Skip to content
2000
image of Recent Insights into Benzimidazole Derivatives: From Synthesis to Medicinal Applications

Abstract

Heterocyclic compounds, owing to their structural diversity and unique chemical properties, play a core role in various scientific disciplines, particularly in the evolution of pharmaceuticals. Among these, Benzimidazole (BZID) has captured notable interest due to its remarkable medicinal properties and versatility in biological applications. The pharmaceutical value of BZID is further enhanced by its ability to introduce diverse substitutions at its core, making it a crucial framework in the design of numerous therapeutic agents. However, the need for efficient and sustainable synthetic strategies to explore the full potential of BZID derivatives endures as a key concern. This review article highlights and addresses this gap by examining recent advancements in synthesizing BZID derivatives using aniline derivatives or -phenylenediamine with aldehydes, acids, alcohols, and their derivatives, as well as amines and halo compounds. This paper discusses various innovative techniques, including ionic liquid catalysis, nano-catalysis, and microwave-assisted methods are emphasized for improving the efficiency and sustainability of reactions. Furthermore, it provides a detailed analysis of the various biological activities of BZID derivatives, such as antibacterial, antifungal, antiviral, and anticancer properties. This article highlights the growing interest in BZID derivatives in modern medicine, as well as underscores their unexplored directions for drug discovery and development.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728390615250917072619
2025-10-10
2025-12-14
Loading full text...

Full text loading...

References

  1. Kabir E. Uzzaman M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem. 2022 4 100606 10.1016/j.rechem.2022.100606
    [Google Scholar]
  2. Soni S. Teli S. Teli P. Manhas A. Jha P.C. Agarwal S. Highly efficient synthesis of isoxazolones and pyrazolones using g-C3N4·OH nanocomposite with their in silico molecular docking, pharmacokinetics and simulation studies. Sci. Rep. 2024 14 1 19123 10.1038/s41598‑024‑70071‑9 39155360
    [Google Scholar]
  3. Waldman A.J. Ng T.L. Wang P. Balskus E.P. Heteroatom-heteroatom bond formation in natural product biosynthesis. Chem. Rev. 2017 117 8 5784 5863 10.1021/acs.chemrev.6b00621 28375000
    [Google Scholar]
  4. Soni S. Sahiba N. Teli S. Teli P. Agarwal L.K. Agarwal S. Advances in the synthetic strategies of benzoxazoles using 2-aminophenol as a precursor: An up-to-date review. RSC Advances 2023 13 34 24093 24111 10.1039/D3RA03871H 37577091
    [Google Scholar]
  5. Soni S. Teli S. Teli P. Agarwal S. Empowering sustainability: Charting the seven years of progress in g-C3N4 based materials and their crucial role in building a greener future. Sustain. Chem. Pharm. 2024 41 101693 10.1016/j.scp.2024.101693
    [Google Scholar]
  6. Teli S. Teli P. Soni S. Sahiba N. Agarwal S. Synthetic aspects of 1,4- and 1,5-benzodiazepines using o-phenylenediamine: A study of past quinquennial. RSC Advances 2023 13 6 3694 3714 10.1039/D2RA06045K 36756601
    [Google Scholar]
  7. Pathania S. Narang R.K. Rawal R.K. Role of sulphur-heterocycles in medicinal chemistry: An update. Eur. J. Med. Chem. 2019 180 486 508 10.1016/j.ejmech.2019.07.043 31330449
    [Google Scholar]
  8. Teli S. Soni S. Teli P. Sahiba N. Agarwal S. Unlocking the potential of Ficus religiosa tree bark-derived biochar sulfonic acid: A journey from synthesis and characterization to its astonishing catalytic role in green synthesis of perimidines. Res. Chem. Intermed. 2024 50 3 1475 1495 10.1007/s11164‑023‑05199‑w
    [Google Scholar]
  9. Kankate R.S. Shaikh M.M.A. Ghodke S.S. Abdulaaseem K. Kshirsagar S.J. Synthesis, characterization and evaluation of cytotoxic activity of novel modified heterocyclic compounds. Europ Chem. Bull 2023 12 1-B 9 23 10.31838/ecb/2023.12.s1.002
    [Google Scholar]
  10. Yılmaz Ü. Küçükbay H. Deniz S. Şireci N. Synthesis, characterization and microwave-promoted catalytic activity of novel N-phenylbenzimidazolium salts in Heck-Mizoroki and Suzuki-Miyaura cross-coupling reactions under mild conditions. Molecules 2013 18 3 2501 2517 10.3390/molecules18032501 23439565
    [Google Scholar]
  11. Küçükbay H. Şireci N. Yılmaz Ü. Akkurt M. Yalçın Ş.P. Nawaz Tahir M. Ott H. Synthesis, characterization and microwave‐assisted catalytic activity of novel benzimidazole salts bearing piperidine and morpholine moieties in Heck cross‐coupling reactions. Appl. Organomet. Chem. 2011 25 4 255 261 10.1002/aoc.1751
