Skip to content
2000
image of Overview of Isoniazid-Derived Probes for Ion Detection and Analytical Applications

Abstract

Isoniazid-based fluorogenic and chromogenic chemosensors have gained considerable attention for their rapid, selective, and visually detectable responses toward metal ions and anions. This review presents a comprehensive analysis of their structural design, sensing mechanisms, and practical applications. The electron-rich framework of isoniazid facilitates hydrogen bonding and coordination complex formation, making it an excellent scaffold for chemosensor development. These systems have been successfully applied in environmental monitoring, medical diagnostics, and cellular imaging, demonstrating high sensitivity and versatility. Critical parameters such as detection limits, analyte selectivity, solvent effects, and sensing modes are discussed to guide future research and development in this growing field of chemical sensing.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728393613250821040719
2025-09-16
2025-12-14
Loading full text...

Full text loading...

References

  1. Chemosensors for anions of biological and environmental relevance. Agarwal,S., Ed; Medicinal and Environmental Chemistry: Experimental Advances and Simulations 2021 115 140 10.2174/9789814998307121010009
    [Google Scholar]
  2. El-Sewify I.M. Radwan A. Elghazawy N.H. Fritzsche W. Azzazy H.M.E. Optical chemosensors for environmental monitoring of toxic metals related to Alzheimer’s disease. RSC Advances 2022 12 50 32744 32755 10.1039/D2RA05384E 36425686
    [Google Scholar]
  3. Lieberzeit P.A. Dickert F.L. Chemosensors in environmental monitoring: Challenges in ruggedness and selectivity. Anal. Bioanal. Chem. 2009 393 2 467 472 10.1007/s00216‑008‑2464‑3 18982316
    [Google Scholar]
  4. Maywald M. Rink L. Zinc in human health and infectious diseases. Biomolecules 2022 12 12 1748 10.3390/biom12121748 36551176
    [Google Scholar]
  5. Gaggelli E. Kozlowski H. Valensin D. Valensin G. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev. 2006 106 6 1995 2044 10.1021/cr040410w 16771441
    [Google Scholar]
  6. Geissler C. Singh M. Iron, meat and health. Nutrients 2011 3 3 283 316 10.3390/nu3030283 22254098
    [Google Scholar]
  7. Bhattacharya P.K. Samnani P.B. Metal Ions in Biochemistry. Boca Raton CRC Press 2020 10.1201/9781003108429
    [Google Scholar]
  8. Egorova K.S. Ananikov V.P. Toxicity of metal compounds: Knowledge and myths. Organometallics 2017 36 21 4071 4090 10.1021/acs.organomet.7b00605
    [Google Scholar]
  9. The Role of Metal Ions in Biology, Biochemistry and Medicine MDPI Reprint. 2021 180 10.3390/books978‑3‑0365‑1055‑2
    [Google Scholar]
  10. Hamzi I. A review of biological applications of transition metal complexes incorporating N-acylhydrazones. Mini Rev. Org. Chem. 2022 19 8 968 990 10.2174/1570193X19666220328124048
    [Google Scholar]
  11. Ozsvath D.L. Fluoride and environmental health: A review. Rev. Environ. Sci. Biotechnol. 2009 8 1 59 79 10.1007/s11157‑008‑9136‑9
    [Google Scholar]
  12. Camargo J.A. Fluoride toxicity to aquatic organisms: A review. Chemosphere 2003 50 3 251 264 10.1016/S0045‑6535(02)00498‑8 12656244
