Skip to content
2000
image of Ulmus Species: Their Extraction, Structural Diversity, and Pharmacological Properties

Abstract

, a genus in the family Ulmaceae, includes medicinal plants traditionally used to treat pain and bone-related disorders. The present study aimed to provide a comprehensive overview of the structural diversity of phytochemicals, their natural sources, and the chromatographic separation methods used. The pharmacological activities of constituents found in were also discussed in detail. Approximately 100 English references, spanning from the 1960s to the present, were identified from electronic resources, primarily using Google Scholar, Web of Science, and ScienceDirect. SciFinder was used to confirm references and chemical structures. “”, “phytochemistry”, and “pharmacology” were included as the main keywords to search for articles. A total of 196 natural metabolites were isolated and/or detected. The main classes were the derivatives of flavonoids, monophenols, lignans, neolignans, coumarins, terpenoids, and sterols. plants were also found to be rich in polysaccharides and glycoproteins. Crude extracts and isolated compounds possess a variety of pharmacological values, such as anticancer, antioxidant, antimicrobial, anti-inflammatory, antiallergic, antihypertensive, anti-obesity, and topoisomerase inhibitory activities. constituents are outstanding agents that offer significant health benefits, including immunomodulatory action and protection of the vascular system, neurons, liver, skin, eyes, excretory system, and hair. Effective separation of the major compounds at elevated concentrations is critically required. Moreover, there is a need to conduct and clinical trials.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728394187250807061220
2025-09-01
2025-11-06
Loading full text...

Full text loading...

References

  1. Jeong C. Lee C.H. Seo J. Park J.H.Y. Lee K.W. Catechin and flavonoid glycosides from the Ulmus genus: Exploring their nutritional pharmacology and therapeutic potential in osteoporosis and inflammatory conditions. Fitoterapia 2024 178 106188 10.1016/j.fitote.2024.106188 39153558
    [Google Scholar]
  2. Whittemore A.T. Fuller R.S. Brown B.H. Hahn M. Gog L. Weber J.A. Hipp A.L. Phylogeny, biogeography, and classification of the Elms ( Ulmus ). Syst. Bot. 2021 46 3 711 727 10.1600/036364421X16312068417039
    [Google Scholar]
  3. Yin M. Li C. Wang Y. Fu J. Sun Y. Zhang Q. Comparison analysis of metabolite profiling in seeds and bark of Ulmus parvifolia , a Chinese medicine species. Plant Signal. Behav. 2022 17 1 2138041 10.1080/15592324.2022.2138041 36317599
    [Google Scholar]
  4. Jin U.H. Lee D.Y. Kim D.S. Lee I.S. Kim C.H. Induction of mitochondria-mediated apoptosis by methanol fraction of Ulmus davidiana Planch (Ulmaceae) in U87 glioblastoma cells. Environ. Toxicol. Pharmacol. 2006 22 2 136 141 10.1016/j.etap.2006.01.005 21783700
    [Google Scholar]
  5. Jung M.J. Heo S.I. Wang M.H. Free radical scavenging and total phenolic contents from methanolic extracts of Ulmus davidiana. Food Chem. 2008 108 2 482 487 10.1016/j.foodchem.2007.10.081 26059125
    [Google Scholar]
  6. Alishir A. Yu J.S. Park M. Kim J.C. Pang C. Kim J.K. Jang T.S. Jung W.H. Kim K.H. Ulmusakidian, a new coumarin glycoside and antifungal phenolic compounds from the root bark of Ulmus davidiana var. japonica. Bioorg. Med. Chem. Lett. 2021 36 127828 10.1016/j.bmcl.2021.127828 33508466
    [Google Scholar]