    [Google Scholar]
  12. Srestha N. Banerjee J. Srivastava S. A review on chemistry and biological significance of benzimidaole nucleus. IOSR J. Pharm. 2014 4 12 28 41 10.9790/3013‑0401201028041
    [Google Scholar]
  13. Alkaloid M. Kawasaki I. Taguchi N. Yamamoto T. Yamashita M. Ohta S. Total synthesis of kealiiquinone, an imidazole. Tetrahedron Lett. 1995 36 45 8251 8254 10.1016/0040‑4039(95)01770‑I
    [Google Scholar]
  14. Yang D.L. Zhang Y.J. Lei J. Li S.Q. He L.J. Tang D.Y. Xu C. Zhang L.T. Wen J. Lin H.K. Li H. Chen Z.Z. Xu Z.G. Discovery of fused benzimidazole-imidazole autophagic flux inhibitors for treatment of triple-negative breast cancer. Eur. J. Med. Chem. 2022 240 114565 10.1016/j.ejmech.2022.114565 35797901
    [Google Scholar]
  15. Lee Y.T. Tan Y.J. Oon C.E. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine. Acta Pharm. Sin. B 2023 13 2 478 497 10.1016/j.apsb.2022.09.010 36873180
    [Google Scholar]
  16. Sireesha R. Sreenivasulu R. Chandrasekhar C. Jadav S.S. Pavani Y. Rao M.V.B. Subbarao M. Design, synthesis, anti-cancer evaluation and binding mode studies of benzimidazole/benzoxazole linked β-carboline derivatives. J. Mol. Struct. 2021 1226 129351 10.1016/j.molstruc.2020.129351
    [Google Scholar]
  17. Shrivastava N. Naim M.J. Alam M.J. Nawaz F. Ahmed S. Alam O. Benzimidazole scaffold as anticancer agent: Synthetic approaches and structure–activity relationship. Arch. Pharm. 2017 350 6 e201700040 10.1002/ardp.201700040 28544162
    [Google Scholar]
  18. Yılmaz Ü. Tekin S. Buğday N. Yavuz K. Küçükbay H. Sandal S. Synthesis and evaluation of anticancer properties of novel benzimidazole ligand and their cobalt(II) and zinc(II) complexes against cancer cell lines A-2780 and DU-145. Inorg. Chim. Acta 2019 495 118977 10.1016/j.ica.2019.118977
    [Google Scholar]
  19. Song D. Ma S. Recent development of benzimidazole‐containing antibacterial agents. ChemMedChem 2016 11 7 646 659 10.1002/cmdc.201600041 26970352
    [Google Scholar]
  20. Zha G.F. Preetham H.D. Rangappa S. Sharath Kumar K.S. Girish Y.R. Rakesh K.P. Ashrafizadeh M. Zarrabi A. Rangappa K.S. Benzimidazole analogues as efficient arsenals in war against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg. Chem. 2021 115 105175 10.1016/j.bioorg.2021.105175 34298242
    [Google Scholar]
  21. Bugday N. Kucukbay F.F.Z. Apohan E. Kucukbay H. Serindag A. Yesilada O. Synthesis and evaluation of novel benzimidazole conjugates incorporating amino acids and dipeptide moieties. Lett. Org. Chem. 2017 14 3 198 206 10.2174/1570178614666170203093406
    [Google Scholar]
  22. G, A.C.; Gondru, R.; Li, Y.; Banothu, J. Coumarin–benzimidazole hybrids: A review of developments in medicinal chemistry. Eur. J. Med. Chem. 2022 227 113921 10.1016/j.ejmech.2021.113921 34715585
    [Google Scholar]
  23. Quaranta L. Lamberth C. Dinges J. Benzimidazole fungicides. In: Bioactive Heterocyclic Compound Classes: Agrochemicals. Wiley 2012 10.1002/9783527664412.ch9
    [Google Scholar]
  24. Soni S. Teli P. Sahiba N. Teli S. Agarwal S. Exploring the synthetic potential of a g-C3N4·SO3H ionic liquid catalyst for one-pot synthesis of 1,1-dihomoarylmethane scaffolds via Knoevenagel–Michael reaction. RSC Advances 2023 13 19 13337 13353 10.1039/D3RA01971C 37143699
    [Google Scholar]
  25. Di̇ k B. Coşkun D. Bahçi̇ van E. Üney K. Potential antidiabetic activity of benzimidazole derivative albendazole and lansoprazole drugs in different doses in experimental type 2 diabetic rats. Turk. J. Med. Sci. 2021 51 3 1578 1585 10.3906/sag‑2004‑38 33641315
    [Google Scholar]
  26. Neochoritis C.G. Zarganes-Tzitzikas T. Tsoleridis C.A. Stephanidou-Stephanatou J. Kontogiorgis C.A. Hadjipavlou-Litina D.J. Choli-Papadopoulou T. One-pot microwave assisted synthesis under green chemistry conditions, antioxidant screening, and cytotoxicity assessments of benzimidazole Schiff bases and pyrimido[1,2-a]benzimidazol-3(4 H)-ones. Eur. J. Med. Chem. 2011 46 1 297 306 10.1016/j.ejmech.2010.11.018 21146903
    [Google Scholar]
  27. Mendez-Cuesta C.A. Herrera-Rueda M.A. Hidalgo-Figueroa S. Tlahuext H. Moo-Puc R. Chale-Dzul J.B. Chan-Bacab M. Ortega-Morales B.O. Hernandez-Nunez E. Mendez-Lucio O. Medina-Franco J.L. Navarrete-Vazquez G. Synthesis, screening and in silico simulations of anti-parasitic propamidine/benzimidazole derivatives. Med. Chem. 2017 13 2 137 148 10.2174/1573406412666160811112408 27527618