    [Google Scholar]
  13. Jaszczak E. Polkowska Ż. Narkowicz S. Namieśnik J. Cyanides in the environment—analysis—problems and challenges. Environ. Sci. Pollut. Res. Int. 2017 24 19 15929 15948 10.1007/s11356‑017‑9081‑7 28512706
    [Google Scholar]
  14. Rayamajhi S. Sharma S. Iftikhar H. Unexplained bromide toxicity presenting as hyperchloremia and a negative anion gap. Cureus 2023 15 3 36218 10.7759/cureus.36218 37069868
    [Google Scholar]
  15. Vagadiya N. Patel D. Mukherjee N. Anion detection employing synthetic chemosensors in aqueous media. Mater. Today Proc. 2023 77 45 53 10.1016/j.matpr.2022.08.454
    [Google Scholar]
  16. Goshisht M.K. Tripathi N. Fluorescence-based sensors as an emerging tool for anion detection: Mechanism, sensory materials and applications. J. Mater. Chem. C Mater. Opt. Electron. Devices 2021 9 31 9820 9850 10.1039/D1TC01990B
    [Google Scholar]
  17. Chakraborty S. Detection of fluoride ion by chemosensing and fluorosensing technology. Results. Chem 2023 6 100994 10.1016/j.rechem.2023.100994
    [Google Scholar]
  18. Wan H. Xu Q. Gu P. Li H. Chen D. Li N. He J. Lu J. AIE-based fluorescent sensors for low concentration toxic ion detection in water. J. Hazard. Mater. 2021 403 123656 10.1016/j.jhazmat.2020.123656 33264865
    [Google Scholar]
  19. Rajbanshi M. Mahato M. Maiti A. Ahamed S. Sarkar P. Das S.K. A chromogenic probe for detection of biologically important anions and its implications for designing molecular logic gates. J. Fluoresc. 2024 35 3 1749 1760 10.1007/s10895‑024‑03629‑5 38446339
    [Google Scholar]
  20. Isaad J. El Achari A. Water-soluble coumarin based sequential colorimetric and fluorescence on-off chemosensor for copper(II) and cyanide ions in water. Opt. Mater. 2022 127 112275 10.1016/j.optmat.2022.112275
    [Google Scholar]
  21. Bargossi C. Fiorini M.C. Montalti M. Prodi L. Zaccheroni N. Recent developments in transition metal ion detection by luminescent chemosensors. Coord. Chem. Rev. 2000 208 1 17 32 [https://doi.org/10.1016/S0010-8545(00)00252-6
    [Google Scholar]
  22. So H. Lee H. Kim C. A Heterocyclic-based bifunctional sensor for detecting cobalt and zinc ion. Anal. Sci. 2020 36 12 1535 1539 10.2116/analsci.20P197 32863332
    [Google Scholar]
  23. Hamzi I. Colorimetric and fluorometric N-acylhydrazone-based chemosensors for detection of single to multiple metal ions: Design strategies and analytical applications. J. Fluoresc. 2024 35 5 2569 2621 10.1007/s10895‑024‑03748‑z 38856800
    [Google Scholar]
  24. Hamzi I. Touati Y. Mostefa-Kara B. Benzil bis-hydrazone based fluorescence ‘turn-on’ sensor for highly sensitive and selective detection of Zn(II) ions. J. Fluoresc. 2023 33 5 1683 1693 10.1007/s10895‑023‑03178‑3 36809411
    [Google Scholar]
  25. Roy A. Nandi M. Roy P. Dual chemosensors for metal ions: A comprehensive review. Trends Analyt. Chem. 2021 138 116204 10.1016/j.trac.2021.116204
    [Google Scholar]
  26. Khan J. Optical chemosensors synthesis and appplication for trace level metal ions detection in aqueous media: A review. J. Fluoresc. 2024 35 2 561 582 10.1007/s10895‑023‑03559‑8 38175458
    [Google Scholar]
