Skip to content
2000
image of Recent Development of Asymmetric Allylic Alkylation with Organometallic Reagents by Copper-Catalysis

Abstract

Asymmetric catalysis has witnessed remarkable progress in recent decades, due to the importance of chiral compounds, which play a pivotal role in numerous contemporary fields. Catalytic enantioselective C-C bond formation is an efficient method for constructing a variety of chiral molecules. Copper-catalyzed asymmetric allylic alkylation stands out as one of the most effective and appealing approaches within this category. This review comprehensively summarizes representative examples of asymmetric allylic alkylation catalyzed by copper, involving organometallic reagents over the last few decades, and classifies them according to the type of organometallic reagents, such as organomagnesium and organolithium compounds.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728391569250728062701
2025-08-13
2025-11-06
Loading full text...

Full text loading...

References

  1. Wagen C.C. McMinn S.E. Kwan E.E. Jacobsen E.N. Screening for generality in asymmetric catalysis. Nature 2022 610 7933 680 686 10.1038/s41586‑022‑05263‑2 36049504
    [Google Scholar]
  2. Kumagai N. Shibasaki M. Cooperative asymmetric catalysis using thioamides toward truly practical organic syntheses. Isr. J. Chem. 2012 52 7 604 612 10.1002/ijch.201100164
    [Google Scholar]
  3. Zhang C. Bisphospholane josiphos-type ligands in rhodium asymmetric catalysis. Chem. Asian J. 2023 18 23 e202300912 10.1002/asia.202300912 37843429
    [Google Scholar]
  4. Liu Z. Takeuchi T. Pluta R. Arteaga Arteaga F. Kumagai N. Shibasaki M. Direct catalytic asymmetric aldol reaction of α-alkylamides. Org. Lett. 2017 19 3 710 713 10.1021/acs.orglett.6b03890 28124919
    [Google Scholar]
  5. Reznikov A.N. Ashatkina M.A. Klimochkin Y.N. Recent developments in asymmetric Heck type cyclization reactions for constructions of complex molecules. Org. Biomol. Chem. 2021 19 26 5673 5701 10.1039/D1OB00496D 34113939
    [Google Scholar]
  6. Hedouin G. Hazra S. Gallou F. Handa S. The catalytic formation of atropisomers and stereocenters via asymmetric Suzuki-Miyaura couplings. ACS Catal. 2022 12 9 4918 4937 10.1021/acscatal.2c00933
    [Google Scholar]
  7. Süsse L. Stoltz B.M. Enantioselective formation of quaternary centers by allylic alkylation with first-row transition-metal catalysts. Chem. Rev. 2021 121 7 4084 4099 10.1021/acs.chemrev.0c01115 33570909
    [Google Scholar]
  8. Fan T. Song J. Gong L.Z. Asymmetric redox allylic alkylation to access 3,3′-disubstituted oxindoles enabled by Ni/NHC cooperative catalysis. Angew. Chem. Int. Ed. 2022 61 22 e202201678 10.1002/anie.202201678 35238125
    [Google Scholar]
  9. Liu X.J. Zhang W.Y. Zheng C. You S.L. Iridiumcatalyzed asymmetric allylic substitution of methyl azaarenes. Angew. Chem. Int. Ed. 2022 61 20 e202200164 10.1002/anie.202200164 35238122
    [Google Scholar]
  10. Biosca M. Saltó J. Magre M. Norrby P.O. Pàmies O. Diéguez M. An improved class of phosphite-oxazoline ligands for Pdcatalyzed allylic substitution reactions. ACS Catal. 2019 9 7 6033 6048 10.1021/acscatal.9b01166
    [Google Scholar]
  11. Wang X. Wang X. Han Z. Wang Z. Ding K. Palladium-catalyzed asymmetric allylic amination: Enantioselective synthesis of chiral α-methylene substituted β-aminophosphonates. Org. Chem. Front. 2017 4 2 271 276 10.1039/C6QO00597G