  7. Choi S.I. Lee J.H. Kim J.M. Jung T.D. Cho B.Y. Choi S.H. Lee D.W. Kim J. Kim J.Y. Lee O.H. Ulmus macrocarpaHance extracts attenuated H 2 O 2 and UVB-induced skin photo-aging by activating antioxidant enzymes and inhibiting MAPK pathways. Int. J. Mol. Sci. 2017 18 6 1200 10.3390/ijms18061200 28587261
    [Google Scholar]
  8. Hussein R.A. Afifi A.H. Soliman A.A.F. El Shahid Z.A. Zoheir K.M.A. Mahmoud K.M. Neuroprotective activity of Ulmus pumila L. in Alzheimer’s disease in rats; Role of neurotrophic factors. Heliyon 2020 6 12 e05678 10.1016/j.heliyon.2020.e05678 33367123
    [Google Scholar]
  9. Lee M.K. Kim Y.C. Five Novel Neuroprotective Triterpene Esters of Ulmus d avidiana var. j aponica . J. Nat. Prod. 2001 64 3 328 331 10.1021/np0004799 11277749
    [Google Scholar]
  10. Kwon J.H. Kim S.B. Park K.H. Lee M.W. Antioxidative and anti-inflammatory effects of phenolic compounds from the roots of Ulmus macrocarpa. Arch. Pharm. Res. 2011 34 9 1459 1466 10.1007/s12272‑011‑0907‑4 21975807
    [Google Scholar]
  11. So H.M. Yu J.S. Khan Z. Subedi L. Ko Y.J. Lee I.K. Park W.S. Chung S.J. Ahn M.J. Kim S.Y. Kim K.H. Chemical constituents of the root bark of Ulmus davidiana var. japonica and their potential biological activities. Bioorg. Chem. 2019 91 103145 10.1016/j.bioorg.2019.103145 31357073
    [Google Scholar]
  12. Gu Z.Y. Feng C.Y. Li S.S. Yin D.D. Wu Q. Zhang L. Wang L.S. Identification of flavonoids and chlorogenic acids in elm fruits from the genus Ulmus and their antioxidant activity. J. Sep. Sci. 2019 42 18 2888 2899 10.1002/jssc.201900302 31282097
    [Google Scholar]
  13. Jung M.J. Heo S.I. Wang M.H. HPLC analysis and antioxidant activity of Ulmus davidiana and some flavonoids. Food Chem. 2010 120 1 313 318 10.1016/j.foodchem.2009.09.085
    [Google Scholar]
  14. Zheng M.S. Lee Y.K. Li Y. Hwangbo K. Lee C.S. Kim J.R. Lee S.K.S. Chang H.W. Son J.K. Inhibition of DNA topoisomerases I and II and cytotoxicity of compounds from Ulmus davidiana var. japonica. Arch. Pharm. Res. 2010 33 9 1307 1315 10.1007/s12272‑010‑0903‑0 20945128
    [Google Scholar]
  15. Song I.K. Kim K.S. Suh S.J. Kim M.S. Kwon D.Y. Kim S.L. Kim C.H. Anti-inflammatory effect of Ulmus davidiana Planch (Ulmaceae) on collagen-induced inflammation in rats. Environ. Toxicol. Pharmacol. 2007 23 1 102 110 10.1016/j.etap.2006.07.013 21783743
    [Google Scholar]
  16. Lee M.Y. Seo C.S. Ha H. Jung D. Lee H. Lee N.H. Lee J.A. Kim J.H. Lee Y.K. Son J.K. Shin H.K. Protective effects of Ulmus davidiana var. japonica against OVA-induced murine asthma model via upregulation of heme oxygenase-1. J. Ethnopharmacol. 2010 130 1 61 69 10.1016/j.jep.2010.04.011 20420895
    [Google Scholar]
  17. Lee S.H. Lee I. Kim M.H. Go J.S. Lee S.H. Hwang H.J. Hyun S.K. Kang K.H. Kim B.W. Kim C.M. Chung K.T. Lee J.H. An extract of Ulmus macrocarpa improves cellular immunity in immuno-suppressed models. Anim. Cells Syst. 2016 20 6 353 362 10.1080/19768354.2016.1230556
    [Google Scholar]
  18. Cheng S. Li N. Yu Y. Elshafei A. Jin M. Li G. Zheng M. A new flavonoid from the bark of Ulmus pumila L. Biochem. Syst. Ecol. 2020 88 103956 10.1016/j.bse.2019.103956
    [Google Scholar]
  19. Rawat P. Kumar M. Sharan K. Chattopadhyay N. Maurya R. Ulmosides A and B: Flavonoid 6-C-glycosides from Ulmus wallichiana , stimulating osteoblast differentiation assessed by alkaline phosphatase. Bioorg. Med. Chem. Lett. 2009 19 16 4684 4687 10.1016/j.bmcl.2009.06.074 19596573
    [Google Scholar]