  27. Maddeshiya T. Jaiswal M.K. Tamrakar A. Mishra G. Awasthi C. Pandey M.D. Pyrene appendant triazole-based chemosensors for sensing applications. Curr. Org. Synth. 2024 21 4 421 435 10.2174/1570179420666230621124119 37345247
    [Google Scholar]
  28. Song Y. Chen Z. Li H. Advances in coumarin-derived fluorescent chemosensors for metal ions. Curr. Org. Chem. 2012 16 22 2690 2707 10.2174/138527212804004544
    [Google Scholar]
  29. Hamzi I. Essalah K. Arnaud-Neu F. Vicens J. Abidi R. Lanthanide ion complexes of deprotonated p-isopropylcalix[n]arenes in dipolar aprotic solvents. J. Incl. Phenom. Macrocycl. Chem. 2016 85 1-2 69 82 10.1007/s10847‑016‑0606‑3
    [Google Scholar]
  30. Bouali W. Yaman M. Seferoğlu N. Seferoğlu Z. Colorimetric and fluorimetric detection of CN– ion using a highly selective and sensitive chemosensor derived from coumarin-hydrazone. J. Photochem. Photobiol. Chem. 2024 448 115227 10.1016/j.jphotochem.2023.115227
    [Google Scholar]
  31. Santos-Figueroa L.E. Moragues M.E. Climent E. Agostini A. Martínez-Máñez R. Sancenón F. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011. Chem. Soc. Rev. 2013 42 8 3489 3613 10.1039/c3cs35429f 23400370
    [Google Scholar]
  32. Duke R.M. Veale E.B. Pfeffer F.M. Kruger P.E. Gunnlaugsson T. Colorimetric and fluorescent anion sensors: An overview of recent developments in the use of 1,8-naphthalimide-based chemosensors. Chem. Soc. Rev. 2010 39 10 3936 3953 10.1039/b910560n 20818454
    [Google Scholar]
  33. Kursunlu A.N. Bastug E. Guler E. Importance of BODIPY-based chemosensors for cations and anions in bio-imaging applications. Curr. Anal. Chem. 2022 18 2 163 175 10.2174/1573411017666201215105055
    [Google Scholar]
  34. Vishnumurthy K.A. Kusanur R. Kendaganna Swamy S. Naked eye detection of anions: Dihydrazone receptor-based visual sensing. J. Indian Chem. Soc. 2024 101 11 101431 10.1016/j.jics.2024.101431
    [Google Scholar]
  35. Dongare P. Kolekar G. Gore A. A systematic review on fluorescent and colorimetric chemosensors for ion recognition. Current Chinese Science 2021 1 5 494 512 10.2174/2210298101666210831162500
    [Google Scholar]
  36. Khan S. Chen X. Almahri A. Allehyani E.S. Alhumaydhi F.A. Ibrahim M.M. Ali S. Recent developments in fluorescent and colorimetric chemosensors based on schiff bases for metallic cations detection: A review. J. Environ. Chem. Eng. 2021 9 6 106381 10.1016/j.jece.2021.106381
    [Google Scholar]
  37. Lee S. Yuen K.K.Y. Jolliffe K.A. Yoon J. Fluorescent and colorimetric chemosensors for pyrophosphate. Chem. Soc. Rev. 2015 44 7 1749 1762 10.1039/C4CS00353E 25578599
    [Google Scholar]
  38. Yue C. Liao C. Yang Z. Hu F. Recent advances in photoswitchable cation chemosensors. Curr. Org. Chem. 2018 22 14 1458 1467 10.2174/1385272822666180712143730
    [Google Scholar]
  39. Al-Saidi H.M. Khan S. Recent advances in thiourea based colorimetric and fluorescent chemosensors for detection of anions and neutral analytes: A review. Crit. Rev. Anal. Chem. 2024 54 1 93 109 10.1080/10408347.2022.2063017 35417281
    [Google Scholar]
  40. Jindal G. Vashisht P. Kaur N. Benzimidazole appended optical sensors for ionic species: Compilation of literature reports from 2017 to 2022. Results. Chem 2022 4 100551 10.1016/j.rechem.2022.100551