    [Google Scholar]
  12. Trost B.M. Bai Y. Bai W.J. Schultz J.E. Enantioselective divergent synthesis of C19-oxo eburnane alkaloids via palladiumcatalyzed asymmetric allylic alkylation of an N-alkyl-α,β-unsaturated lactam. J. Am. Chem. Soc. 2019 141 12 4811 4814 10.1021/jacs.9b00788 30848892
    [Google Scholar]
  13. Khan S. Shah B.H. Khan I. Li M. Zhang Y.J. Pd-Catalyzed regio- and enantioselective allylic substitution with 2-pyridones. Chem. Commun. 2019 55 87 13168 13171 10.1039/C9CC07482A 31620731
    [Google Scholar]
  14. Lloyd-Jones G.C. Pfaltz A. Chiral phosphanodihydrooxazolesin asymmetric catalysis: Tungsten-catalyzed allylic substitution. Angew. Chem. Int. Ed. Engl. 1995 34 4 462 464 10.1002/anie.199504621
    [Google Scholar]
  15. Moberg C. Molybdenum-catalyzed asymmetric allylic alkylations. Org. React. 2014 84 1 74 10.1002/0471264180.or084.01
    [Google Scholar]
  16. Trost B.M. Pd- and Mo-catalyzed asymmetric allylic alkylation. Org. Process Res. Dev. 2012 16 2 185 194 10.1021/op200294r 22736934
    [Google Scholar]
  17. Trost B.M. Zhang Y. Mo-catalyzed regio-, diastereo-, and enantioselective allylic alkylation of 3-aryloxindoles. J. Am. Chem. Soc. 2007 129 47 14548 14549 10.1021/ja0755717 17985899
    [Google Scholar]
  18. Trost B.M. Zhang Y. Molybdenum-catalyzed asymmetric allylic alkylation of 3-alkyloxindoles: Reaction development and applications. Chemistry 2011 17 10 2916 2922 10.1002/chem.201002569 21290436
    [Google Scholar]
  19. Liu W.B. Okamoto N. Alexy E.J. Hong A.Y. Tran K. Stoltz B.M. Enantioselective γ-alkylation of α,β-unsaturated malonates and ketoesters by a sequential Ir-catalyzed asymmetric allylic alkylation/cope rearrangement. J. Am. Chem. Soc. 2016 138 16 5234 5237 10.1021/jacs.6b02153 27052660
    [Google Scholar]
  20. Hethcox J.C. Shockley S.E. Stoltz B.M. Enantioselective Iridium-catalyzed allylic alkylation reactions of masked acyl cyanide equivalents. Org. Lett. 2017 19 7 1527 1529 10.1021/acs.orglett.7b00449 28291366
    [Google Scholar]
  21. Butcher T.W. Hartwig J.F. Enantioselective synthesis of tertiary allylic fluorides by iridium-catalyzed allylic fluoroalkylation. Angew. Chem. Int. Ed. 2018 57 40 13125 13129 10.1002/anie.201807474 30136379
    [Google Scholar]
  22. Kita Y. Kavthe R.D. Oda H. Mashima K. Asymmetric allylic Alkylation of β-ketoesters with allylic alcohols by a nickel/diphosphine catalyst. Angew. Chem. Int. Ed. 2016 55 3 1098 1101 10.1002/anie.201508757 26637131
    [Google Scholar]
  23. Sidera M. Fletcher S.P. Rhodium-catalysed asymmetric allylic arylation of racemic halides with arylboronic acids. Nat. Chem. 2015 7 11 935 939 10.1038/nchem.2360 26492015
    [Google Scholar]
  24. Li C. Breit B. Rhodium-catalyzed dynamic kinetic asymmetric allylation of phenols and 2-hydroxypyridines. Chemistry 2016 22 41 14655 14663 10.1002/chem.201603532 27620970
    [Google Scholar]
  25. Parveen S. Li C. Hassan A. Breit B. Chemo-, regio-, and enantioselective rhodium-catalyzed allylation of pyridazinones with terminal allenes. Org. Lett. 2017 19 9 2326 2329 10.1021/acs.orglett.7b00718 28422507
    [Google Scholar]
  26. Trost B.M. Rao M. Dieskau A.P. A chiral sulfoxide-ligated ruthenium complex for asymmetric catalysis: Enantio- and regioselective allylic substitution. J. Am. Chem. Soc. 2013 135 49 18697 18704 10.1021/ja411310w 24245989