  20. Hu D. Liu Z. Yu Y. Wu C. Liu J. Kang D. Min J. Zheng M. Chemical constituents of Ulmus pumila L. and their chemotaxonomic significance. Biochem. Syst. Ecol. 2024 117 104907 10.1016/j.bse.2024.104907
    [Google Scholar]
  21. Wang W. Jeong C. Lee Y. Park C. Oh E. Park K.H. Cho Y. Kang E. Lee J. Cho Y.J. Park J.H.Y. Son Y.J. Lee K.W. Kang H. Flavonoid glycosides from Ulmus macrocarpa inhibit osteoclast differentiation via the downregulation of NFATc1. ACS Omega 2022 7 6 4840 4849 10.1021/acsomega.1c05305 35187304
    [Google Scholar]
  22. Jeong C. Lee C.H. Lee Y. Seo J. Wang W. Park K.H. Oh E. Cho Y. Park C. Son Y.J. Yoon Park J.H. Kang H. Lee K.W. Ulmus macrocarpaHance trunk bark extracts inhibit RANKL-induced osteoclast differentiation and prevent ovariectomy-induced osteoporosis in mice. J. Ethnopharmacol. 2024 319 Pt 3 117285 10.1016/j.jep.2023.117285 37839769
    [Google Scholar]
  23. Hwan K.S. Teak H.K. Cheol P.J. Isolation of flavonoid and determination of rutin from the leaves of Ulmus parviflora. Korean J. Pharmacogn. 1992 23 229 234
    [Google Scholar]
  24. Son B.W. Park J.H. Zee O.P. Catechin glycoside from Ulmus davidiana. Arch. Pharm. Res. 1989 12 3 219 222 10.1007/BF02855558
    [Google Scholar]
  25. Kwon Y.M. Lee J.H. Lee M.W. Phenolic compounds from barks of Ulmus macrocarpa and its antioxidative activities. Korean J. Pharmacogn. 2002 33 404 410
    [Google Scholar]
  26. Rho J. Seo C.S. Park H.S. Wijerathne C.U.B. Jeong H.Y. Moon O.S. Seo Y.W. Son H.Y. Won Y.S. Kwun H.J. Ulmus macrocarpaHance improves benign prostatic hyperplasia by regulating prostatic cell apoptosis. J. Ethnopharmacol. 2019 233 115 122 10.1016/j.jep.2018.11.042 30508623
    [Google Scholar]
  27. Kim J.H. Park J.S. Lee Y.J. Choi S. Kim Y.H. Yang S.Y. Inhibition of soluble epoxide hydrolase by phytochemical constituents of the root bark of Ulmus davidiana var. japonica. J. Enzyme Inhib. Med. Chem. 2021 36 1 1049 1055 10.1080/14756366.2021.1927005 34000951
    [Google Scholar]
  28. Lee C.H. Kwon Y.E. Kim S.S. Kim H.J. Kim H.K. Kim J.K. Cheong E.J. Choi S.E. Chemotaxonomic significance of catechin 7-O-beta-D-apiofuranoside in Ulmus species native to Asia. Forest Sci. Technol. 2024 20 3 249 257 10.1080/21580103.2024.2354267
    [Google Scholar]
  29. Moon Y.H. Rim G.R. Studies on the constituents of Ulmus parvifolia. Korean J. Pharmacogn. 1995 26 1 7
    [Google Scholar]
  30. Nurgalieva G.M. Pashinina L.T. Erzhanova M.S. A catechin 7-xyloside from Ulmus laevis. Chem. Nat. Compd. 1983 19 6 751 10.1007/BF00575195
    [Google Scholar]
  31. Zheng M.S. Li G. Li Y. Seo C.S. Lee Y.K. Jung J.S. Song D.K. Bae H.B. Kwak S.H. Chang H.W. Kim J.R. Son J.K. Protective constituents against sepsis in mice from the root barks of Ulmus davidiana var. japonica. Arch. Pharm. Res. 2011 34 9 1443 1450 10.1007/s12272‑011‑0905‑6 21975805
    [Google Scholar]
  32. Khan M.P. Mishra J.S. Sharan K. Yadav M. Singh A.K. Srivastava A. Kumar S. Bhaduaria S. Maurya R. Sanyal S. Chattopadhyay N. A novel flavonoid C-glucoside from Ulmus wallichiana preserves bone mineral density, microarchitecture and biomechanical properties in the presence of glucocorticoid by promoting osteoblast survival: A comparative study with human parathyroid hormone. Phytomedicine 2013 20 14 1256 1266 10.1016/j.phymed.2013.07.007 23928508
    [Google Scholar]
  33. Swarnkar G. Sharan K. Siddiqui J.A. Chakravarti B. Rawat P. Kumar M. Arya K.R. Maurya R. Chattopadhyay N. A novel flavonoid isolated from the steam-bark of Ulmus Wallichiana Planchon stimulates osteoblast function and inhibits osteoclast and adipocyte differentiation. Eur. J. Pharmacol. 2011 658 2-3 65 73 10.1016/j.ejphar.2011.02.032 21376034