    [Google Scholar]
  28. Kankala S. Kankala R.K. Gundepaka P. Thota N. Nerella S. Gangula M.R. Guguloth H. Kagga M. Vadde R. Vasam C.S. Regioselective synthesis of isoxazole–mercaptobenzimidazole hybrids and their in vivo analgesic and anti-inflammatory activity studies. Bioorg. Med. Chem. Lett. 2013 23 5 1306 1309 10.1016/j.bmcl.2012.12.101 23357631
    [Google Scholar]
  29. Achar K.C.S. Hosamani K.M. Seetharamareddy H.R. In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives. Eur. J. Med. Chem. 2010 45 5 2048 2054 10.1016/j.ejmech.2010.01.029 20133024
    [Google Scholar]
  30. Yalcin-Ozkat G. Ersan R.H. Ulger M. Ulger S.T. Burmaoglu S. Yildiz I. Algul O. Design, synthesis, and computational studies of benzimidazole derivatives as new antitubercular agents. J. Biomol. Struct. Dyn. 2023 41 7 2667 2686 10.1080/07391102.2022.2036241 35132948
    [Google Scholar]
  31. Hue B.T.B. Nguyen P.H. De T.Q. Van Hieu M. Jo E. Van Tuan N. Thoa T.T. Anh L.D. Son N.H. La Duc Thanh D. Dupont-Rouzeyrol M. Grailhe R. Windisch M.P. Benzimidazole derivatives as novel zika virus inhibitors. ChemMedChem 2020 15 15 1453 1463 10.1002/cmdc.202000124 32281263
    [Google Scholar]
  32. Rida S.M. El-Hawash S.A.M. Fahmy H.T.Y. Hazzaa A.A. El-Meligy M.M.M. Synthesis of novel benzofuran and related benzimidazole derivatives for evaluation of in vitro anti-HIV-1, anticancer and antimicrobial activities. Arch. Pharm. Res. 2006 29 10 826 833 10.1007/BF02973901 17121175
    [Google Scholar]
  33. Atmaca H. İlhan S. Batır M.B. Pulat Ç.Ç. Güner A. Bektaş H. Novel benzimidazole derivatives: Synthesis, in vitro cytotoxicity, apoptosis and cell cycle studies. Chem. Biol. Interact. 2020 327 109163 10.1016/j.cbi.2020.109163 32534988
    [Google Scholar]
  34. Beltran-Hortelano I. Alcolea V. Font M. Pérez-Silanes S. The role of imidazole and benzimidazole heterocycles in Chagas disease: A review. Eur. J. Med. Chem. 2020 206 112692 10.1016/j.ejmech.2020.112692 32818869
    [Google Scholar]
  35. Kamil A. Akhtar S. Khan A. Farooq E. Nishan U. Uddin R. Farooq U. Synthesis, structure–activity relationship and antinociceptive activities of some 2-(2′-pyridyl) benzimidazole derivatives. Med. Chem. Res. 2016 25 6 1216 1228 10.1007/s00044‑016‑1560‑8
    [Google Scholar]
  36. Zhang J. Wang J.L. Zhou Z.M. Li Z.H. Xue W.Z. Xu D. Hao L.P. Han X.F. Fei F. Liu T. Liang A.H. Design, synthesis and biological activity of 6-substituted carbamoyl benzimidazoles as new nonpeptidic angiotensin II AT1 receptor antagonists. Bioorg. Med. Chem. 2012 20 14 4208 4216 10.1016/j.bmc.2012.05.056 22727371
    [Google Scholar]
  37. Wang J.L. Zhang J. Zhou Z.M. Li Z.H. Xue W.Z. Xu D. Hao L.P. Han X.F. Fei F. Liu T. Liang A.H. Design, synthesis and biological evaluation of 6-substituted aminocarbonyl benzimidazole derivatives as nonpeptidic angiotensin II AT1 receptor antagonists. Eur. J. Med. Chem. 2012 49 183 190 10.1016/j.ejmech.2012.01.009 22309912
    [Google Scholar]
  38. Guo Y. Hou X. Fang H. Recent applications of benzimidazole as a privileged scaffold in drug discovery. Mini Rev. Med. Chem. 2021 21 11 1367 1379 10.2174/1389557520666200804124924 32753010
    [Google Scholar]
  39. Vangavaragu J.R. Valasani K.R. Gan X. Yan S.S. Identification of human presequence protease (hPreP) agonists for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2014 76 506 516 10.1016/j.ejmech.2014.02.046 24602793
    [Google Scholar]
  40. Jain P. Flaherty P.T. Yi S. Chopra I. Bleasdell G. Lipay J. Ferandin Y. Meijer L. Madura J.D. Design, synthesis, and testing of an 6-O-linked series of benzimidazole based inhibitors of CDK5/p25. Bioorg. Med. Chem. 2011 19 1 359 373 10.1016/j.bmc.2010.11.022 21144757
    [Google Scholar]
  41. Yan Y. Liu Z. Zhang J. Xu R. Hu X. Liu G. A reverse method for diversity introduction of benzimidazole to synthesize H+/K+-ATP enzyme inhibitors. Bioorg. Med. Chem. Lett. 2011 21 14 4189 4192 10.1016/j.bmcl.2011.05.080 21684741
    [Google Scholar]
  42. Shen H.C. Ding F.X. Zhou C. Xiong Y. Verras A. Chabin R.M. Xu S. Tong X. Xie D. Lassman M.E. Bhatt U.R. Garcia-Calvo M.M. Geissler W. Shen Z. Chen D. SinhaRoy, R.; Hale, J.J.; Tata, J.R.; Pinto, S.; Shen, D.M.; Colletti, S.L. Discovery of benzimidazole pyrrolidinyl amides as prolylcarboxypeptidase inhibitors. Bioorg. Med. Chem. Lett. 2011 21 5 1299 1305 10.1016/j.bmcl.2011.01.090 21315588
    [Google Scholar]