    [Google Scholar]
  41. Cao D. Liu Z. Verwilst P. Koo S. Jangjili P. Kim J.S. Lin W. Coumarin-based small-molecule fluorescent chemosensors. Chem. Rev. 2019 119 18 10403 10519 10.1021/acs.chemrev.9b00145 31314507
    [Google Scholar]
  42. Fernandes R.S. Shetty N.S. Mahesha P. Gaonkar S.L. A comprehensive review on thiophene based chemosensors. J. Fluoresc. 2022 32 1 19 56 10.1007/s10895‑021‑02833‑x 34623559
    [Google Scholar]
  43. Wang Y. Wang X. Ma W. Lu R. Zhou W. Gao H. Recent developments in rhodamine-based chemosensors: A review of the years 2018–2022. Chemosensors 2022 10 10 399 10.3390/chemosensors10100399
    [Google Scholar]
  44. Jurowski K. Szewczyk B. Nowak G. Piekoszewski W. Biological consequences of zinc deficiency in the pathomechanisms of selected diseases. J. Biol. Inorg. Chem. 2014 19 7 1069 1079 10.1007/s00775‑014‑1139‑0 24748223
    [Google Scholar]
  45. Bartzatt R. Neurological impact of Zinc excess and deficiency in vivo. Eur. J. Nutr. Food Saf. 2017 7 3 155 160 10.9734/EJNFS/2017/35783
    [Google Scholar]
  46. Santos D.C. Maia P.J.S. de Abreu Lopes M.A. Forero J.S.B. de Souza A.L.F. A simple isoniazid-based N-acylhydrazone derivative as potential fluorogenic probe for Zn2+ ions. J. Fluoresc. 2021 31 1 175 184 10.1007/s10895‑020‑02651‑7 33188635
    [Google Scholar]
  47. Aydin Z. Keskinates M. Yilmaz B. Bayrakci M. An isonicotinohydrazide based fluorescence sensor for detection of Zn2+ in biological systems: Experimental and theoretical studies along with cell imagine. Inorg. Chim. Acta 2023 557 121680 10.1016/j.ica.2023.121680
    [Google Scholar]
  48. Tayade K. Sahoo S.K. Bondhopadhyay B. Bhardwaj V.K. Singh N. Basu A. Bendre R. Kuwar A. Highly selective turn-on fluorescent sensor for nanomolar detection of biologically important Zn2+ based on isonicotinohydrazide derivative: Application in cellular imaging. Biosens. Bioelectron. 2014 61 429 433 10.1016/j.bios.2014.05.053 24934743
    [Google Scholar]
  49. Patil N.S. Dhake R.B. Phalak R. Fegade U.A. Ramalingan C. Saravanan V. Selective detection of Zn2+ Ions by ratiometric receptor (E)-N′-(1-(2, 5-Dihydroxy phenyl) Ethylidene) isonicotinohydrazide: A DFT study. Nat. Environ. Pollut. Technol. 2022 21 5 2231 2240 10.46488/NEPT.2022.v21i05.017
    [Google Scholar]
  50. Li Z. Wang J. Chen Y. Xiao L. Liu Z. A benzothiazole-based fluorescent probe for sensing Zn2+ and its application. Inorg. Chim. Acta 2023 545 121275 10.1016/j.ica.2022.121275
    [Google Scholar]
  51. Asaithambi G. Periasamy V. Karuppannan N. Fluorescence sensing response of zinc(II) and pyrophosphate ions by benzoxazole appended dipodal Schiff base. J. Photochem. Photobiol. Chem. 2019 370 75 83 10.1016/j.jphotochem.2018.10.036
    [Google Scholar]
  52. Ji P. Wang P. Chen H. Xu Y. Ge J. Tian Z. Yan Z. Potential of copper and copper compounds for anticancer applications. Pharmaceuticals. 2023 16 2 234 10.3390/ph16020234 37259382
    [Google Scholar]
  53. Araya M. Olivares M. Pizarro F. Copper in human health. Int. J. Environ. Health 2007 1 4 608 10.1504/IJENVH.2007.018578
    [Google Scholar]
  54. Karim N. Copper and human health- a review. J. Bahria. Univ. Med. Dent. Coll. 2018 8 2 117 122 10.51985/JBUMDC2018046