    [Google Scholar]
  34. Rofouei M.K. Kojoori S.M.H. Moazeni-Pourasil R.S. Optimization of chlorogenic acid extraction from Elm tree, Ulmus minor Mill., fruits, using response surface methodology. Separ. Purif. Tech. 2021 256 117773 10.1016/j.seppur.2020.117773
    [Google Scholar]
  35. Zhou Q. Wu S.Y. Jiang C.X. Tong Y.P. Zhao T. Zhang B. Nong X.H. Jin Z.X. Hu J.F. A new coumarin derivative from the stems of the endangered plant Ulmus elongata . Nat. Prod. Res. 2021 35 21 3562 3568 10.1080/14786419.2020.1713124 32037889
    [Google Scholar]
  36. Lee M.K. Sung S.H. Lee H.S. Cho J.H. Kim Y.C. Lignan and neolignan glycosides from Ulmus davidiana var.japonica. Arch. Pharm. Res. 2001 24 3 198 201 10.1007/BF02978256 11440076
    [Google Scholar]
  37. Hostettler F.D. Seikel M.K. Lignans of Ulmus thomasii heartwood—II. Tetrahedron 1969 25 11 2325 2337 10.1016/S0040‑4020(01)82782‑4 5796577
    [Google Scholar]
  38. Seikel M.K. Hostettler F.D. Johnson D.B. Lignans of Ulmus thomasii heartwood—I. Tetrahedron 1968 24 3 1475 1488 10.1016/0040‑4020(68)88100‑1
    [Google Scholar]
  39. Joo T. Sowndhararajan K. Hong S. Lee J. Park S.Y. Kim S. Jhoo J.W. Inhibition of nitric oxide production in LPS-stimulated RAW 264.7 cells by stem bark of Ulmus pumila L. Saudi J. Biol. Sci. 2014 21 5 427 435 10.1016/j.sjbs.2014.04.003 25313277
    [Google Scholar]
  40. Wang D. Xia M. Cui Z. New triterpenoids isolated from the root bark of Ulmus pumila L. Chem. Pharm. Bull. 2006 54 6 775 778 10.1248/cpb.54.775 16755042
    [Google Scholar]
  41. Kim J.P. Kim W.G. Koshino H. Jung J. Yoo I.D. Sesquiterpene O-naphthoquinones from the root bark of Ulmus davidiana . Phytochemistry 1996 43 2 425 430 10.1016/0031‑9422(96)00279‑8 8862035
    [Google Scholar]
  42. Burden R.S. Kemp M.S. Sesquiterpene phytoalexins from Ulmus glabra. Phytochemistry 1984 23 2 383 385 10.1016/S0031‑9422(00)80336‑2
    [Google Scholar]
  43. Overeem J.C. Elgersma D.M. Accumulation of mansonones E and F in Ulmus hollandica infected with Ceratocystis ulmi. Phytochemistry 1970 9 9 1949 1952 10.1016/S0031‑9422(00)85345‑5
    [Google Scholar]
  44. Shin D.Y. Kim H.S. Min K.H. Hyun S.S. Kim S.A. Huh H. Choi E.C. Choi Y.H. Kim J. Choi S.H. Kim W.B. Suh Y.G. Isolation of a potent anti-MRSA sesquiterpenoid quinone from Ulmus davidiana var. japonica. Chem. Pharm. Bull. 2000 48 11 1805 1806 10.1248/cpb.48.1805 11086922
    [Google Scholar]
  45. Wang D. Xia M. Cui Z. Tashiro S. Onodera S. Ikejima T. Cytotoxic effects of mansonone E and F isolated from Ulmus pumila. Biol. Pharm. Bull. 2004 27 7 1025 1030 10.1248/bpb.27.1025 15256734
    [Google Scholar]
  46. Kokubun T. Scott-Brown A. Kite G.C. Simmonds M.S.J. Protoilludane, illudane, illudalane, and norilludane sesquiterpenoids from Granulobasidium vellereum. J. Nat. Prod. 2016 79 6 1698 1701 10.1021/acs.jnatprod.6b00325 27227966
    [Google Scholar]
  47. Kim Y.C. Lee M.K. Sung S.H. Kim S.H. Sesquiterpenes from Ulmus davidiana var. japonica with the inhibitory effects on lipopolysaccharide-induced nitric oxide production. Fitoterapia 2007 78 3 196 199 10.1016/j.fitote.2006.11.013 17343992
    [Google Scholar]
  48. Choi S.Y. Lee S. Choi W.H. Lee Y. Jo Y.O. Ha T.Y. Isolation and anti-inflammatory activity of bakuchiol from Ulmus davidiana var. japonica . J. Med. Food 2010 13 4 1019 1023 10.1089/jmf.2009.1207 20553183
    [Google Scholar]
