Skip to content
2000
image of A Review on Emerging Insights and Novel Innovations in Quinoline Derivatives

Abstract

Quinoline derivatives are considered highly promising for developing anticancer drugs due to their ability to disrupt essential cellular processes by inserting themselves between DNA base pairs. This interference inhibits crucial activities like DNA replication and transcription, making these compounds effective against cancer cells, thereby further boosting their potential to improve overall treatment outcomes. The synthesis of quinoline derivatives involves several named reactions such as the Riehm Quinoline Synthesis, Doebner reaction, Doebner Miller reaction, Gould-Jacobs reaction, Conrad-Limpach synthesis, Combes quinoline synthesis, Skraup reaction, and many others. Furthermore, the novel innovations by various researchers described in this article allow for the production of novel derivatives with specific substitution patterns and biological activities, enabling researchers to optimize pharmacological properties like bioavailability and target specificity. Recent studies have yielded quinoline derivatives that exhibit an increased ability to kill cancer cells and greater specificity for different types of cancer. Moreover, many researchers have demonstrated the strong effectiveness of quinoline derivatives against tumors in early-stage testing, setting the stage for continued research and clinical trials. Thus, quinoline derivatives show great potential in combating cancer, presenting new opportunities for developing innovative therapies for cancer treatment.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728389297250820192721
2025-09-16
2026-01-31
Loading full text...

Full text loading...

References

  1. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  2. Saini Anupam Kumar Manish Bhatt Shailendra Saini Vipin Malik, Anuj Cancer causes and treatments Int. J. Pharm. Sci. Res 2020 11 3109 3122 10.13040/IJPSR.0975‑8232
    [Google Scholar]
  3. Fortin S. Bérubé G. Advances in the development of hybrid anticancer drugs. Expert Opin. Drug Discov. 2013 8 8 1029 1047 10.1517/17460441.2013.798296 23646979
    [Google Scholar]
  4. Raj T. Bhatia R.K. kapur, A.; Sharma, M.; Saxena, A.K.; Ishar, M.P.S. Cytotoxic activity of 3-(5-phenyl-3 H -[1,2,4]dithiazol-3-yl)chromen-4-ones and 4-oxo-4 H -chromene-3-carbothioic acid N -phenylamides. Eur. J. Med. Chem. 2010 45 2 790 794 10.1016/j.ejmech.2009.11.001 19939522
    [Google Scholar]
  5. Cancer-Causing Substances Cancer-Causing Substances 2018 Available from:https://www.cancer.gov/about-cancer/causes-prevention/risk/substances
  6. Cancer Control. Opportunities in Low- and Middle-Income Countries; NCBI, 2012
  7. Nepali K. Sharma S. Sharma M. Bedi P.M.S. Dhar K.L. Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur. J. Med. Chem. 2014 77 4 422 487 10.1016/j.ejmech.2014.03.018 24685980
    [Google Scholar]
  8. Kateb B. Chiu K. Black K.L. Yamamoto V. Khalsa B. Ljubimova J.Y. Ding H. Patil R. Portilla-Arias J.A. Modo M. Moore D.F. Farahani K. Okun M.S. Prakash N. Neman J. Ahdoot D. Grundfest W. Nikzad S. Heiss J.D. Nanoplatforms for constructing new approaches to cancer treatment, imaging, and drug delivery: What should be the policy? Neuroimage 2011 54 Suppl. 1 S106 S124 10.1016/j.neuroimage.2010.01.105 20149882
    [Google Scholar]
  9. Nepali K. Sharma S. Kumar D. Budhiraja A. Dhar K. Anticancer hybrids: A patent survey. Recent Patents Anticancer Drug Discov. 2014 9 3 303 339 10.2174/1574892809666140520150459 24846460
    [Google Scholar]
  10. Zimmermann H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch. Pharmacol. 2000 362 4-5 299 309 10.1007/s002100000309 11111825
    [Google Scholar]
  11. Ajani O.O. Iyaye K.T. Ademosun O.T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs: A review. RSC Advances 2022 12 29 18594 18614 10.1039/D2RA02896D 35873320
    [Google Scholar]
  12. Jain S. Chandra V. Kumar Jain P. Pathak K. Pathak D. Vaidya A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem. 2016 8 4920 4946 10.1016/j.arabjc.2016.10.009
    [Google Scholar]
  13. Gurnos J. Quinolines: Part I. In: The Chemistry of Heterocyclic Compounds. Weissberger A. Taylor E.C. Hoboken, NJ 1977 Vol. 32