    [Google Scholar]
  55. Liu Q. Fei Q. Fei Y. Fan Q. Shan H. Feng G. Huan Y. A novel colorimetric probe derived from isonicotic acid hydrazide for copper (II) determination based on internal charge transfer (ICT). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015 151 785 789 10.1016/j.saa.2015.07.043 26172465
    [Google Scholar]
  56. Shaghaghi Z. Spectroscopic properties of some new azo–azomethine ligands in the presence of Cu2+, Pb2+, Hg2+, Co2+, Ni2+, Cd2+ and Zn2+ and their antioxidant activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014 131 67 71 10.1016/j.saa.2014.04.026 24820324
    [Google Scholar]
  57. Dhanasekaran K. Mohandoss S. Napoleon A.A. 4-Diphenylaminobenzaldehyde-formulated isonicotinohydrazide for the rapid recognition of Cu2+ ions; Application of RGB tool, pharmaceutical samples, and DFT studies. J. Mol. Struct. 2025 1321 140275 10.1016/j.molstruc.2024.140275
    [Google Scholar]
  58. Kumar A. Kumar A. M M S, C.P.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan, S.K.; S Kumar, S.; A Khan, S.; Yadav, K.K. Lead toxicity: Health hazards, influence on food Chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health 2020 17 7 2179 10.3390/ijerph17072179 32218253
    [Google Scholar]
  59. Wani A.L. Ara A. Usmani J.A. Lead toxicity: A review. Interdiscip. Toxicol. 2015 8 2 55 64 10.1515/intox‑2015‑0009 27486361
    [Google Scholar]
  60. Health risks of heavy metals from long-range transboundary air polution. 2007 Available from: https://iris.who.int/handle/10665/107872
  61. Hama Aziz K.H. Mustafa F.S. Omer K.M. Hama S. Hamarawf R.F. Rahman K.O. Heavy metal pollution in the aquatic environment: Efficient and low-cost removal approaches to eliminate their toxicity: A review. RSC Advances 2023 13 26 17595 17610 10.1039/D3RA00723E 37312989
    [Google Scholar]
  62. Arduini F. Calvo J.Q. Palleschi G. Moscone D. Amine A. Bismuth-modified electrodes for lead detection. Trends Analyt. Chem. 2010 29 11 1295 1304 10.1016/j.trac.2010.08.003
    [Google Scholar]
  63. Singh J. Saini S. Chauhan R.K. Bhardwaj P. Kumar A. Virender, An isoniazid based schiff base sensor for selective detection of Pd2+ ions. J. Fluoresc. 2023 35 1 21 28 10.1007/s10895‑023‑03491‑x 37971608
    [Google Scholar]
  64. Xu H. Qin W. Zhu J. Liu Y.G. A smartphone-assisted chromogenic and fluorogenic dual-channel sensor for specific determination of toxic Pb2+ ions with multifaceted applications. Tetrahedron 2024 168 134316 10.1016/j.tet.2024.134316
    [Google Scholar]
  65. Bryliński Ł. Kostelecka K. Woliński F. Duda P. Góra J. Granat M. Flieger J. Teresiński G. Buszewicz G. Sitarz R. Baj J. Aluminium in the human brain: Routes of penetration, toxicity, and resulting complications. Int. J. Mol. Sci. 2023 24 8 7228 10.3390/ijms24087228 37108392
    [Google Scholar]
  66. Klotz K. Weistenhöfer W. Neff F. Hartwig A. van Thriel C. Drexler H. The health effects of aluminum exposure. Dtsch. Arztebl. Int. 2017 114 39 653 659 10.3238/arztebl.2017.0653 29034866
    [Google Scholar]
  67. Crisponi G. Fanni D. Gerosa C. Nemolato S. Nurchi V.M. Crespo-Alonso M. Lachowicz J.I. Faa G. The meaning of aluminium exposure on human health and aluminium-related diseases. Biomol. Concepts 2013 4 1 77 87 10.1515/bmc‑2012‑0045 25436567