  49. Lee D.E. Jang E.H. Bang C. Kim G.L. Yoon S.Y. Lee D.H. Koo J. Na J.H. Lee S. Kim J.H. Bakuchiol, main component of root bark of Ulmus davidiana var. japonica , inhibits TGF-β-induced in vitro EMT and in vivo metastasis. Arch. Biochem. Biophys. 2021 709 108969 10.1016/j.abb.2021.108969 34153297
    [Google Scholar]
  50. Choi H.G. Park Y.M. Lu Y. Chang H.W. Na M. Lee S.H. Inhibition of prostaglandin D₂ production by trihydroxy fatty acids isolated from Ulmus davidiana var. japonica. Phytother. Res. 2013 27 9 1376 1380 10.1002/ptr.4882 23147809
    [Google Scholar]
  51. Minzanova S. Mironov V. Arkhipova D. Khabibullina A. Mironova L. Zakirova Y. Milyukov V. Biological activity and pharmacological application of pectic polysaccharides: A review. Polymers 2018 10 12 1407 10.3390/polym10121407 30961332
    [Google Scholar]
  52. Choi Y.R. Lee Y.K. Chang Y.H. Structural and rheological properties of pectic polysaccharide extracted from Ulmus davidiana esterified by succinic acid. Int. J. Biol. Macromol. 2018 120 Pt A 245 254 10.1016/j.ijbiomac.2018.08.094 30138663
    [Google Scholar]
  53. Choi J. Ki C.S. Ultrasonication, immune activity, and photocrosslinked microgel formation of pectic polysaccharide isolated from root bark of Ulmus davidiana var. japonica (Rehder) Nakai. Int. J. Biol. Macromol. 2022 211 535 544 10.1016/j.ijbiomac.2022.05.074 35569684
    [Google Scholar]
  54. Lee J.H. Lee Y.K. Choi Y.R. Park J. Jung S.K. Chang Y.H. The characterization, selenylation and anti-inflammatory activity of pectic polysaccharides extracted from Ulmus pumila L. Int. J. Biol. Macromol. 2018 111 311 318 10.1016/j.ijbiomac.2018.01.005 29309871
    [Google Scholar]
  55. Lee J.H. Lee Y.K. Chang Y.H. Effects of selenylation modification on structural and antioxidant properties of pectic polysaccharides extracted from Ulmus pumila L. Int. J. Biol. Macromol. 2017 104 Pt A 1124 1132 10.1016/j.ijbiomac.2017.06.121 28673847
    [Google Scholar]
  56. Barsett H. Paulsen B.S. Habte Y. Further characterization of polysaccharides in seeds from Ulmus glabra Huds. Carbohydr. Polym. 1992 18 2 125 130 10.1016/0144‑8617(92)90134‑C
    [Google Scholar]
  57. Barsett H. Smestad Paulsen B. Separation, isolation and characterization of acidic polysaccharides from the inner bark of Ulmus glabra Huds. Carbohydr. Polym. 1992 17 2 137 144 10.1016/0144‑8617(92)90107‑2
    [Google Scholar]
  58. Lee S. Heo K.S. Oh P.S. Lim K. Lim K.T. Glycoprotein isolated from Ulmus davidiana Nakai inhibits TPA-induced apoptosis through nuclear factor-kappa B in NIH/3T3 cells. Toxicol. Lett. 2004 146 2 159 174 10.1016/j.toxlet.2003.10.005 14643968
    [Google Scholar]
  59. Ren Y. Qin Z. Wang Z. Wei S. Chen H. Zhu T. Liu L. Zhao Y. Ding B. Song W. Condensed tannins from Ulmus pumila L. leaves induce G2 /M phase arrest and apoptosis via caspase‐cascade activation in TFK ‐1 cholangiocarcinoma cells. J. Food Biochem. 2022 46 10 e14374 10.1111/jfbc.14374 35986624
    [Google Scholar]
  60. Park J.U. Cho J.S. Kim J.S. Kim H.K. Jo Y.H. Rahman M.A.A. Lee Y.I. Synergistic effect of Rubs crataegifolius and Ulmus macrocarpa against Helicobacter pylori clinical isolates and gastritis. Front. Pharmacol. 2020 11 4 10.3389/fphar.2020.00004 32153392
    [Google Scholar]
  61. You Y.O. Choi N.Y. Kim K.J. Ethanol extract of Ulmus pumila root bark inhibits clinically isolated antibiotic-resistant bacteria. Evid. Based Complement. Alternat. Med. 2013 2013 1 7 10.1155/2013/269874 24228058
    [Google Scholar]