    [Google Scholar]
  27. Onitsuka K. Okuda H. Sasai H. Regio- and enantioselective o-allylation of phenol and alcohol catalyzed by a planar-chiral cyclopentadienyl ruthenium complex. Angew. Chem. Int. Ed. 2008 47 8 1454 1457 10.1002/anie.200704457 18205149
    [Google Scholar]
  28. Kanbayashi N. Hosoda K. Kato M. Takii K. Okamura T. Onitsuka K. Enantio- and diastereoselective asymmetric allylic alkylation catalyzed by a planar-chiral cyclopentadienyl ruthenium complex. Chem. Commun. 2015 51 54 10895 10898 10.1039/C5CC02414E 26055079
    [Google Scholar]
  29. Kawatsura M. Uchida K. Terasaki S. Tsuji H. Minakawa M. Itoh T. Ruthenium-catalyzed regio- and enantioselective allylic amination of racemic 1-arylallyl esters. Org. Lett. 2014 16 5 1470 1473 10.1021/ol5002768 24524275
    [Google Scholar]
  30. Langlois J.B. Alexakis A. Copper-catalyzed enantioselective allylic substitution. Top. Organomet. Chem. 2011 38 235 268 10.1007/3418_2011_12
    [Google Scholar]
  31. Shi Y. Jung B. Torker S. Hoveyda A.H. N-heterocyclic carbene-copper-catalyzed group-, site-, and enantioselective allylic substitution with a Readily accessible propargyl(pinacolato) boron reagent: Utility in stereoselective synthesis and mechanistic attributes. J. Am. Chem. Soc. 2015 137 28 8948 8964 10.1021/jacs.5b05805 26172476
    [Google Scholar]
  32. You H. Rideau E. Sidera M. Fletcher S.P. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation. Nature 2015 517 7534 351 355 10.1038/nature14089 25592541
    [Google Scholar]
  33. Tissot-Croset K. Polet D. Alexakis A. A highly effective phosphoramidite ligand for asymmetric allylic substitution. Angew. Chem. Int. Ed. 2004 43 18 2426 2428 10.1002/anie.200353744 15114581
    [Google Scholar]
  34. Falciola C.A. Tissot-Croset K. Alexakis A. β-Disubstituted allylic chlorides: substrates for the Cu-catalyzed asymmetric SN2′ reaction. Angew. Chem. Int. Ed. 2006 45 36 5995 5998 10.1002/anie.200601855 16888831
    [Google Scholar]
  35. Geurts K. Fletcher S.P. Feringa B.L. Copper catalyzed asymmetric synthesis of chiral allylic esters. J. Am. Chem. Soc. 2006 128 49 15572 15573 10.1021/ja065780b 17147350
    [Google Scholar]
  36. Carosi L. Hall D.G. Catalytic enantioselective preparation of α-substituted allylboronates: One-pot addition to functionalized aldehydes and a route to chiral allylic trifluoroborate reagents. Angew. Chem. Int. Ed. 2007 46 31 5913 5915 10.1002/anie.200700975 17579908
    [Google Scholar]
  37. Pàmies O. Margalef J. Cañellas S. James J. Judge E. Guiry P.J. Moberg C. Bäckvall J.E. Pfaltz A. Pericàs M.A. Diéguez M. Recent advances in enantioselective Pd-catalyzed allylic substitution: From design to applications. Chem. Rev. 2021 121 8 4373 4505 10.1021/acs.chemrev.0c00736 33739109
    [Google Scholar]
  38. Cheng Q. Tu H.F. Zheng C. Qu J.P. Helmchen G. You S.L. Iridium-catalyzed asymmetric allylic substitution reactions. Chem. Rev. 2019 119 3 1855 1969 10.1021/acs.chemrev.8b00506 30582688
    [Google Scholar]
  39. Harutyunyan S.R. den Hartog T. Geurts K. Minnaard A.J. Feringa B.L. Catalytic asymmetric conjugate addition and allylic alkylation with grignard reagents. Chem. Rev. 2008 108 8 2824 2852 10.1021/cr068424k 18698733
    [Google Scholar]