    [Google Scholar]
  68. Wang D.F. Ke Y.C. Guo H.X. Chen J. Weng W. A novel highly selective colorimetric sensor for aluminum (III) ion using Schiff base derivative. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014 122 268 272 10.1016/j.saa.2013.11.063 24316541
    [Google Scholar]
  69. Ravichandran D. Ranjani M. Prabu Sankar G. Shankar R. Karthi M. Selvakumar S. Prabhakaran R. Coumarin-Picolinohydrazone derived Schiff base as fluorescent sensor(OFF-ON) for detection of Al3+ ion: Synthesis, Spectral and theoretical studies. J. Mol. Struct. 2023 1273 134329 10.1016/j.molstruc.2022.134329
    [Google Scholar]
  70. Qin J.C. Cheng X. Fang R. Wang M. Yang Z. Li T. Li Y. Two Schiff-base fluorescent sensors for selective sensing of aluminum (III): Experimental and computational studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016 152 352 357 10.1016/j.saa.2015.07.095 26232579
    [Google Scholar]
  71. Singh G. Suman; Gupta, S.; Kaur, H.; Markan, P.; Mohit; Priyanka; Mohan, B. Tailored isatin-derived chemosensor immobilized on silica nanoparticles for targeted detection of Ni(II) ion. Inorg. Chem. Commun. 2024 163 112319 10.1016/j.inoche.2024.112319
    [Google Scholar]
  72. Danilescu O. Bourosh P. Kulikova O.V. Chumakov Y.M. Bulhac I. Croitor L. Dihydrazone Schiff base ligands – appropriate chemosensors for Cd(II) detection. Inorg. Chem. Commun. 2022 146 110199 10.1016/j.inoche.2022.110199
    [Google Scholar]
  73. Sakthivel P. Sekar K. A sensitive isoniazid capped silver nanoparticles - Selective colorimetric fluorescent sensor for Hg2+ ions in aqueous medium. J. Fluoresc. 2020 30 1 91 101 10.1007/s10895‑019‑02473‑2 31897912
    [Google Scholar]
  74. Egekeze J.O. Oehme F.W. Cyanides and their toxicity: A literature review. Vet. Q., 1980 2 (2) 104 114 104 114 10.1080/01652176.1980.9693766 6246656
    [Google Scholar]
  75. Ogbuagu E.O. Airaodion A.I. Okoroukwu V.N. Ekenjoku, JA Cyanide toxicity: The good, the bad and the ugly. Int. J. Biosci. Biotechnol. 2019 11 9 157 164
    [Google Scholar]
  76. Fernandes R.S. Dey N. Acyl hydrazone-based reversible optical switch for reporting of cyanide ion in industrial wastewater samples. J. Mol. Struct. 2022 1262 132968 10.1016/j.molstruc.2022.132968
    [Google Scholar]
  77. Khairnar N. Tayade K. Bothra S. Sahoo S.K. Singh J. Singh N. Bendre R. Kuwar A. Novel fluorescent chemosensing of CN − anions with nanomolar detection using the Zn 2+ –isonicotinohydrazide metal complex. RSC Advances 2014 4 79 41802 41806 10.1039/C4RA06358A
    [Google Scholar]
  78. Kaur H. Riya; Singh, A.; Singh, H.; Ranjan Lal, U.; Kumar, A.; Chaitanya, M.V.N.L. Molecular recognition of carbonate ion using a novel turn-on fluorescent probe. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 303 123270 10.1016/j.saa.2023.123270 37611524
    [Google Scholar]
  79. Makki S.Q. Balakit A.A. Selective naked-eye detection of acetate by new azoisonicotinohydrazide derivatives. Orient. J. Chem. 2017 33 3160 3165 10.13005/ojc/330659
    [Google Scholar]