  62. Bora K.S. Kumar A. Bisht G. Evaluation of antimicrobial potential of successive extracts of Ulmus wallichiana Planch. J. Ayurveda Integr. Med. 2018 9 3 190 194 10.1016/j.jaim.2017.02.009 29050883
    [Google Scholar]
  63. Eun L.S. Sang K.Y. Eun K.J. Ki B.J. Sul S.N. Antioxidant activity of Ulmus davidiana var japonica N. and Hemipteleae davidii P. Hanguk Yakyong Changmul Hakhoe Chi 2004 12 321 327
    [Google Scholar]
  64. Nadjet D. Hania B. Dina A. Nassima C. Djebbar A. Antioxidant activity of extracts of three Algerian medicinal plants: Clematis flammula, Populus nigra and Ulmus campestris. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2008 150 3 S182 10.1016/j.cbpa.2008.04.488
    [Google Scholar]
  65. Oh K.S. Ryu S.Y. Oh B.K. Seo H.W. Kim Y.S. Lee B.H. Antihypertensive, vasorelaxant, and antioxidant effect of root bark of Ulmus macrocarpa. Biol. Pharm. Bull. 2008 31 11 2090 2096 10.1248/bpb.31.2090 18981579
    [Google Scholar]
  66. Ko J.H. Lee S.J. Lim K.T. 116kDa glycoprotein isolated from Ulmus davidiana Nakai (UDN) inhibits glucose/glucose oxidase (G/GO)-induced apoptosis in BNL CL.2 cells. J. Ethnopharmacol. 2005 100 3 339 346 10.1016/j.jep.2005.03.029 15916875
    [Google Scholar]
  67. Jun C.D. Pae H.O. Kim Y.C. Jeong S.J. Yoo J.C. Lee E.J. Choi B.M. Chae S.W. Park R.K. Chung H.T. Inhibition of nitric oxide synthesis by butanol fraction of the methanol extract of Ulmus davidiana in murine macrophages. J. Ethnopharmacol. 1998 62 2 129 135 10.1016/S0378‑8741(98)00063‑4 9741885
    [Google Scholar]
  68. Lee E.H. Park C.W. Jung Y.J. Anti-inflammatory and immune-modulating effect of Ulmus davidiana var. japonica Nakai extract on a macrophage cell line and immune cells in the mouse small intestine. J. Ethnopharmacol. 2013 Mar 27 146 2 608 613 10.1016/j.jep.2013.01.035 23384785
    [Google Scholar]
  69. Lee S.J. Lim K.T. Glycoprotein isolated from Ulmus davidiana Nakai regulates expression of iNOS and COX-2 in vivo and in vitro. Food Chem. Toxicol. 2007 45 6 990 1000 10.1016/j.fct.2006.12.006
    [Google Scholar]
  70. Lee E.K. Song J. Seo Y. Koh E.M. Kim S.H. Jung K.J. Inhibitory Effects of AF-343, a Mixture of Cassia tora L., Ulmus pumila L., and Taraxacum o ffi cinale , on compound 48/80-mediated allergic responses in RBL-2H3 cells. Molecules 2020 25 10 2434 10.3390/molecules25102434 32456051
    [Google Scholar]
  71. Kim S.P. Lee S.J. Nam S.H. Friedman M. Elm Tree ( Ulmus parvifolia ) bark bioprocessed with mycelia of Shiitake ( Lentinus edodes ) mushrooms in liquid culture: Composition and mechanism of protection against allergic asthma in mice. J. Agric. Food Chem. 2016 64 4 773 784 10.1021/acs.jafc.5b04972 26807923
    [Google Scholar]
  72. Syed A.A. Lahiri S. Mohan D. Valicherla G.R. Gupta A.P. Riyazuddin M. Kumar S. Maurya R. Hanif K. Gayen J.R. Evaluation of anti-hypertensive activity of Ulmus wallichiana extract and fraction in SHR, DOCA-salt- and L-NAME-induced hypertensive rats. J. Ethnopharmacol. 2016 193 555 565 10.1016/j.jep.2016.10.008 27720848
    [Google Scholar]
  73. Lee Y.Y. Kim M. Irfan M. Yuk H.J. Kim D.S. Lee S.E. Kim S.H. Kim S. Kim S.D. Rhee M.H. Ulmus parvifoliaJacq. exhibits antiobesity properties and potentially induces browning of white adipose tissue. Evid. Based Complement. Alternat. Med. 2020 2020 1 9358563 10.1155/2020/9358563 33425000
    [Google Scholar]
  74. Ko J.H. Lee S.J. Lim K.T. Hypolipidemic effect and antioxidant activity of glycoprotein isolated from Ulmus davidiana Nakai in Triton WR‐1339‐treated mouse. Cell Biochem. Funct. 2007 25 5 495 500 10.1002/cbf.1337 16927415