    [Google Scholar]
  14. Mukherjee S. Pal M. Quinolines: A new hope against inflammation. Drug Discov. Today 2013 18 7-8 389 398 10.1016/j.drudis.2012.11.003
    [Google Scholar]
  15. Musiol R. Quinoline-based HIV Integrase Inhibitors. Curr. Pharm. Des. 2013 19 10 1835 1849 10.2174/1381612811319100008
    [Google Scholar]
  16. Kaur K. Jain M. Reddy R.P. Jain R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem 2010 32453264 10.1016/j.ejmech.2010.04.011
    [Google Scholar]
  17. Keri R.S. Patil S.A. Quinoline: A promising antitubercular target. Biomed. Pharmacother. 2014 68 8 1161 10.1016/j.biopha.2014.10.007
    [Google Scholar]
  18. Musiol R. Serda M. Polanski J. HenselBielowka. S. Curr. Med. Chem. 2010 17 19601973
    [Google Scholar]
  19. Zajdel P. Partyka A. Marciniec K. Bojarski A.J. Pawlowski M. Wesolowska A. Quinoline- and isoquinoline-sulfonamide analogs of aripiprazole: Novel antipsychotic agents? Future Med. Chem. 2014 6 1 57 75 10.4155/fmc.13.158
    [Google Scholar]
  20. Solomon V.R. Lee H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem. 2011 18 10 1488 1508 10.2174/092986711795328382 21428893
    [Google Scholar]
  21. CostedoatChalumeau CostedoatChalumeau, N.; Morel, N. Hydroxychloroquine: A multifaceted treatment in lupus Presse. Med 2014 43 e167180 10.1016/j.lpm.2014.03.007
    [Google Scholar]
  22. Bongarzone S. Bolognesi M.L. The concept of privileged structures in rational drug design: Focus on acridine and quinoline scaffolds in neurodegenerative and protozoan diseases. Expert Opin. Drug Discov. 2011 6 3 251 268 10.1517/17460441.2011.550914
    [Google Scholar]
  23. Afzal O. Kumar S. Haider M.R. Ali M.R. Kumar R. Jaggi M. Bawa S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem. 2015 97 871 910 10.1016/j.ejmech.2014.07.044 25073919
    [Google Scholar]
  24. Achan J. Talisuna A.O. Erhart A. Yeka A. Tibenderana J.K. Baliraine F.N. Rosenthal P.J. D’Alessandro U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria Malar. J 2011 10 144 10.1186/1475‑2875‑10‑144
    [Google Scholar]
  25. Jia Y. Zhao L. The antibacterial activity of fluoroquinolone derivatives: An update (2018–2021). Eur. J. Med. Chem. 2021 224 113741 10.1016/j.ejmech.2021.113741 34365130
    [Google Scholar]
  26. Wu P. Nielsen T.E. Clausen M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci. 2015 36 7 422 439 10.1016/j.tips.2015.04.005 25975227
    [Google Scholar]
  27. Pandey Amit Ranjan Mishra Devendra Pratap Sharma Sudhir Tiwari, Durgesh Kumar Medicinal Activities of Quinoline and Quinolone. In: Modern Trends in Medicinal Chemistry. AG PUBLISHING 2025
    [Google Scholar]
  28. Chou L.C. Tsai M.T. Hsu M.H. Wang S.H. Way T.D. Huang C.H. Lin H.Y. Qian K. Dong Y. Lee K.H. Huang L.J. Kuo S.C. J. Med. Chem. 2010 53 80478058
    [Google Scholar]
  29. Cortegiani A. Ingoglia G. Ippolito M. Giarratano A. Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J. Crit. Care 2020 57 279 283 10.1016/j.jcrc.2020.03.005 32173110
    [Google Scholar]
  30. Chou L.C. Chen C.T. Lee J.C. Way T.D. Huang C.H. Huang S.M. Teng C.M. Yamori T. Wu T.S. Sun C.M. Chien D.S. Qian K. Design, synthesis, and preclinical evaluation of new 5,6- (or 6,7-) disubstituted-2-(fluorophenyl)quinolin-4-one derivatives as potent antitumor agent. J. Med. Chem. 2010 53 16161626 10.1021/jm100780c
    [Google Scholar]
  31. Xin X. Abrams T.J. Hollenbach P.W. Rendahl K.G. Tang Y. Oei Y.A. Embry M.G. Swinarski D.E. Garrett E.N. Pryer N.K. Trudel S. Jallal B. Mendel D.B. Heise C.C. CHIR-258 is efficacious in a newly developed fibroblast growth factor receptor 3-expressing orthotopic multiple myeloma model in mice. Clin. Cancer Res. 2006 12 16 4908 4915 10.1158/1078‑0432.CCR‑06‑0957 16914579
    [Google Scholar]
  32. O’Donnell S.R. Wanstall J.C. Responses to the beta 2-selective agonist procaterol of vascular and atrial preparations with different functional beta-adrenoceptor populations. Br. J. Pharmacol. 1985 84 1 227 235 2858232
    [Google Scholar]
  33. Yeates C. Sitamaquine (GlaxoSmithKline/Walter Reed Army Institute). Curr. Opin. Investig. Drugs 2002 3 10 1446 1452 12431016