  80. Khalifa N. Jasper Thomas S. Kota Vasudeva Upadhya N. Puthenveettil Balakrishnan S. Investigation of 2-hydroxyacetophenone nicotinic acid hydrazone as a fluoride sensor. Int. J. Comput. Theor. Chem. 2019 7 1 28 10.11648/j.ijctc.20190701.15
    [Google Scholar]
  81. Ding Y. Zhao C. Zhang P. Chen Y. Song W. Liu G. Liu Z. Yun L. Han R. A novel quinoline derivative as dual chemosensor for selective sensing of Al3+ by fluorescent and Fe2+ by colorimetric methods. J. Mol. Struct. 2021 1231 129965 10.1016/j.molstruc.2021.129965
    [Google Scholar]
  82. Choi J.H. Pandith A. Chakradhar D. Kim H.R. Al Kim H.S. 3+ ‐morpholine‐appended anthracene ensemble as a dual photonic switch for H2PO4− and CN − ions and its biological applications. Bull. Korean Chem. Soc. 2019 40 2 138 145 10.1002/bkcs.11657
    [Google Scholar]
  83. Patra R. Rajak K.K. Modulation of an alpha‐beta unsaturated N‐acylhydrazone as phase selective dual efficient chemosensor for Zn(II) and Al(III). ChemistrySelect 2020 5 30 9477 9485 10.1002/slct.202002097
    [Google Scholar]
  84. Senthil Murugan A. Abel Noelson E.R. Annaraj J. Solvent dependent colorimetric, ratiometric dual sensor for copper and fluoride ions: Real sample analysis, cytotoxicity and computational studies. Inorg. Chim. Acta 2016 450 131 139 10.1016/j.ica.2016.04.022
    [Google Scholar]
  85. Hamzi I. Mered Y. Mostefa-Kara B. Highly sensitive and selective recognition of Zn2+ and Fe2+ ions using a novel thiophene-derived hydrazone dual fluorometric sensor. J. Fluoresc. 2024 10.1007/s10895‑024‑03897‑1 39126605
    [Google Scholar]
  86. Tripathy M. Rana S. Subuddhi U. Patel S. Simultaneous visual and spectroscopic multi-analyte detection of Al3+ and AsO2− using simple salicylidene based D-π-A chromophore. J. Photochem. Photobiol. Chem. 2023 435 114329 10.1016/j.jphotochem.2022.114329
    [Google Scholar]
  87. Ghaemi A. Darabi H.R. Aghapoor K. Mohsenzadeh F. Sayahi H. Ghassemzadeh M. A specific, ultra-sensitive and rapid naked-eye on-site recognition of CN– and Cu2+ ions in tap water using an isonicotinohydrazide-salisaldehyde hybrid probe. Inorg. Chem. Commun. 2024 163 112330 10.1016/j.inoche.2024.112330
    [Google Scholar]
  88. Mohammadi Ziarani G. Fathi Vavsari V. Badiei A. Afshani J. Gholamzadeh P. Balalaie S. Faridbod F. Ganjali M.R. A highly sensitive fluorescent bulk sensor based on isonicotinic acid hydrazide–immobilized nano-fumed silica (fumed-Si–INAH) for detection of Hg2+ and Cr3+ ions in aqueous media. J. Indian Chem. Soc. 2018 15 1 211 221 10.1007/s13738‑017‑1225‑7
    [Google Scholar]
  89. Song I. Torawane P. Lee J.S. Warkad S.D. Borase A. Sahoo S.K. Nimse S.B. Kuwar A. The detection of Al3+ and Cu2+ ions using isonicotinohydrazide-based chemosensors and their application to live-cell imaging. Mater. Adv. 2021 2 19 6306 6314 10.1039/D1MA00564B
    [Google Scholar]
  90. Lashgari N. Badiei A. Mohammadi Ziarani G. A novel functionalized nanoporous SBA-15 as a selective fluorescent sensor for the detection of multianalytes (Fe3+ and Cr2 O72−) in water. J. Phys. Chem. Solids 2017 103 238 248 10.1016/j.jpcs.2016.11.021
    [Google Scholar]
  91. Shree G.J. Murugesan S. Siva A. A highly sensitive and selective Schiff-base probe as a colorimetric sensor for Co2+ and a fluorimetric sensor for F− and its utility in bio-imaging, molecular logic gate and real sample analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 226 117613 10.1016/j.saa.2019.117613 31606669