    [Google Scholar]
  75. Lee C.H. Kwon Y. Park S. Kim T. Kim M.S. Kim E.J. Jung J.I. Min S. Park K.H. Jeong J.H. Choi S.E. The Impact of Ulmus macrocarpa Extracts on a model of sarcopenia-induced C57BL/6 mice. Int. J. Mol. Sci. 2024 25 11 6197 10.3390/ijms25116197 38892385
    [Google Scholar]
  76. Cho A.R. Lee S.Y. Cho Y.H. Kim C.M. Kim S.G. Effects of 4-week intervention with Ulmus macrocarpa Hance extract on immune function biomarkers in healthy adults: A randomized controlled trial. Evid. Based Complement. Alternat. Med. 2018 2018 5690816 10.1155/2018/5690816 29681977
    [Google Scholar]
  77. Jung H.J. Jeon H.J. Lim E.J. Ahn E.K. Song Y.S. Lee S. Shin K.H. Lim C.J. Park E.H. Anti-angiogenic activity of the methanol extract and its fractions of Ulmus davidiana var. japonica. J. Ethnopharmacol. 2007 112 2 406 409 10.1016/j.jep.2007.03.006 17428629
    [Google Scholar]
  78. Lee K.M. Joo H.K. Lee Y.R. Park M.S. Kang G. Choi S. Lee K.H. Jeon B.H. Ulmus davidianaethanol extract inhibits monocyte adhesion to tumor necrosis factor-alpha-stimulated endothelial cells. Integr. Med. Res. 2016 5 2 131 139 10.1016/j.imr.2016.03.006 28462108
    [Google Scholar]
  79. Syed A.A. Lahiri S. Mohan D. Valicherla G.R. Gupta A.P. Kumar S. Maurya R. Bora H.K. Hanif K. Gayen J.R. Cardioprotective effect of Ulmus wallichiana Planchon in β-adrenergic agonist induced cardiac hypertrophy. Front. Pharmacol. 2016 7 510 10.3389/fphar.2016.00510 28066255
    [Google Scholar]
  80. Gupta P. Singh A. Tiwari S. Mishra A. Maurya R. Singh S. Ulmosides A: Flavonoid 6-C-glycosides from Ulmus wallichiana attenuates lipopolysacchride induced oxidative stress, apoptosis and neuronal death. Neurotoxicol. 2019 73 100 111 10.1016/j.neuro.2019.02.017 30857974
    [Google Scholar]
  81. Park Y.J. Kim D.M. Jeong M.H. Yu J.S. So H.M. Bang I.J. Kim H.R. Kwon S.H. Kim K.H. Chung K.H. (–)-Catechin-7-O-β-D-apiofuranoside inhibits hepatic stellate cell activation by suppressing the STAT3 signaling pathway. Cells 2020 9 30 10.3390/cells9010030 31861943
    [Google Scholar]
  82. Oh P.S. Lee S.J. Lim K.T. Inhibitory effect of glycoprotein isolated from Ulmus davidiana Nakai on caspase 3 activity in 12- O -tetradecanoylphorbol 13-acetate–treated liver cells through the reduction of intracellular reactive oxygen species. Nutr. Res. 2007 27 7 432 439 10.1016/j.nutres.2007.05.001
    [Google Scholar]
  83. Lee S.J. Oh P.S. Ko J.H. Lim K.T. Lim K. Protective effect of glycoprotein isolated from Ulmus davidiana Nakai on carbon tetrachloride-induced mouse liver injury. J. Pharm. Pharmacol. 2006 58 143 152 10.1211/jpp.58.1.0018 16393475
    [Google Scholar]
  84. Ko J.H. Lim K.T. Glycoprotein isolated from Ulmus davidiana Nakai protects against carbon tetrachloride-induced liver injury in the mouse. J. Pharmacol. Sci. 2006 101 205 213 10.1254/jphs.FP0051053 16823256
    [Google Scholar]
  85. Jin U.H. Suh S.J. Park S.D. Kim K.S. Kwon D.Y. Kim C.H. Inhibition of mouse osteoblast proliferation and prostaglandin E2 synthesis by Ulmus davidiana Planch (Ulmaceae). Food Chem. Toxicol. 2008 46 6 2135 2142 10.1016/j.fct.2008.02.011 18378057
    [Google Scholar]
  86. Kim K.W. Park J.S. Kim K.S. Jin U.H. Kim J.K. Suh S.J. Kim C.H. Inhibition of Ulmus davidiana Planch (Ulmaceae) on bone resorption mediated by processing of Cathepsin K in cultured mouse osteoclasts. Phytother. Res. 2008 22 4 511 517 10.1002/ptr.2366 18338784