  40. Falciola C.A. Alexakis A. Copper-catalyzed asymmetric allylic alkylation. Eur. J. Org. Chem. 2008 2008 22 3765 3780 10.1002/ejoc.200800025
    [Google Scholar]
  41. Vargová D. Némethová I. Plevová K. Šebesta R. Asymmetric transition-metal catalysis in the formation and functionalization of metal enolates. ACS Catal. 2019 9 4 3104 3143 10.1021/acscatal.8b04357
    [Google Scholar]
  42. van Klaveren M. Persson E.S.M. del Villar A. Grove D.M. Bäckvall J-E. van Koten G. Chiral arenethiolatocopper(I) catalyzed substitution reactions of acyclic allylic substrates with grignard reagents. Tetrahedron Lett. 1995 36 17 3059 3062 10.1016/0040‑4039(95)00426‑D
    [Google Scholar]
  43. Alexakis A. Croset K. Tandem copper-catalyzed enantioselective allylation-metathesis. Org. Lett. 2002 4 23 4147 4149 10.1021/ol0269244 12423108
    [Google Scholar]
  44. van Zijl A.W. López F. Minnaard A.J. Feringa B.L. Synthesis of optically active bifunctional building blocks through enantioselective copper-catalyzed allylic alkylation using grignard reagents. J. Org. Chem. 2007 72 7 2558 2563 10.1021/jo0625655 17343420
    [Google Scholar]
  45. Langlois J.B. Alexakis A. Dynamic kinetic asymmetric transformation in copper catalyzed allylic alkylation. Chem. Commun. 2009 3868-3870 26 3868 3870 10.1039/b907722g 19662235
    [Google Scholar]
  46. Langlois J.B. Alexakis A. Copper-catalyzed asymmetric allylic alkylation of racemic cyclic substrates: Application of dynamic kinetic asymmetric transformation (DYKAT). Adv. Synth. Catal. 2010 352 2-3 447 457 10.1002/adsc.200900790
    [Google Scholar]
  47. Lölsberg W. Ye S. Schmalz H.G. Enantioselective copper-catalysed allylic alkylation of cinnamyl chlorides by grignard reagents using chiral phosphine-phosphite ligands. Adv. Synth. Catal. 2010 352 11-12 2023 2031 10.1002/adsc.201000213
    [Google Scholar]
  48. Fang F. Zhang H. Xie F. Yang G. Zhang W. Highly enantioselective copper-catalyzed allylic alkylation with atropos phosphoramidites bearing a D2-symmetric biphenyl backbone. Tetrahedron 2010 66 20 3593 3598 10.1016/j.tet.2010.03.031
    [Google Scholar]
  49. Giacomina F. Riat D. Alexakis A. ω-ethylenic allylic substrates as alternatives to cyclic substrates in copper- and iridium-catalyzed asymmetric allylic alkylation. Org. Lett. 2010 12 6 1156 1159 10.1021/ol100162y 20166707
    [Google Scholar]
  50. Teichert J.F. Zhang S. Zijl A.W. Slaa J.W. Minnaard A.J. Feringa B.L. Asymmetric allylic alkylation in combination with ring-closing metathesis for the preparation of chiral N-heterocycles. Org. Lett. 2010 12 20 4658 4660 10.1021/ol101944j 20863080
    [Google Scholar]
  51. Mao B. Geurts K. Fañanás-Mastral M. van Zijl A.W. Fletcher S.P. Minnaard A.J. Feringa B.L. Catalytic enantioselective synthesis of naturally occurring butenolides via hetero-allylic alkylation and ring closing metathesis. Org. Lett. 2011 13 5 948 951 10.1021/ol102994q 21268603
    [Google Scholar]
  52. Madhavachary R. Mallik R. Ramachary D.B. Organocatalytic enantiospecific total synthesis of butenolides. Molecules 2021 26 14 4320 4630 10.3390/molecules26144320 34299595
    [Google Scholar]
  53. Nguyen S.S. Ferreira A.J. Long Z.G. Heiss T.K. Dorn R.S. Row R.D. Prescher J.A. Butenolide synthesis from functionalized cyclopropenones. Org. Lett. 2019 21 21 8695 8699 10.1021/acs.orglett.9b03298 31622107