    [Google Scholar]
  34. Lee C.C. Shiao H.Y. Wang W.C. Hsieh H.P. Small-molecule EGFR tyrosine kinase inhibitors for the treatment of cancer. Expert Opin. Investig. Drugs 2014 23 10 1333 1348 10.1517/13543784.2014.928283 24921970
    [Google Scholar]
  35. Comi G. Pulizzi A. Rovaris M. Abramsky O. Arbizu T. Boiko A. Gold R. Havrdova E. Komoly S. Selmaj K.W. Sharrack B. Filippi M. Effect of laquinimod on MRI-monitored disease activity in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 2008 371 9630 2085 2092 10.1016/S0140‑6736(08)60918‑6 18572078
    [Google Scholar]
  36. Zillhardt M. Park S.M. Romero I.L. Sawada K. Montag A. Krausz T. Yamada S.D. Peter M.E. Lengyel E. Foretinib (GSK1363089), an orally available multikinase inhibitor of c-Met and VEGFR-2, blocks proliferation, induces anoikis, and impairs ovarian cancer metastasis. Clin. Cancer Res. 2011 17 12 4042 4051 10.1158/1078‑0432.CCR‑10‑3387 21551255
    [Google Scholar]
  37. Verhoest P.R. Chapin D.S. Corman M. Fonseca K. Harms J.F. Hou X. Marr E.S. Menniti F.S. Nelson F. O’Connor R. Pandit J. Proulx-LaFrance C. Schmidt A.W. Schmidt C.J. Suiciak J.A. Liras S. Discovery of a novel class of phosphodiesterase 10a inhibitors and identification of clinical candidate 2-[4-(1-Methyl-4-pyridin-4-yl-1 H -pyrazol-3-yl)-phenoxymethyl]-quinoline (PF-2545920) for the treatment of schizophrenia†coordinates of the PDE10A crystal structures have been deposited in the Protein Data Bank for compound 1 (3HQW), 2 (3HQY), 3 (3HQW) and 9 (3HR1). J. Med. Chem. 2009 52 16 5188 5196 10.1021/jm900521k 19630403
    [Google Scholar]
  38. Karnik K.S. Sarkate A.P. Tiwari S.V. Azad R. Burra P.V.L.S. Wakte P.S. Computational and synthetic approach with biological evaluation of substituted quinoline derivatives as small molecule L858R/T790M/C797S triple mutant EGFR inhibitors targeting resistance in Non-Small Cell Lung Cancer (NSCLC). Bioorg. Chem. 2021 107 104612 10.1016/j.bioorg.2020.104612 33476869
    [Google Scholar]
  39. Elbadawi M.M. Eldehna W.M. Wang W. Agama K.K. Pommier Y. Abe M. Discovery of 4-alkoxy-2-aryl-6,7-dimethoxyquinolines as a new class of topoisomerase I inhibitors endowed with potent in vitro anticancer activity. Eur. J. Med. Chem. 2021 215 113261 10.1016/j.ejmech.2021.113261 33631697
    [Google Scholar]
  40. Khelifi I. Khelifi I. Khelifi I. Khelifi I. Design, synthesis and anticancer properties of IsoCombretaQuinolines as potent tubulin assembly inhibitors. Eur. J. Med. Chem. 2017 127 1025 1034 10.1016/j.ejmech.2016.11.012
    [Google Scholar]
  41. Parikh P. Ghate M. Vyas V.K. CoMFA and CoMSIA studies on 6,7-disubstituted-4-phenoxyquinoline derivatives as c-Met kinase inhibitors and anticancer agents. Med. Chem. Res. 2015 24 12 4078 4092 10.1007/s00044‑015‑1450‑5
    [Google Scholar]
  42. Cheng Y. He C. Wang M. Ma X. Mo F. Yang S. Han J. Wei X. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduct. Target. Ther. 2019 4 1 62 10.1038/s41392‑019‑0095‑0 31871779
    [Google Scholar]
  43. Asamitsu S. Obata S. Yu Z. Bando T. Sugiyama H. Recent progress of tar geted G-quadruplex-preferred ligands toward cancer therapy. Molecules 2019 24 3 429 10.3390/molecules24030429 30682877
    [Google Scholar]
  44. Lauria A. La Monica G. Bono A. Martorana A. Quinoline anticancer agents active on DNA and DNA-interacting proteins: From classical to emerging therapeutic targets. Eur. J. Med. Chem. 2021 220 113555 10.1016/j.ejmech.2021.113555 34052677
    [Google Scholar]
  45. Schmidt B.H. Osheroff N. Berger J.M. Structure of a topoisomerase II–DNA–nucleotide complex reveals a new control mechanism for ATPase activity. Nat. Struct. Mol. Biol. 2012 19 11 1147 1154 10.1038/nsmb.2388 23022727
    [Google Scholar]
  46. Wang J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol. 2002 3 6 430 440 10.1038/nrm831 12042765
    [Google Scholar]
  47. Skok Ž. Zidar N. Kikelj D. Ilaš J. Dual inhibitors of human DNA topoisomerase II and other cancer-related targets. J. Med. Chem. 2020 63 3 884 904 10.1021/acs.jmedchem.9b00726 31592646
    [Google Scholar]
  48. Wang Ž. Riehm Quinoline Synthesis. In: Comprehensive Organic Name Reactions and Reagents. Wiley 2010 10.1002/9780470638859.conrr537