    [Google Scholar]
  87. Suh S.J. Yun W.S. Kim K.S. Jin U.H. Kim J.K. Kim M.S. Kwon D.Y. Kim C.H. Stimulative effects of Ulmus davidiana Planch (Ulmaceae) on osteoblastic MC3T3-E1 cells. J. Ethnopharmacol. 2007 109 3 480 485 10.1016/j.jep.2006.08.030 17030479
    [Google Scholar]
  88. Kim K.S. Lee S.D. Kim K.H. Kil S.Y. Chung K.H. Kim C.H. Suppressive effects of a water extract of Ulmus davidiana Planch (Ulmaceae) on collagen-induced arthritis in mice. J. Ethnopharmacol. 2005 97 1 65 71 10.1016/j.jep.2004.10.011 15652277
    [Google Scholar]
  89. Lee U.D. Suh S.J. Kim K.S. Kim D.S. Jin U.H. Lee I.S. Yoon U.H. Kim C.H. Immunomodulatory activity of Ulmus davidiana Planch (Ulmaceae) water and ethanolic extracts on bone cells: Stimulation of proliferation, alkaline phosphatase activity and type I collagen synthesis. Environ. Toxicol. Pharmacol. 2007 23 2 154 161 10.1016/j.etap.2006.08.002 21783752
    [Google Scholar]
  90. Kang M.C. Yumnam S. Park W.S. So H.M. Kim K.H. Shin M.C. Ahn M.J. Kim S.Y. Ulmus parvifoliaaccelerates skin wound healing by regulating the expression of MMPs and TGF-β. J. Clin. Med. 2019 9 1 59 10.3390/jcm9010059 31887972
    [Google Scholar]
  91. Eom S.Y. Chung C.B. Kim Y.S. Kim J.H. Kim K.S. Kim Y.H. Park S.H. Hwang Y.I. Kim K.H. Cosmeceutical properties of polysaccharides from the root bark of Ulmus davidiana var. japonica. J. Cosmet. Sci. 2006 57 5 355 367 10.1111/j.1467‑2494.2007.00369_4.x 17111070
    [Google Scholar]
  92. Kim I. Seo J. Lee D.H. Kim Y.H. Kim J.H. Wie M.B. Byun J.K. Yun J.H. Ulmus davidiana60% edible ethanolic extract for prevention of pericyte apoptosis in diabetic retinopathy. Front. Endocrinol. 2023 14 1138676 10.3389/fendo.2023.1138676 37234799
    [Google Scholar]
  93. Kwon Y.E. Choi S.E. Park K.H. Regulation of cytokines and dihydrotestosterone production in human hair follicle papilla cells by supercritical extraction-residues extract of Ulmus davidiana. Molecules 2022 27 4 1419 10.3390/molecules27041419 35209207
    [Google Scholar]
  94. Hai T.Q. Huong N.T. Son N.T. The medicinal plant Peucedanum japonicum Thunberg: A review of traditional use, phytochemistry, and pharmacology. Fitoterapia 2024 179 106270 10.1016/j.fitote.2024.106270 39442677
    [Google Scholar]
  95. Thoa N.T. Son N.T. Scutellarein: A review of chemistry and pharmacology. J. Pharm. Pharmacol. 2024 ••• 10.1093/jpp/rgae039 38579142
    [Google Scholar]
  96. Anh Van C. Duc D.X. Son N.T. Kaempferiaditerpenoids and flavonoids: An overview on phytochemistry, biosynthesis, synthesis, pharmacology, and pharmacokinetics. Med. Chem. Res. 2024 33 1 1 20 10.1007/s00044‑023‑03169‑w
    [Google Scholar]
  97. Hai T.Q. Huong N.T. Son N.T. Dauricine: A review of natural observation, pharmacology, and pharmacokinetics. Med. Chem. Res. 2024 33 10 1787 1803 10.1007/s00044‑024‑03297‑x
    [Google Scholar]
  98. Kim E.J. Jang M.K. Yoon E.H. Jung C.Y. Nam D.W. Lee S.D. Kim K.S. Efficacy of pharmacopuncture using root bark of Ulmus davidiana Planch in patients with knee osteoarthritis: A double-blind randomized controlled trial. J. Acupunct. Meridian Stud. 2010 3 1 16 23 10.1016/S2005‑2901(10)60003‑9 20633511
    [Google Scholar]
/content/journals/coc/10.2174/0113852728394187250807061220
Loading
/content/journals/coc/10.2174/0113852728394187250807061220
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: phytochemistry ; protection ; living organ ; flavonoids ; Ulmaceae ; pharmacology ; Ulmus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test