    [Google Scholar]
  54. Li H. Alexakis A. Enyne chlorides: Substrates for copper-catalyzed asymmetric allylic alkylation. Angew. Chem. Int. Ed. 2012 51 4 1055 1058 10.1002/anie.201107129 22162086
    [Google Scholar]
  55. Hornillos V. van Zijl A.W. Feringa B.L. Catalytic asymmetric synthesis of chromenes and tetrahydroquinolines via sequential allylic alkylation and intramolecular Heck coupling. Chem. Commun. 2012 48 31 3712 3714 10.1039/c2cc30395g 22398654
    [Google Scholar]
  56. Giannerini M. Fañanás-Mastral M. Feringa B.L. Z-Selective copper-catalyzed asymmetric allylic alkylation with Grignard reagents. J. Am. Chem. Soc. 2012 134 9 4108 4111 10.1021/ja300743t 22352853
    [Google Scholar]
  57. Li H. Müller D. Guénée L. Alexakis A. Copper-catalyzed enantioselective synthesis of axially chiral allenes. Org. Lett. 2012 14 23 5880 5883 10.1021/ol302790e 23146030
    [Google Scholar]
  58. Giacomina F. Alexakis A. Construction of enantioenriched cyclic compounds by asymmetric allylic alkylation and ring-closing metathesis. Eur. J. Org. Chem. 2013 2013 29 6710 6721 10.1002/ejoc.201300971
    [Google Scholar]
  59. Mao B. Fañanás-Mastral M. Lutz M. Feringa B.L. Diversity-oriented enantioselective synthesis of highly functionalized cyclic and bicyclic alcohols. Chemistry 2013 19 2 761 770 10.1002/chem.201202859 23197297
    [Google Scholar]
  60. Hornillos V. Pérez M. Fañanás-Mastral M. Feringa B.L. Cu-catalyzed asymmetric allylic alkylation of phosphonates and phosphine oxides with grignard reagents. Chemistry 2013 19 17 5432 5441 10.1002/chem.201204364 23447457
    [Google Scholar]
  61. Hornillos V. Pérez M. Fañanás-Mastral M. Feringa B.L. Copper-catalyzed enantioselective allyl-allyl cross-coupling. J. Am. Chem. Soc. 2013 135 6 2140 2143 10.1021/ja312487r 23350620
    [Google Scholar]
  62. van der Molen N.C. Tiemersma-Wegman T.D. Fañanás-Mastral M. Feringa B.L. Regio- and enantioselective copper-catalyzed allylic alkylation of ortho-substituted cinnamyl bromides with grignard reagents. J. Org. Chem. 2015 80 10 4981 4984 10.1021/acs.joc.5b00371 25902013
    [Google Scholar]
  63. Xiong W. Xu G. Yu X. Tang W. P-chiral monophosphorus ligands for asymmetric copper-catalyzed allylic alkylation. Organometallics 2019 38 20 4003 4013 10.1021/acs.organomet.9b00194
    [Google Scholar]
  64. Li J. Song X. Wang Y. Huang J. You H. Chen F.E. Copper-catalyzed asymmetric allylic alkylation of racemic inert cyclic allylic ethers under batch and flow conditions. Chem. Sci. 2023 14 16 4351 4356 10.1039/D3SC00127J 37123175
    [Google Scholar]
  65. Li J. Wang Y. Wang Y. Zhai L. Huang J. Song L. You H. Chen F.E. Chen F.E. Desymmetrization of inert meso-diethers through copper-catalyzed asymmetric allylic alkylation with Grignard reagents. Org. Lett. 2024 26 27 5844 5849 10.1021/acs.orglett.4c01972 38950387
    [Google Scholar]
  66. Teichert J.F. Feringa B.L. Phosphoramidites: Privileged ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 2010 49 14 2486 2528 10.1002/anie.200904948 20333685
    [Google Scholar]
  67. Yorimitsu H. Oshima K. Recent progress in asymmetric allylic substitutions catalyzed by chiral copper complexes. Angew. Chem. Int. Ed. 2005 44 29 4435 4439 10.1002/anie.200500653 15945113
    [Google Scholar]