  43. Jablonowski J.A. Grice C.A. Chai W. Dvorak C.A. Venable J.D. Kwok A.K. Ly K.S. Wei J. Baker S.M. Desai P.J. Jiang W. Wilson S.J. Thurmond R.L. Karlsson L. Edwards J.P. Lovenberg T.W. Carruthers N.I. The first potent and selective non-imidazole human histamine H4 receptor antagonists. J. Med. Chem. 2003 46 19 3957 3960 10.1021/jm0341047 12954048
    [Google Scholar]
  44. Lee-Dutra A. Arienti K.L. Buzard D.J. Hack M.D. Khatuya H. Desai P.J. Nguyen S. Thurmond R.L. Karlsson L. Edwards J.P. Breitenbucher J.G. Identification of 2-arylbenzimidazoles as potent human histamine H4 receptor ligands. Bioorg. Med. Chem. Lett. 2006 16 23 6043 6048 10.1016/j.bmcl.2006.08.117 16990005
    [Google Scholar]
  45. Hobrecker F. Ueber reductionsprodukte der nitracetamidverbindungen. Ber. Dtsch. Chem. Ges. 1872 5 2 920 924 10.1002/cber.18720050295
    [Google Scholar]
  46. Wright J.B. The chemistry of the benzimidazoles. Chem. Rev. 1951 48 3 397 541 10.1021/cr60151a002 24541208
    [Google Scholar]
  47. Carvalho L.C.R. Fernandes E. Marques M.M.B. Developments towards regioselective synthesis of 1,2-disubstituted benzimidazoles. Chemistry 2011 17 45 12544 12555 10.1002/chem.201101508 21989969
    [Google Scholar]
  48. Pardeshi V.A.S. Chundawat N.S. Pathan S.I. Sukhwal P. Chundawat T.P.S. Singh G.P. A review on synthetic approaches of benzimidazoles. Synth. Commun. 2021 51 4 485 513 10.1080/00397911.2020.1841239
    [Google Scholar]
  49. Bagaria S.K. Jangir N. Jangid D.K. Green and eco-compatible iron nanocatalysed synthesis of benzimidazole: A review. Sustain. Chem. Pharm. 2023 31 100932 10.1016/j.scp.2022.100932
    [Google Scholar]
  50. Faheem M. Rathaur A. Pandey A. Kumar Singh V. Tiwari A.K. A review on the modern synthetic approach of benzimidazole candidate. ChemistrySelect 2020 5 13 3981 3994 10.1002/slct.201904832
    [Google Scholar]
  51. Hashem H.E. El Bakri Y. An overview on novel synthetic approaches and medicinal applications of benzimidazole compounds. Arab. J. Chem. 2021 14 11 103418 10.1016/j.arabjc.2021.103418
    [Google Scholar]
  52. Singhal S. Khanna P. Panda S.S. Khanna L. Recent trends in the synthesis of benzimidazoles from o‐phenylenediamine via nanoparticles and green strategies using transition metal catalysts. J. Heterocycl. Chem. 2019 56 10 2702 2729 10.1002/jhet.3649
    [Google Scholar]
  53. Küçükbay H. Part i: Microwave-assisted synthesis of benzimidazoles: An overview (until 2013). J. Turk. Chem. Soc. A. Chem. 2017 4 1 1 22 10.18596/jotcsa.91217
    [Google Scholar]
  54. Dong C. Higashiura Y. Marui K. Kumazawa S. Nomoto A. Ueshima M. Ogawa A. Metal-free oxidative coupling of benzylamines to imines under an oxygen atmosphere promoted using salicylic acid derivatives as organocatalysts. ACS Omega 2016 1 5 799 807 10.1021/acsomega.6b00235 31457163
    [Google Scholar]
  55. Mehra A. Sangwan R. Synthesis and pharmacological properties of the benzimidazole scaffold: A patent review. ChemistrySelect 2023 8 45 e202300537 10.1002/slct.202300537
    [Google Scholar]
  56. Venugopal S. Kaur B. Verma A. Wadhwa P. Sahu S.K. A review on modern approaches to benzimidazole synthesis. Curr. Org. Synth. 2023 20 6 595 605 10.2174/1570179420666221010091157 36221870
    [Google Scholar]
  57. Nardi M. Cano N.C.H. Simeonov S. Bence R. Kurutos A. Scarpelli R. Wunderlin D. Procopio A. A review on the green synthesis of benzimidazole derivatives and their pharmacological activities. Catalysts 2023 13 2 392 10.3390/catal13020392
    [Google Scholar]
  58. Brishty S.R. Hossain M.J. Khandaker M.U. Faruque M.R.I. Osman H. Rahman S.M.A. A comprehensive account on recent progress in pharmacological activities of benzimidazole derivatives. Front. Pharmacol. 2021 12 762807 10.3389/fphar.2021.762807 34803707
    [Google Scholar]
  59. Vasava M.S. Bhoi M.N. Rathwa S.K. Jethava D.J. Acharya P.T. Patel D.B. Patel H.D. Benzimidazole: A milestone in the field of medicinal chemistry. Mini Rev. Med. Chem. 2020 20 7 532 565 10.2174/1389557519666191122125453 31755386
    [Google Scholar]
  60. Sharma S. Dangi N. Mittal N. Kalra N. A critical analysis of the modern synthetic procedures used to produce benzimidazole candidates. Curr. Organocatal. 2024 11 1 7 32 10.2174/2213337210666230329103657
    [Google Scholar]
  61. Kant K. Patel C.K. Banerjee S. Naik P. Atta A.K. Kabi A.K. Malakar C.C. Recent advancements in strategies for the synthesis of imidazoles, thiazoles, oxazoles, and benzimidazoles. ChemistrySelect 2023 8 47 e202303988 10.1002/slct.202303988
    [Google Scholar]