    [Google Scholar]
  49. Heravi M. Asadi S. Azarakhshi F. Recent Applications of doebner, doebner-von miller and knoevenagel-doebner reactions in organic syntheses. Curr. Org. Synth. 2014 11 5 701 731 10.2174/1570179411666140426003616
    [Google Scholar]
  50. Wang Z. Doebner-Miller Reaction. In: Comprehensive Organic Name Reactions and Reagents. Wiley 2010 10.1002/9780470638859.conrr198
    [Google Scholar]
  51. Li J. Gould–Jacobs Reaction. In: Name Reactions. Springer 2021 228 230 10.1007/978‑3‑030‑50865‑4_59
    [Google Scholar]
  52. Sales E. Figueroa-Villar J. Recent studies about synthesis and biological activity of quinolones and derivatives: A review. World J. Pharm. Pharm. Sci. 2016 5 253 10.20959/wjpps20168‑7411
    [Google Scholar]
  53. Li J.J. Combes quinoline synthesis. Name Reactions. Cham Springer 2014 10.1007/978‑3‑319‑03979‑4_65
    [Google Scholar]
  54. AlMarzouq D.S. Elnagdi N.M.H. Glycerol and Q-Tubes: Green catalyst and technique for synthesis of polyfunctionally substituted heteroaromatics and anilines. Molecules 2019 24 9 1806 10.3390/molecules24091806 31083287
    [Google Scholar]
  55. El-Araby D.S. Povarov Reaction. Summer Workshop 2023 10.13140/RG.2.2.16277.70880
    [Google Scholar]
  56. Li J.J. Friedländer synthesis. In: Name Reactions. Berlin, Heidelberg Springer 2003 10.1007/978‑3‑662‑05336‑2_113
    [Google Scholar]
  57. Chong R.J. Siddiqui M.A. Snieckus V. For a ring-synthetic method see. Tetrahedron Lett. 1986 27 5323
    [Google Scholar]
  58. Wang Z. Knorr Quinoline Synthesis. Comprehensive Organic Name Reactions and Reagents. Wiley 2010 10.1002/9780470638859.conrr365
    [Google Scholar]
  59. Hartz R.A. 7.4 Niementowski quinoline synthesis. In: Name Reactions in Heterocyclic Chemistry; Wiley, 2011; II, p. 376 2011
    [Google Scholar]
  60. Wagay S.A. Rather I.A. Ali R. Unraveling the potential role of green chemistry in carrying out typical condensation reactions of organic chemistry. In: Nanoparticles in Green Organic Synthesis. Elsevier 2023 317 349 10.1016/B978‑0‑323‑95921‑6.00011‑1
    [Google Scholar]
  61. Sangshetti N. Pfitzinger reaction in the synthesis of bioactive compounds-a review. Mini Rev. Org. Chem. 2014 11 2 225 250 10.2174/1570193X113106660020
    [Google Scholar]
  62. Fisyuk A.S. Kostyuchenko A.S. Goncharov D.S. Camps reaction and related cyclizations. Russ. J. Org. Chem. 2020 56 11 1863 1892 10.1134/S1070428020110019
    [Google Scholar]
  63. Meth-Cohn quinoline synthesis. In: Name Reactions 2020 376 377 10.1007/3‑540‑30031‑7_168
  64. Biere H. Seelen W. Verfahren zur Darstellung von 4‐Oxo‐1,4‐dihydropyridincarbonsäurederivaten. Justus Liebigs Ann. Chem. 1976 1976 11 1972 1981 10.1002/jlac.197619761105
    [Google Scholar]
  65. Çelik İ. Yıldız F. Synthesis of 4-hydroxyquinoline-2,3-dicarboxylates using N-(2-aminobenzoyl)benzotriazoles. Tetrahedron 2017 73 27-28 3878 3882 10.1016/j.tet.2017.05.058
    [Google Scholar]
  66. Jamal A. Faizi M.S.H. Dege N. Synthesis, structural characterization, DFT calculations, and molecular docking of a novel quinoline derivative. J. Mol. Struct. 2024 1300 137251 10.1016/j.molstruc.2023.137251
    [Google Scholar]
  67. Ibrahim A.O.A. Hassan A. Mosallam A.M. Khodairy A. Rashdan H.R.M. Abdelmonsef A.H. New quinazolin-2,4-dione derivatives incorporating acylthiourea, pyrazole and/or oxazole moieties as antibacterial agents via DNA gyrase inhibition. RSC Advances 2024 14 24 17158 17169 10.1039/D4RA02960G 38808238
    [Google Scholar]
  68. Gnana Ruba Priya M. Raja Solomon V. Hemavathy N. Jeyakanthan J. Kumar D. Mahesh J. Design, synthesis, in silico, and pharmacological evaluation of novel quinoline derivatives containing substituted piperazine moieties as potential anti-breast cancer agents. Results. Chem 2024 7 101359 10.1016/j.rechem.2024.101359
    [Google Scholar]
  69. Fikriya S.H. Cahyana A.H. Study of antioxidant activity of the derivatives of quinoline-4-carboxylic acids by the modification of isatin via pfitzinger reaction. Makara J. Sci. 2023 27 2 9
    [Google Scholar]
  70. Sun X. Yu W. Min L. Han L. Hua X. Shi J. Sun N. Liu X. Synthesis, structural determination, and antifungal activity of novel fluorinated quinoline analogs. Molecules 2023 28 8 3373 10.3390/molecules28083373 37110607