  68. Denmark S.E. Stiff C.M. Effect of ligand structure in the bisoxazoline mediated asymmetric addition of methyllithium to imines. J. Org. Chem. 2000 65 18 5875 5878 10.1021/jo0007175 10970343
    [Google Scholar]
  69. Alexakis A. Amiot F. Enantioselective addition of organolithium reagents on isoquinoline. Tetrahedron Asymmetry 2002 13 19 2117 2122 10.1016/S0957‑4166(02)00531‑1
    [Google Scholar]
  70. Pérez M. Fañanás-Mastral M. Bos P.H. Rudolph A. Harutyunyan S.R. Feringa B.L. Catalytic asymmetric carbon–carbon bond formation via allylic alkylations with organolithium compounds. Nat. Chem. 2011 3 5 377 381 10.1038/nchem.1009 21505496
    [Google Scholar]
  71. Bos P.H. Rudolph A. Pérez M. Fañanás-Mastral M. Harutyunyan S.R. Feringa B.L. Copper-catalyzed asymmetric ring opening of oxabicyclic alkenes with organolithium reagents. Chem. Commun. 2012 48 12 1748 1750 10.1039/c2cc16855c 22215200
    [Google Scholar]
  72. Fañanás-Mastral M. Pérez M. Bos P.H. Rudolph A. Harutyunyan S.R. Feringa B.L. Enantioselective synthesis of tertiary and quaternary stereogenic centers: Copper/phosphoramidite-catalyzed allylic alkylation with organolithium reagents. Angew. Chem. Int. Ed. 2012 51 8 1922 1925 10.1002/anie.201107840 22262571
    [Google Scholar]
  73. Pérez M. Fañanás-Mastral M. Hornillos V. Rudolph A. Bos P.H. Harutyunyan S.R. Feringa B.L. Asymmetric allylic alkylation of acyclic allylic ethers with organolithium reagents. Chemistry 2012 18 38 11880 11883 10.1002/chem.201202251 22907628
    [Google Scholar]
  74. Guduguntla S. Fañanás-Mastral M. Feringa B.L. Synthesis of optically active β- or γ-alkyl-substituted alcohols through copper-catalyzed asymmetric allylic alkylation with organolithium reagents. J. Org. Chem. 2013 78 17 8274 8280 10.1021/jo401536u 23962149
    [Google Scholar]
  75. Fañanás-Mastral M. Vitale R. Pérez M. Feringa B.L. Enantioselective synthesis of all-carbon quaternary stereogenic centers via copper-catalyzed asymmetric allylic alkylation of (Z)-allyl bromides with organolithium reagents. Chemistry 2015 21 11 4209 4212 10.1002/chem.201406006 25631942
    [Google Scholar]
  76. Guduguntla S. Gualtierotti J.B. Goh S.S. Feringa B.L. Enantioselective synthesis of di- and tri-arylated all-Carbon quaternary stereocenters via copper-catalyzed allylic arylations with organolithium compounds. ACS Catal. 2016 6 10 6591 6595 10.1021/acscatal.6b01681
    [Google Scholar]
  77. Guduguntla S. Hornillos V. Tessier R. Fañanás-Mastral M. Feringa B.L. Chiral diarylmethanes via copper-catalyzed asymmetric allylic arylation with organolithium compounds. Org. Lett. 2016 18 2 252 255 10.1021/acs.orglett.5b03396 26699930
    [Google Scholar]
  78. Goh S.S. Guduguntla S. Kikuchi T. Lutz M. Otten E. Fujita M. Feringa B.L. Desymmetrization of meso-dibromocycloalkenes through copper(I)-catalyzed asymmetric allylic substitution with organolithium Reagents. J. Am. Chem. Soc. 2018 140 23 7052 7055 10.1021/jacs.8b02992 29790736
    [Google Scholar]
  79. Li J. Song X. Wu F. You H. Chen F.E. Copper-catalyzed asymmetric allylic alkylation of racemic cyclic allyl bromides with organolithium compounds. Eur. J. Org. Chem. 2022 2022 34 e202200860 10.1002/ejoc.202200860
    [Google Scholar]
/content/journals/coc/10.2174/0113852728391569250728062701
Loading
/content/journals/coc/10.2174/0113852728391569250728062701
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test