  62. Rauf U. Shabir G. Bukhari S. Albericio F. Saeed A. Contemporary developments in ferrocene chemistry: Physical, chemical, biological and industrial aspects. Molecules 2023 28 15 5765 10.3390/molecules28155765 37570735
    [Google Scholar]
  63. Thapa S. Biradar M.S. Nargund S.L. Ahmad I. Agrawal M. Patel H. Lamsal A. Synthesis, molecular docking, molecular dynamic simulation studies, and antitubercular activity evaluation of substituted benzimidazole derivatives. Adv. Pharmacol. Pharm. Sci. 2024 2024 1 1 14 10.1155/2024/9986613 38577412
    [Google Scholar]
  64. Mathapati S.R. Patil K.N. Mathakari S.S. Suryawanshi A.W. Jadhav A.H. Fluorinated phosphoric acid as a versatile effective catalyst for synthesis of series of benzimidazoles, benzoxazoles and benzothiazoles at room temperature. Phosphorus Sulfur Silicon Relat. Elem. 2021 196 6 538 547 10.1080/10426507.2020.1871345
    [Google Scholar]
  65. Khan A.T. Parvin T. Choudhury L.H. A simple and convenient one-pot synthesis of benzimidazole derivatives using cobalt (ii) chloride hexahydrate as catalyst. Synth. Commun. 2009 39 13 2339 2346 10.1080/00397910802654815
    [Google Scholar]
  66. Patil V.D. Patil J. Rege P. Dere G. Mild and efficient synthesis of benzimidazole using lead peroxide under solvent-free conditions. Synth. Commun. 2010 41 1 58 62 10.1080/00397910903531789
    [Google Scholar]
  67. Bharathi M. Indira S. Vinoth G. Mahalakshmi T. Induja E. Shanmuga Bharathi K. Green synthesis of benzimidazole derivatives under ultrasound irradiation using Cu-Schiff base complexes embedded over MCM-41 as efficient and reusable catalysts. J. Coord. Chem. 2020 73 4 653 670 10.1080/00958972.2020.1730335
    [Google Scholar]
  68. Qiu D. Wei H. Zhou L. Zeng Q. Synthesis of benzimidazoles by copper‐catalyzed aerobic oxidative domino reaction of 1,2‐diaminoarenes and arylmethyl halides. Appl. Organomet. Chem. 2014 28 2 109 112 10.1002/aoc.3089
    [Google Scholar]
  69. Li M. Tang Y. Gao H. Rao G. Mao Z. Efficient cu‐catalyzed synthesis of benzimidazoles using ammonia as nitrogen source in water. Asian J. Org. Chem. 2020 9 7 1027 1031 10.1002/ajoc.202000236
    [Google Scholar]
  70. Bie F. Yao Y. Cao H. Shi Y. Yan P. Ma J. Han Y. Liu X. Convenient synthesis of N-1-alkyl benzimidazoles via Pd catalyzed C–N bond formation and cyclization. Synth. Commun. 2021 51 15 2387 2396 10.1080/00397911.2021.1939056
    [Google Scholar]
  71. Giri B.Y. Prabavathi Devi B.L.A. Gangadhar K.N. Lakshmi K.V. Prasad R.B.N. Lingaiah N. Sai Prasad P.S. Simple and efficient method for the synthesis of benzimidazole derivatives using monoammonium salt of 12‐tungstophosphoric acid. Synth. Commun. 2007 37 14 2331 2336 10.1080/00397910701410681
    [Google Scholar]
  72. Kalhor M. Rezaee-Baroonaghi F. Dadras A. Zarnegar Z. Synthesis of new TCH/Ni‐based nanocomposite supported on SBA‐15 and its catalytic application for preparation of benzimidazole and perimidine derivatives. Appl. Organomet. Chem. 2019 33 5 e4784 10.1002/aoc.4784
    [Google Scholar]
  73. Kulkarni P.A. Kahandal S.S. Mirgane N.A. Satpati A.K. Shendage S.S. Highly efficient magnetically separable Zn-Ag@l-arginine Fe3O4 catalyst for synthesis of 2-aryl-substituted benzimidazoles and multicomponent synthesis of pyrimidines. Results Chem. 2022 4 100655 10.1016/j.rechem.2022.100655
    [Google Scholar]
  74. Valvi A.K. Gavit H.J. Nayak S.S. Shivankar V.S. Wadhawa G.C. Synthesis of benzimidazole and benzothiazole derivatives using reusable waste stem of Trigonella foenum-graecum assisted zinc sulphide nanoparticles: A green and efficient solid acid catalyst. Mater. Today Proc. 2023 73 481 486 10.1016/j.matpr.2022.10.023
    [Google Scholar]
  75. Yamini S.S. Sharma S. Das P. Rhodium catalyzed 2‐alkyl‐benzimidazoles synthesis from benzene‐1,2‐diamines and tertiary alkylamines as alkylating agents. Appl. Organomet. Chem. 2021 35 8 e6278 10.1002/aoc.6278
    [Google Scholar]
  76. Sharma S. Sharma A. Yamini; Das, P. Yamini, Das P. Supported rhodium (rh@ ps) catalyzed benzimidazoles synthesis using ethanol/methanol as c2h3/ch source. Adv. Synth. Catal. 2019 361 1 67 72 10.1002/adsc.201801040
    [Google Scholar]
  77. Mogharabi-Manzari M. Kiani M. Aryanejad S. Imanparast S. Amini M. Faramarzi M.A. A magnetic heterogeneous biocatalyst composed of immobilized laccase and 2, 2, 6, 6‐tetramethylpiperidine‐1‐oxyl (tempo) for green one‐pot cascade synthesis of 2‐substituted benzimidazole and benzoxazole derivatives under mild reaction conditions. Adv. Synth. Catal. 2018 360 18 3563 3571 10.1002/adsc.201800459