    [Google Scholar]
  71. Cahyana A.H. Halim D. Amaliyah L. Synthesis of antioxidant and antimicrobial bioactive compounds based on the quinoline-hydrazone and benzimidazole structure. J. Adv. Pharm. Technol. Res. 2023 14 2 125 132 10.4103/japtr.japtr_599_22 37255873
    [Google Scholar]
  72. Kardile R.A. Sarkate A.P. Lokwani D.K. Tiwari S.V. Azad R. Thopate S.R. Design, synthesis, and biological evaluation of novel quinoline derivatives as small molecule mutant EGFR inhibitors targeting resistance in NSCLC: In vitro screening and ADME predictions. Eur. J. Med. Chem. 2023 245 Pt 1 114889 10.1016/j.ejmech.2022.114889 36375337
    [Google Scholar]
  73. Govindarao K. Srinivasan N. Suresh R. Raheja R.K. Annadurai S. Bhandare R.R. Shaik A.B. Quinoline conjugated 2-azetidinone derivatives as prospective anti-breast cancer agents: In vitro antiproliferative and anti-EGFR activities, molecular docking and in-silico drug likeliness studies. J. Saudi Chem. Soc. 2022 26 3 101471 10.1016/j.jscs.2022.101471
    [Google Scholar]
  74. Singh V.K. Chaurasia H. Kumari P. Som A. Mishra R. Srivastava R. Naaz F. Singh A. Singh R.K. Design, synthesis, and molecular dynamics simulation studies of quinoline derivatives as protease inhibitors against SARS-CoV-2. J. Biomol. Struct. Dyn. 2022 40 21 10519 10542 10.1080/07391102.2021.1946716 34253149
    [Google Scholar]
  75. Guan Y.F. Liu X.J. Yuan X.Y. Liu W.B. Li Y.R. Yu G.X. Tian X.Y. Zhang Y.B. Song J. Li W. Zhang S.Y. Design, synthesis, and anticancer activity studies of novel quinoline-chalcone derivatives. Molecules 2021 26 16 4899 10.3390/molecules26164899 34443487
    [Google Scholar]
  76. Al-Matarneh M.C. Amărandi R.M. Mangalagiu I.I. Danac R. Synthesis and biological screening of new cyano-substituted pyrrole fused (Iso) Quinoline derivatives. Molecules 2021 26 7 2066 10.3390/molecules26072066 33916806
    [Google Scholar]
  77. Yadav P. Shah K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem. 2021 109 104639 10.1016/j.bioorg.2021.104639 33618829
    [Google Scholar]
  78. Bouzian Y. Karrouchi K. Sert Y. Lai C.H. Mahi L. Ahabchane N.H. Talbaoui A. Mague J.T. Essassi E.M. Synthesis, spectroscopic characterization, crystal structure, DFT, molecular docking and in vitro antibacterial potential of novel quinoline derivatives. J. Mol. Struct. 2020 1209 127940 10.1016/j.molstruc.2020.127940
    [Google Scholar]
  79. Jain S. Kumar A. Saini D. Novel arylidene derivatives of quinoline based thiazolidinones: Synthesis, in vitro, in vivo and in silico study as antimalarials. Exp. Parasitol. 2018 185 107 114 10.1016/j.exppara.2018.01.015 29355497
    [Google Scholar]
  80. Iqbal J. Ejaz S.A. Khan I. Ausekle E. Miliutina M. Langer P. Exploration of quinolone and quinoline derivatives as potential anticancer agents. Daru 2019 27 2 613 626 10.1007/s40199‑019‑00290‑3 31410781
    [Google Scholar]
  81. Khan S.A. Asiri A.M. Basisi H.M. Asad M. Zayed M.E.M. Sharma K. Wani M.Y. Synthesis and evaluation of Quinoline-3-carbonitrile derivatives as potential antibacterial agents. Bioorg. Chem. 2019 88 102968 10.1016/j.bioorg.2019.102968 31075745
    [Google Scholar]
  82. Taha M. Sultan S. Imran S. Rahim F. Zaman K. Wadood A. Ur Rehman A. Uddin N. Mohammed Khan K. Synthesis of quinoline derivatives as diabetic II inhibitors and molecular docking studies. Bioorg. Med. Chem. 2019 27 18 4081 4088 10.1016/j.bmc.2019.07.035 31378594
    [Google Scholar]
  83. Amer A. El-Eraky W.I. Mahgoub S. Synthesis, characterization and antimicrobial activity of some novel quinoline derivatives bearing pyrazole and pyridine moieties. Egyptian J. Chemistry 2018 61 10.21608/ejchem.2018.3941.1345
    [Google Scholar]
  84. Köprülü T.K. Ökten S. Tekin Ş. Çakmak O. Biological evaluation of some quinoline derivatives with different functional groups as anticancer agents. J. Biochem. Mol. Toxicol. 2019 33 3 e22260 10.1002/jbt.22260 30431695
    [Google Scholar]
  85. Shabeeb I. Al-Essa L. Shtaiwi M. Al-Shalabi E. Younes E. Okasha R. Abu Sini M. New hydrazide-hydrazone derivatives of quinoline 3-carboxylic acid hydrazide: Synthesis, theoretical modeling and antibacterial evaluation. Lett. Org. Chem. 2019 16 5 430 436 10.2174/1570178616666181227122326