    [Google Scholar]
  92. Dhivya R. Gomathi A. Viswanathamurthi P. Pyrene based fluorescent turn-on chemosensor for sequential detection of Fe3+ and Fe2+ ions and its application in live cell imaging. J. Fluoresc. 2019 29 3 797 802 10.1007/s10895‑019‑02392‑2 31175507
    [Google Scholar]
  93. Patil M. Bothra S. Sahoo S.K. Rather H.A. Vasita R. Bendre R. Kuwar A. Highly selective nicotinohydrazide based ‘turn-on’ chemosensor for the detection of bioactive zinc(II): Its biocompitability and bioimaging application in cancer cells. Sens. Actuators B Chem. 2018 270 200 206 10.1016/j.snb.2018.05.022
    [Google Scholar]
  94. Pattnaik C. Singhamahapatra A. Parida R. Sahoo S.C. Narayan Sahoo L. Chary K.V.R. Sahoo S. Structural elucidation of N-amidothiourea derived from nicotinic acid hydrazide: A detailed study of its application as selective anion sensor. Results Chem. 2023 5 100693 10.1016/j.rechem.2022.100693
    [Google Scholar]
  95. Xia X. Zhang D. Fan C. Pu S. Naked‐eye detection of Cu (II) and Fe (III) based on a Schiff Base Ruthenium complex with nicotinohydrazide. Appl. Organomet. Chem. 2020 34 10 5841 10.1002/aoc.5841
    [Google Scholar]
  96. Sun X. Wang Y. Zhang X. Zhang S. Zhang Z. A new coumarin based chromo-fluorogenic probe for selective recognition of cyanide ions in an aqueous medium. RSC Advances 2015 5 117 96905 96910 10.1039/C5RA14500G
    [Google Scholar]
  97. Christopher Leslee D.B. Shanmugam L. Venkatesan N. Madheswaran B. Ravula V. Karuppannan S. Kuppannan S.B. A coumarin–nicotinic hydrazone probe for chromofluorogenic detection of toxic cyanide ions and its application in molecular logic gate and real water samples analysis. Photochem. Photobiol. Sci. 2025 24 4 543 554 10.1007/s43630‑025‑00704‑z 40167971
    [Google Scholar]
  98. Mahesha P. Shetty N.S. Kulkarni S.D. Sinha R.K. A selective bis‐thiophene chalcone‐based spectrofluorimetric sensor for Fe 3+. Luminescence 2024 39 7 4823 10.1002/bio.4823 38965884
    [Google Scholar]
  99. Sivaraman G. Vidya B. Chellappa D. Rhodamine based selective turn-on sensing of picric acid. RSC Advances 2014 4 58 30828 30831 10.1039/C4RA02931C
    [Google Scholar]
  100. Sakthivel P. Sekar K. Singaravadivel S. Sivaraman G. Rhodamine‐isonicotinic hydrazide analogue: A selective fluorescent chemosensor for the nanomolar detection of picric acid in aqueous media. ChemistrySelect 2019 4 13 3817 3822 10.1002/slct.201804032
    [Google Scholar]
  101. Padghan S.D. Puyad A.L. Bhosale R.S. Bhosale S.V. Bhosale S.V. A pyrene based fluorescent turn-on chemosensor: Aggregation-induced emission enhancement and application towards Fe3+ and Fe2+ recognition. Photochem. Photobiol. Sci. 2017 16 11 1591 1595 10.1039/c7pp00329c 29039858
    [Google Scholar]
/content/journals/coc/10.2174/0113852728393613250821040719
Loading
/content/journals/coc/10.2174/0113852728393613250821040719
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Chemosensors ; detection ; metal ions ; toxic anions ; fluorescence ; isoniazid
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test