    [Google Scholar]
  78. Popatkar B.B. Sasane N.A. Meshram G.A. [BMPTFB]-ionic liquid as an efficient catalyst for the rapid, and eco-friendly synthesis of benzimidazole, 2-substituted benzimidazole, and benzothiazole derivatives at room temperature. Synth. Commun. 2022 52 23 2249 2259 10.1080/00397911.2022.2142915
    [Google Scholar]
  79. Tayade A.P. Pawar R.P. The microwave assisted and efficient synthesis of 2-substituted benzimidazole mono-condensation of o-phenylenediamines and aldehyde. Polycycl. Aromat. Compd. 2022 42 4 1474 1478 10.1080/10406638.2020.1781204
    [Google Scholar]
  80. Saberi A. Rangappa K.S. Zeolite hy catalyst for the synthesis of benzimidazole and its 2-alkyl, aryl and heteroaryl derivatives under microwave irradiation and solvent-free condition. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2009 39 7 425 427 10.1080/15533170903129927
    [Google Scholar]
  81. Gaware S. Chatterjee R. Dhayalan V. Dandela R. Metal-free one-pot synthesis of 2-substituted benzimidazoles from N-aryl imines and TMSN3. Tetrahedron Lett. 2023 115 154289 10.1016/j.tetlet.2022.154289
    [Google Scholar]
  82. Shakoor A. Alam A. Ali M. Ullah S. Halim S.A. Rehman M.U. AlAsmari A.F. Alasmari F. Khan A. Khan M. Al-Harrasi A. Synthesis of novel benzimidazole analogs for neurodegenerative diseases by targeting prolyl oligopeptidase. ChemistrySelect 2024 9 34 e202401904 10.1002/slct.202401904
    [Google Scholar]
  83. Mahurkar N.D. Gawhale N.D. Lokhande M.N. Uke S.J. Kodape M.M. Benzimidazole: A versatile scaffold for drug discovery and beyond – A comprehensive review of synthetic approaches and recent advancements in medicinal chemistry. Results Chem. 2023 6 101139 10.1016/j.rechem.2023.101139
    [Google Scholar]
  84. Vogl O. My life with polymer science. J. Polym. Sci. A Polym. Chem. 2004 42 3 795 818 10.1002/pola.10932
    [Google Scholar]
  85. Mavvaji M. Akkoc S. Recent advances in the application of heterogeneous catalysts for the synthesis of benzimidazole derivatives. Coord. Chem. Rev. 2024 505 215714 10.1016/j.ccr.2024.215714
    [Google Scholar]
  86. Behbahani F.K. Ziaei P. A green route for the one‐pot synthesis of 1, 2‐disubstituted benzimidazoles using iron (iii) phosphate under solventless conditions. Chin. J. Chem. 2012 30 1 65 70 10.1002/cjoc.201180461
    [Google Scholar]
  87. Maleki A. Ghamari N. Kamalzare M. Chitosan-supported Fe3O4 nanoparticles: A magnetically recyclable heterogeneous nanocatalyst for the syntheses of multifunctional benzimidazoles and benzodiazepines. RSC Advances 2014 4 19 9416 9423 10.1039/c3ra47366j
    [Google Scholar]
  88. Zhou C. Lei J. Liu Y. Au C.T. Chen Y. Yin S.F. An organoantimony nitrate complex with azastibocine framework as water tolerant Lewis acid catalyst for the synthesis of 1,2‐disubstitued benzimidazoles. Appl. Organomet. Chem. 2020 34 10 e5881 10.1002/aoc.5881
    [Google Scholar]
  89. Kadu V.R. Chavan H.V. Gholap S.S. Additive free greener synthesis of 1, 2-disubstituted benzimidazoles using aqueous extract of Acacia concinna pods as an efficient surfactant type catalyst. Polycycl. Aromat. Compd. 2021 41 6 1263 1273 10.1080/10406638.2019.1670219
    [Google Scholar]
  90. Sarkar A. Jana S. Nayek H.P. A pentanuclear Er (III) coordination cluster as a catalyst for selective synthesis of 1,2‐disubstituted benzimidazoles. Appl. Organomet. Chem. 2021 35 6 e6200 10.1002/aoc.6200
    [Google Scholar]
  91. Ravindran N E. A.; Sindhuja, D.; Bhuvanesh, N.; Karvembu, R. Synthesis of 1, 2‐disubstituted benzimidazoles via acceptorless dehydrogenative coupling using ru (ii)‐arene catalysts containing ferrocene thiosemicarbazone. Eur. J. Inorg. Chem. 2022 2022 18 e202200181 10.1002/ejic.202200181
    [Google Scholar]
  92. Sun P. Hu Z. The convenient synthesis of benzimidazole derivatives catalyzed by I 2 in aqueous media. J. Heterocycl. Chem. 2006 43 3 773 775 10.1002/jhet.5570430338
    [Google Scholar]
  93. Xu Z. Wang D.S. Yu X. Yang Y. Wang D. Tunable triazole‐phosphine‐copper catalysts for the synthesis of 2‐aryl‐1h‐benzo [d] imidazoles from benzyl alcohols and diamines by acceptorless dehydrogenation and borrowing hydrogen reactions. Adv. Synth. Catal. 2017 359 19 3332 3340 10.1002/adsc.201700179
    [Google Scholar]
  94. Das K. Mondal A. Srimani D. Selective synthesis of 2-substituted and 1, 2-disubstituted benzimidazoles directly from aromatic diamines and alcohols catalyzed by molecularly defined nonphosphine manganese (i) complex. J. Org. Chem. 2018 83 16 9553 9560 10.1021/acs.joc.8b01316 29993244