    [Google Scholar]
  86. Saini D. Jain S. Kumar A. Jain N. Synthesis and antimalarial potential of some novel quinoline-pyrazolopyridine derivatives. EXCLI J. 2016 15 730 737 28337104
    [Google Scholar]
  87. El-Gamal K.M. Hagrs M.S. Abulkhair H.S. Synthesis, characterization and antimicrobial evaluation of some novel quinoline derivatives bearing different heterocyclic moieties. Bull. Fac. Pharm. Cairo Univ. 2016 54 2 263 273 10.1016/j.bfopcu.2016.08.002
    [Google Scholar]
  88. Ahsan M.J. Shastri S. Yadav R. Hassan M.Z. Bakht M.A. Jadav S.S. Yasmin S. Synthesis and antiproliferative activity of some quinoline and oxadiazole derivatives. Org. Chem. Int. 2016 2016 1 1 10 10.1155/2016/9589517
    [Google Scholar]
  89. Gopinath V.S. Rao M. Shivahare R. Vishwakarma P. Ghose S. Pradhan A. Hindupur R. Sarma K.D. Gupta S. Puri S.K. Launay D. Martin D. Design, synthesis, ADME characterization and antileishmanial evaluation of novel substituted quinoline analogs. Bioorg. Med. Chem. Lett. 2014 24 9 2046 2052 10.1016/j.bmcl.2014.03.065 24726804
    [Google Scholar]
  90. Cakmak O. Erenler R. TEKİN, S. Simple and convenient preparation of novel 6, 8-disubstituted quinoline derivatives and their promising anticancer activities. Turk. J. Chem. 2013 37 6 896 908
    [Google Scholar]
  91. Tiwari A. Singh A. Synthesis Of New pyrazolidine 3, 5 dione derivatives of potential analgesic, antipyretic and anti-inflammatory activities. Middle East J. Sci. Res. 2013 17 7 926 935
    [Google Scholar]
  92. Desai Nisheeth Joshi Vivek Rajpara Kiran Vaghani Hasit Satodiya Hitesh Synthesis of quinoline-pyrazoline based thiazole derivatives endowed with antimicrobial activity. Ind. J. Chem. -. Section 2013 52 9 1191
    [Google Scholar]
  93. Amir Mohd Javed Sadique Hassan, Mohd Zaheen Synthesis and antimicrobial activity of pyrazolinone and pyrazole analogues containing quinoline moiety. ChemInform 2013 45 20 10.1002/chin.201420150
    [Google Scholar]
  94. Garudachari B. Satyanarayana M.N. Thippeswamy B. Shivakumar C.K. Shivananda K.N. Hegde G. Isloor A.M. Synthesis, characterization and antimicrobial studies of some new quinoline incorporated benzimidazole derivatives. Eur. J. Med. Chem. 2012 54 900 906 10.1016/j.ejmech.2012.05.027 22732060
    [Google Scholar]
  95. Fiorito J. Saeed F. Zhang H. Staniszewski A. Feng Y. Francis Y.I. Rao S. Thakkar D.M. Deng S.X. Landry D.W. Arancio O. Synthesis of quinoline derivatives: Discovery of a potent and selective phosphodiesterase 5 inhibitor for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2013 60 285 294 10.1016/j.ejmech.2012.12.009 23313637
    [Google Scholar]
  96. Tiwari A. Singh A. Tiwari V. Synthesis and biological activity of quinolone derivatives. J. Pharm. Res. 2011 4 4 1063 1064
    [Google Scholar]
  97. Eswaran S. Adhikari A.V. Chowdhury I.H. Pal N.K. Thomas K.D. New quinoline derivatives: Synthesis and investigation of antibacterial and antituberculosis properties. Eur. J. Med. Chem. 2010 45 8 3374 3383 10.1016/j.ejmech.2010.04.022 20537437
    [Google Scholar]
  98. Upadhayaya R.S. Vandavasi J.K. Vasireddy N.R. Sharma V. Dixit S.S. Chattopadhyaya J. Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis. Bioorg. Med. Chem. 2009 17 7 2830 2841 10.1016/j.bmc.2009.02.026 19285414
    [Google Scholar]
  99. Metwally K.A. Abdel-Aziz L.M. Lashine E.S.M. Husseiny M.I. Badawy R.H. Hydrazones of 2-aryl-quinoline-4-carboxylic acid hydrazides: Synthesis and preliminary evaluation as antimicrobial agents. Bioorg. Med. Chem. 2006 14 24 8675 8682 10.1016/j.bmc.2006.08.022 16949294
    [Google Scholar]
  100. Milad Mohareb R. Maged Labib H. New approaches for the synthesis of chromene and quinoline derivatives and their anti-proliferative, morphological studies. Bull. Chem. Soc. Ethiop. 2024 38 3 775 798 10.4314/bcse.v38i3.18
    [Google Scholar]
  101. Singh V.K. Kumari P. Som A. Rai S. Mishra R. Singh R.K. Design, synthesis and antimicrobial activity of novel quinoline derivatives: An in silico and in vitro study. J. Biomol. Struct. Dyn. 2024 42 13 6904 6924 10.1080/07391102.2023.2236716 37477261
