Z. Gilimkhanova A.A. Mustafin A.G. Efficient modification of peroxydisulfate oxidation reactions of nitrogen-containing heterocycles 6-methyluracil and pyridine. Beilstein J. Org. Chem. 2024 20 2599 2607 10.3762/bjoc.20.219 39445220
    [Google Scholar]
  36. Gimadieva A.R. Khazimullina Y.Z. Abdrakhmanov I.B. Mustafin A.G. Phthalocyanine-catalyzed oxidation of phenol with ammonium persulfate. Russ. Chem. Bull. 2023 72 10 2372 2376 10.1007/s11172‑023‑4035‑3
    [Google Scholar]
  37. Behrman E.J. The Elbs and Boyland-Sims peroxydisulfate oxidations. Beilstein J. Org. Chem. 2006 2 1 22 10.1186/1860‑5397‑2‑22 17090305
    [Google Scholar]
  38. Behrman E.J. The ortho-para ratio and the intermediate in the persulfate oxidation of aromatic amines (the Boyland-Sims oxidation). J. Org. Chem. 1992 57 8 2266 2270 10.1021/jo00034a016
    [Google Scholar]
  39. Janošević A. Marjanović B. Rakić A. Ćirić-Marjanović G. Progress in conducting/semiconducting and redox-active oligomers and polymers of arylamines. J. Serb. Chem. Soc. 2013 78 11 1809 1836 10.2298/JSC130809097J
    [Google Scholar]
  40. Sorokin A.B. Phthalocyanine metal complexes in catalysis. Chem. Rev. 2013 113 10 8152 8191 10.1021/cr4000072 23782107
    [Google Scholar]
  41. Perevalov V.P. Vinokurov E.G. Zuev K.V. Vasilenko E.A. Tsivadze A.Y. Modification and application of metal phthalocyanines in heterogeneous systems. Prot. Met. Phys. Chem. Surf. 2017 53 2 199 214 10.1134/S2070205117020186
    [Google Scholar]
  42. Sorokin A.B. Kudrik E.V. Phthalocyanine metal complexes: Versatile catalysts for selective oxidation and bleaching. Catal. Today 2011 159 1 37 46 10.1016/j.cattod.2010.06.020
    [Google Scholar]
  43. Enikolopyan N.S. Bogdanova K.A. Askarov K.A. Metal complexes of porphine and azaporphine compounds as catalysts of reactions involving oxidation by molecular oxygen. Russ. Chem. Rev. 1983 52 1 13 26 10.1070/RC1983v052n01ABEH002794
    [Google Scholar]
  44. Pereira Monteiro C.J. Ferreira Faustino M.A. Pinho Morgado Silva Neves M.G. Quialheiro Simões M.M. Sanjust E. Metallophthalocyanines as catalysts in aerobic oxidation. Catalysts 2021 11 1 122 10.3390/catal11010122
    [Google Scholar]
  45. Zhang G. Zhang Y. Tan A. Yang Y. Tian M. Effects of MN4-Type coordination structure in metallophthalocyanine for bio-inspired oxidative desulfurization performance. Molecules 2022 27 3 904 10.3390/molecules27030904 35164168
    [Google Scholar]
  46. Gimadieva A.R. Khazimullina Yu.Z. Abdrakhmanov I.B. Mustafin A.G. Method for production of ortho- and para-aminophenols. RU Patent 2786515C1 2022
    [Google Scholar]
  47. Gimadieva A.R. Khazimullina Yu.Z. Gilimkhanova A.A. Safiullin R.L. Abdrakhmanov I.B. Mustafin A.G. Method of obtaining aminophenols RU Patent 2800099C1 2023
    [Google Scholar]
  48. Mustafin A.G. Gimadieva A.R. Khazimullina Yu.Z. Gilimkhanova A.A. Abdrakhmanov I.B. Effective method of obtaining ortho- and paraaminophenols. RU Patent 2800093 2023
    [Google Scholar]
  49. Marjanović B. Juranić I. Ćirić-Marjanović G. Revised mechanism of Boyland-Sims oxidation. J. Phys. Chem. A 2011 115 15 3536 3550 10.1021/jp111129t 21434676
    [Google Scholar]
  50. Marjanović B. Juranić I. Ćirić-Marjanović G. Reply to comment on ‘revised mechanism of boyland–sims oxidation. J. Phys. Chem. A 2011 115 26 7865 7868 10.1021/jp2041845
    [Google Scholar]
  51. Bressan M. d’Alessandro N. Liberatore L. Morvillo A. Ruthenium-catalyzed oxidative dehalogenation of organics. Coord. Chem. Rev. 1999 185-186 385 402 10.1016/S0010‑8545(99)00024‑7
    [Google Scholar]
  52. Chandra Singh U. Venkatarao K. Decomposition of peroxodisulphate in aqueous alkaline solution. J. Inorg. Nucl. Chem. 1976 38 3 541 543 10.1016/0022‑1902(76)80300‑4
    [Google Scholar]
  53. Aleksanyan K.G. Stokolos O.A. Zaitseva Yu.N. Solodova E.V. Belysheva D.A. Botin A.A. Botin. NefteGazoKhimia 2018 3 44
    [Google Scholar]
  54. 2-Aminophenol (Compound) 2025 Available from:http://pubchem. ncbi.nlm.nih.gov/compound/o-Aminophenol#section=Spectral-Information
  55. p-Aminophenol (Compound). 2025 Available from: http://pubchem. ncbi.nlm.nih.gov/compound/p-Aminophenol#section=Spectral-Information
/content/journals/coc/10.2174/0113852728396301250709210814
Loading
/content/journals/coc/10.2174/0113852728396301250709210814
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test