    [Google Scholar]
  95. Bonacci S. Iriti G. Mancuso S. Novelli P. Paonessa R. Tallarico S. Nardi M. Montmorillonite k10: An efficient organo-heterogeneous catalyst for synthesis of benzimidazole derivatives. Catalysts 2020 10 8 845 10.3390/catal10080845
    [Google Scholar]
  96. Kaliyan P. Selvaraj L. Muthu S.P. Water extract of onion catalyst: An economical green route for the synthesis of 2‐substituted and 1,2‐disubstituted benzimidazole derivatives with high selectivity. J. Heterocycl. Chem. 2021 58 1 340 349 10.1002/jhet.4177
    [Google Scholar]
  97. Kanta Mahato R. Kumar Mudi P. Deb M. Biswas B. A direct metal‐free synthetic approach for the efficient production of privileged benzimidazoles in water medium under aerobic condition. Asian J. Org. Chem. 2021 10 11 2954 2963 10.1002/ajoc.202100477
    [Google Scholar]
  98. Guaadaoui A. Benaicha S. Elmajdoub N. Bellaoui M. Hamal A. What is a bioactive compound? A combined definition for a preliminary consensus. Int. J. Nutr. Food Sci. 2014 3 3 174 179 10.11648/j.ijnfs.20140303.16
    [Google Scholar]
  99. Ulrich-Merzenich G. Panek D. Zeitler H. Vetter H. Wagner H. Drug development from natural products: Exploiting synergistic effects. Indian J. Exp. Biol. 2010 48 3 208 219 21046973
    [Google Scholar]
  100. Anand U. Jacobo-Herrera N. Altemimi A. Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites 2019 9 11 258 10.3390/metabo9110258 31683833
    [Google Scholar]
  101. Thomford N.E. Senthebane D.A. Rowe A. Munro D. Seele P. Maroyi A. Dzobo K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018 19 6 1578 10.3390/ijms19061578 29799486
    [Google Scholar]
  102. Yadav S. Narasimhan B. Lim S.M. Ramasamy K. Vasudevan M. Shah S.A.A. Mathur A. Synthesis and evaluation of antimicrobial, antitubercular and anticancer activities of benzimidazole derivatives. Egypt. J. Basic Appl. Sci. 2018 5 1 100 109 10.1016/j.ejbas.2017.11.001
    [Google Scholar]
  103. Srinivasa S.B. Poojary B. Kalal B.S. Brahmavara U. Vaishali D. Das A.J. Mwalingo Kalenga T. Paidikondala M. Shankar M.K. Design, synthesis and anticancer activity of Novel benzimidazole containing quinoline hybrids. Results Chem. 2024 9 101631 10.1016/j.rechem.2024.101631
    [Google Scholar]
  104. Bhambra A.S. Edgar M. Elsegood M.R.J. Horsburgh L. Kryštof V. Lucas P.D. Mojally M. Teat S.J. Warwick T.G. Weaver G.W. Zeinali F. Novel fluorinated benzimidazole-based scaffolds and their anticancer activity in vitro. J. Fluor. Chem. 2016 188 99 109 10.1016/j.jfluchem.2016.06.009
    [Google Scholar]
  105. Küçükbay H. Uçkun M. Apohan E. Yeşilada Ö. Cytotoxic and antimicrobial potential of benzimidazole derivatives. Arch. Pharm. 2021 354 8 2100076 10.1002/ardp.202100076 33872394
    [Google Scholar]
  106. Cheong J.E. Zaffagni M. Chung I. Xu Y. Wang Y. Jernigan F.E. Zetter B.R. Sun L. Synthesis and anticancer activity of novel water soluble benzimidazole carbamates. Eur. J. Med. Chem. 2018 144 372 385 10.1016/j.ejmech.2017.11.037 29288939
    [Google Scholar]
  107. Karadayi F.Z. Yaman M. Kisla M.M. Keskus A.G. Konu O. Ates-Alagoz Z. Design, synthesis and anticancer/antiestrogenic activities of novel indole-benzimidazoles. Bioorg. Chem. 2020 100 103929 10.1016/j.bioorg.2020.103929 32464404
    [Google Scholar]
  108. Abdelhafez T.H. Khattab M.K.F. Temirak A. Shaker Y.M. Abu Bakr S.M. Abbas E.M. Khairat S.M.H. Abdullaziz M.A. El Rashidi A.A. Mohamed-Ezzat R.A. Galal S.A. Moustafa P.E.I. El Awdan S.A. Ali H.I. El-Eraky W.I. El Awady M.K. El Diwani H.I. Design and synthesis of antivirals benzimidazoles and quinoxalines. Egypt Pharm. J. 2022 21 2 249 271 10.4103/epj.epj_13_22
    [Google Scholar]
  109. Huo X. Hou D. Wang H. He B. Fang J. Meng Y. Liu L. Wei Z. Wang Z. Liu F.W. Design, synthesis, in vitro and in vivo anti-respiratory syncytial virus (RSV) activity of novel oxizine fused benzimidazole derivatives. Eur. J. Med. Chem. 2021 224 113684 10.1016/j.ejmech.2021.113684 34256126
    [Google Scholar]
  110. Francesconi V. Cichero E. Schenone S. Naesens L. Tonelli M. Synthesis and biological evaluation of novel (thio) semicarbazone-based benzimidazoles as antiviral agents against human respiratory viruses. Molecules 2020 25 7 1487 10.3390/molecules25071487 32218301
    [Google Scholar]
  111. Chen J. Xu L. Wang B. Zhang D. Zhao L. Bei Z. Song Y. Design, synthesis, and biological evaluation of benzimidazole derivatives as potential lassa virus inhibitors. Molecules 2023 28 4 1579 10.3390/molecules28041579 36838567