    [Google Scholar]
  102. El-Helw E.A.E. Asran M. Azab M.E. Helal M.H. Alzahrani A.Y.A. Ramadan S.K. Synthesis and in silico studies of certain benzo[f]quinoline-based heterocycles as antitumor agents. Sci. Rep. 2024 14 1 15522 10.1038/s41598‑024‑64785‑z 38969677
    [Google Scholar]
  103. Mingoia F. Di Sano C. D’Anna C. Fazzari M. Minafra L. Bono A. La Monica G. Martorana A. Almerico A.M. Lauria A. Synthesis of new antiproliferative 1,3,4-substituted-pyrrolo[3,2-c]quinoline derivatives, biological and in silico insights. Eur. J. Med. Chem. 2023 258 115537 10.1016/j.ejmech.2023.115537 37329715
    [Google Scholar]
  104. Evren A.E. Karaduman A.B. Sağlik B.N. Özkay Y. Yurttaş L. Investigation of novel quinoline–thiazole derivatives as antimicrobial Agents: In Vitro and in silico approaches. ACS Omega 2023 8 1 1410 1429 10.1021/acsomega.2c06871 36643421
    [Google Scholar]
  105. El-Saghier A.M. El-Naggar M. Hussein A.H.M. El-Adasy A.B.A. Olish M. Abdelmonsef A.H. Eco-friendly synthesis, biological evaluation, and in silico molecular docking approach of some new quinoline derivatives as potential antioxidant and antibacterial agents. Front Chem. 2021 9 679967 10.3389/fchem.2021.679967 34178944
    [Google Scholar]
  106. Wang M. Zhang G. Zhao J. Cheng N. Wang Y. Fu Y. Zheng Y. Wang J. Zhu M. Cen S. He J. Wang Y. Synthesis and antiviral activity of a series of novel quinoline derivatives as anti-RSV or anti-IAV agents. Eur. J. Med. Chem. 2021 214 113208 10.1016/j.ejmech.2021.113208 33571829
    [Google Scholar]
  107. Makhaeva G.F. Kovaleva N.V. Rudakova E.V. Boltneva N.P. Lushchekina S.V. Faingold I.I. Poletaeva D.A. Soldatova Y.V. Kotelnikova R.A. Serkov I.V. Ustinov A.K. Proshin A.N. Radchenko E.V. Palyulin V.A. Richardson R.J. New multifunctional agents based on conjugates of 4-Amino-2, 3-polymethylenequinoline and butylated hydroxytoluene for Alzheimer’s disease treatment. Molecules 2020 25 24 5891 10.3390/molecules25245891 33322783
    [Google Scholar]
  108. Celik I. Erol M. Puskullu M.O. Uzunhisarcikli E. Ince U. Kuyucuklu G. Suzen S. In Vitro and In Silico studies of quinoline-2-carbaldehyde hydrazone derivatives as potent antimicrobial agents. Polycycl. Aromat. Compd. 2022 42 4 1942 1958 10.1080/10406638.2020.1821230
    [Google Scholar]
  109. Ganesan M.S. Raja K.K. Narasimhan K. Murugesan S. Kumar B.K. Design, synthesis, α-amylase inhibition and in silico docking study of novel quinoline bearing proline derivatives. J. Mol. Struct. 2020 1208 127873 10.1016/j.molstruc.2020.127873
    [Google Scholar]
  110. Kalirajan R. Pandiselvi A. Gowramma B. Balachandran P. In-silico design, ADMET screening, MM-GBSA binding free energy of some novel isoxazole substituted 9-anilinoacridines as HER2 inhibitors targeting breast cancer. Curr. Drug Res. Rev. 2019 11 2 118 128 10.2174/2589977511666190912154817 31513003
    [Google Scholar]
  111. Su T. Zhu J. Sun R. Zhang H. Huang Q. Zhang X. Du R. Qiu L. Cao R. Design, synthesis and biological evaluation of new quinoline derivatives as potential antitumor agents. Eur. J. Med. Chem. 2019 178 154 167 10.1016/j.ejmech.2019.05.088 31181480
    [Google Scholar]
  112. De la Guardia C. Stephens D. Dang H. Quijada M. Larionov O. Lleonart R. Antiviral activity of novel quinoline derivatives against dengue virus serotype 2. Molecules 2018 23 3 672 10.3390/molecules23030672 29547522
    [Google Scholar]
  113. Upadhyay A. Kushwaha P. Gupta S. Dodda R.P. Ramalingam K. Kant R. Goyal N. Sashidhara K.V. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur. J. Med. Chem. 2018 154 172 181 10.1016/j.ejmech.2018.05.014 29793211
    [Google Scholar]
  114. Jafari F. Baghayi H. Lavaee P. Hadizadeh F. Soltani F. Moallemzadeh H. Mirzaei S. Aboutorabzadeh S.M. Ghodsi R. Design, synthesis and biological evaluation of novel benzo- and tetrahydrobenzo-[h]quinoline derivatives as potential DNA-intercalating antitumor agents. Eur. J. Med. Chem. 2019 164 292 303 10.1016/j.ejmech.2018.12.060 30599418
    [Google Scholar]
  115. Fang Y.M. Zhang R.R. Shen Z.H. Wu H.K. Tan C.X. Weng J.Q. Xu T.M. Liu X.H. Synthesis, antifungal activity, and sar study of some new 6‐perfluoropropanyl quinoline derivatives. J. Heterocycl. Chem. 2018 55 1 240 245 10.1002/jhet.3031