    [Google Scholar]
  112. Srivastava R. Gupta S.K. Naaz F. Sen Gupta P.S. Yadav M. Singh V.K. Singh A. Rana M.K. Gupta S.K. Schols D. Singh R.K. Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Comput. Biol. Chem. 2020 89 107400 10.1016/j.compbiolchem.2020.107400 33068917
    [Google Scholar]
  113. Li Y. Zhou X. Wu H. Yu Z. Li H. Yang S. Nanospheric heterogeneous acid-enabled direct upgrading of biomass feedstocks to novel benzimidazoles with potent antibacterial activities. Ind. Crops Prod. 2020 150 112406 10.1016/j.indcrop.2020.112406
    [Google Scholar]
  114. Mahmood K. Hashmi W. Ismail H. Mirza B. Twamley B. Akhter Z. Rozas I. Baker R.J. Synthesis, DNA binding and antibacterial activity of metal(II) complexes of a benzimidazole Schiff base. Polyhedron 2019 157 326 334 10.1016/j.poly.2018.10.020
    [Google Scholar]
  115. Al-Jorani K.R. Atia A.J.K. Lafta S.J. Al-Bayti R.I. Kadhem S.A. Baqer S.M. Antibacterial activity of new benzimidazole moiety synthesis via a acid chloride and related heterocyclic chalcones. J. Pharm. Sci. Res. 2019 11 4 1195 1203
    [Google Scholar]
  116. Kamat V. Yallur B.C. Poojary B. Patil V.B. Nayak S.P. Krishna P.M. Joshi S.D. Synthesis, molecular docking, antibacterial, and anti‐inflammatory activities of benzimidazole‐containing tricyclic systems. J. Chin. Chem. Soc. 2021 68 6 1055 1066 10.1002/jccs.202000454
    [Google Scholar]
  117. Chintakunta R. Meka G. Synthesis, in silico studies and antibacterial activity of some novel 2-substituted benzimidazole derivatives. Future J. Pharm. Sci. 2020 6 1 1 6 10.1186/s43094‑020‑00144‑9
    [Google Scholar]
  118. Abraham R. Prakash P. Mahendran K. Ramanathan M. A novel series of N-acyl substituted indole-linked benzimidazoles and naphthoimidazoles as potential anti inflammatory, anti biofilm and anti microbial agents. Microb. Pathog. 2018 114 409 413 10.1016/j.micpath.2017.12.021 29233780
    [Google Scholar]
  119. Kaur G. Silakari O. Benzimidazole scaffold based hybrid molecules for various inflammatory targets: Synthesis and evaluation. Bioorg. Chem. 2018 80 24 35 10.1016/j.bioorg.2018.05.014 29864685
    [Google Scholar]
  120. Sethi P. Bansal Y. Bansal G. Synthesis and PASS-assisted evaluation of coumarin–benzimidazole derivatives as potential anti-inflammatory and anthelmintic agents. Med. Chem. Res. 2018 27 1 61 71 10.1007/s00044‑017‑2036‑1
    [Google Scholar]
  121. Moharana A.K. Dash R.N. Mahanandia N.C. Subudhi B.B. Synthesis and anti-inflammatory activity evaluation of some benzimidazole derivatives. Pharm. Chem. J. 2022 56 8 1070 1074 10.1007/s11094‑022‑02755‑3 36405379
    [Google Scholar]
  122. Sathyanarayana R. Poojary B. Srinivasa S.M. Merugumolu V.K. Chandrashekarappa R.B. Rangappa S. In vitro, in vivo and in silico -driven identification of novel benzimidazole derivatives as anticancer and anti-inflammatory agents. J. Iran Chem. Soc. 2022 19 1301 1317 10.1007/s13738‑021‑02381‑y
    [Google Scholar]
  123. Ali S. Ali M. Khan A. Ullah S. Waqas M. Al-Harrasi A. Latif A. Ahmad M. Saadiq M. Novel 5-(arylideneamino)-1H-benzo [d] imidazole-2-thiols as potent anti-diabetic agents: Synthesis, in vitro α-glucosidase inhibition, and molecular docking studies. ACS Omega 2022 7 48 43468 43479 10.1021/acsomega.2c03854 36506132
    [Google Scholar]
  124. El Bakri Y. Anouar E.H. Marmouzi I. Sayah K. Ramli Y. El Abbes Faouzi M. Essassi E.M. Mague J.T. Potential antidiabetic activity and molecular docking studies of novel synthesized 3.6-dimethyl-5-oxo-pyrido[3,4-f][1,2,4]triazepino[2,3-a]benzimidazole and 10-amino-2-methyl-4-oxo pyrimido[1,2-a]benzimidazole derivatives. J. Mol. Model. 2018 24 7 179 10.1007/s00894‑018‑3705‑9 29951869
    [Google Scholar]
  125. Deswal L. Verma V. Kirar J.S. Kumar D. Deswal Y. Kumar A. Bhatia M. Benzimidazole-1,2,3-triazole-piperazine hybrids: Design, synthesis, antidiabetic evaluation and molecular modelling studies. Res. Chem. Intermed. 2023 49 3 1059 1083 10.1007/s11164‑022‑04921‑4
    [Google Scholar]
  126. Athimoolam T. Devaraj Stephen L. Gunasekaran B. Krishnamurthi J. Synthesis, characterization, molecular docking, and in vitro antidiabetic activity studies of new and highly selective methoxy-substituted benzimidazole. J. Struct. Chem. 2023 64 11 2063 2081 10.1134/S0022476623110045
    [Google Scholar]
/content/journals/coc/10.2174/0113852728390615250917072619
Loading
/content/journals/coc/10.2174/0113852728390615250917072619
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test