    [Google Scholar]
  116. Valdivieso E. Mejías F. Torrealba C. Benaim G. Kouznetsov V.V. Sojo F. Rojas-Ruiz F.A. Arvelo F. Dagger F. In vitro 4-Aryloxy-7-chloroquinoline derivatives are effective in mono- and combined therapy against Leishmania donovani and induce mitocondrial membrane potential disruption. Acta Trop. 2018 183 36 42 10.1016/j.actatropica.2018.03.023 29604246
    [Google Scholar]
  117. Pejović A. Drabowicz J. Cieslak M. Kazmierczak-Baranska J. Królewska-Golińska K. Synthesis, characterization and anticancer activity of novel ferrocene containing quinolinones: 1-Allyl-2-ferrocenyl-2,3-dihydroquinolin-4(1H)-ones and 1-allyl-2-ferrocenylquinolin-4(1H)-ones. J. Organomet. Chem. 2018 873 78 85 10.1016/j.jorganchem.2018.08.004
    [Google Scholar]
  118. Nasr E.E. Mostafa A.S. El-Sayed M.A.A. Massoud M.A.M. Design, synthesis, and docking study of new quinoline derivatives as antitumor agents. Arch. Pharm. (Weinheim) 2019 352 7 1800355 10.1002/ardp.201800355 31081954
    [Google Scholar]
  119. Chanquia S.N. Larregui F. Puente V. Labriola C. Lombardo E. García Liñares G. Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents. Bioorg. Chem. 2018 10.1016/j.bioorg.2018.10.053 30469145
    [Google Scholar]
  120. El Shehry M.F. Ghorab M.M. Abbas S.Y. Fayed E.A. Shedid S.A. Ammar Y.A. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem. 2017 10.1016/j.ejmech.2017.10.046 29113746
    [Google Scholar]
  121. Tseng C.H. Tung C.W. Wu C.H. Tzeng C.C. Chen Y.H. Hwang T.L. Chen Y.L. Discovery of indeno [1, 2-c] quinoline derivatives as potent dual antituberculosis and anti-inflammatory agents. Molecules 2017 22 6 1001 10.3390/molecules22061001 28621733
    [Google Scholar]
  122. Patel D.B. Vekariya R.H. Patel K.D. Prajapati N.P. Vasava M.S. Patel H.D. Recent advances in synthesis of quinoline-4-carboxylic acid and their biological evaluation: A review. J. Chem. Pharm. Res. 2017 9 2 216 230
    [Google Scholar]
  123. Pissinate K. Villela A.D. Rodrigues-Junior V. Giacobbo B.C. Grams E.S. Abbadi B.L. Trindade R.V. Roesler Nery L. Bonan C.D. Back D.F. Campos M.M. Basso L.A. Santos D.S. Machado P. 2-(Quinolin-4-yloxy)acetamides are active against drug-susceptible and drug-resistant Mycobacterium tuberculosis Strains. ACS Med. Chem. Lett. 2016 7 3 235 239 10.1021/acsmedchemlett.5b00324 26985307
    [Google Scholar]
  124. Tanwar B. Kumar A. Yogeeswari P. Sriram D. Chakraborti A.K. Design, development of new synthetic methodology, and biological evaluation of substituted quinolines as new anti-tubercular leads. Bioorg. Med. Chem. Lett 2016 26 24 5960 10.1016/j.bmcl.2016.10.082.
    [Google Scholar]
  125. Ghodsi R. Azizi E. Zarghi A. Design, synthesis and biological evaluation of4-(Imidazolylmethyl)-2-(4-methylsulfonyl phenyl)-Quinoline derivatives as selective COX-2 inhibitors and in-vitro anti-breast cancer agents. Iran. J. Pharm. Res. 2016 15 1 169 177 27610157
    [Google Scholar]
  126. Li K. Li Y. Zhou D. Fan Y. Guo H. Ma T. Wen J. Liu D. Zhao L. Synthesis and biological evaluation of quinoline derivatives as potential anti-prostate cancer agents and Pim-1 kinase inhibitors. Bioorg. Med. Chem. 2016 24 8 1889 1897 10.1016/j.bmc.2016.03.016
    [Google Scholar]
  127. Abonia R. Insuasty D. Castillo J. Insuasty B. Quiroga J. Nogueras M. Cobo J. Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity. Eur. J. Med. Chem. 2012 57 29 40 10.1016/j.ejmech.2012.08.039 23043766
    [Google Scholar]
  128. Abadi A.H. Hegazy G.H. El-Zaher A.A. Synthesis of novel 4-substituted-7-trifluoromethylquinoline derivatives with nitric oxide releasing properties and their evaluation as analgesic and anti-inflammatory agents. Bioorg. Med. Chem. 2005 13 20 5759 5765 10.1016/j.bmc.2005.05.053 16002298
    [Google Scholar]
/content/journals/coc/10.2174/0113852728389297250820192721
Loading
/content/journals/coc/10.2174/0113852728389297250820192721
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: psychosis. ; Quinoline ; apoptosis ; funal infection ; anti-cancer ; Lupus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test