Skip to content
2000
image of A Review of the Dimroth Rearrangement in Fused 1,2,4-Triazolo[4,3-c]pyrimidines

Abstract

Dimroth rearrangement is a type of molecular rearrangement involving the interconversion of triazoles under acidic or basic conditions. It is particularly significant in heterocyclic chemistry, and it involves the migration of substituents around the nitrogen atoms in the ring system. This review concerns the formation of fused five-membered 1,2,4-triazolo[4,3-]pyrimidines from their corresponding 4-hydrazinopyrimidine derivatives. Additionally, it discusses their Dimroth-type rearrangement into the thermodynamically more stable 1,2,4-triazolo[1,]pyrimidine isomers under various reaction conditions. Moreover, it was observed that the presence of an acid, base, and aliphatic substituents in C3 and C5 of triazolo[4,3-]pyrimidine structure facilitates the Dimroth-type rearrangement. In general, the two isomeric series differ significantly in their melting points, proton NMR chemical shift positions, and UV absorption wavelengths.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728385677250513065230
2025-05-29
2025-09-16
Loading full text...

Full text loading...

References

  1. Shishoo C.J. Devani M.B. Ullas G.V. Ananthan S. Bhadti V.S. Studies in the synthesis and interconversion of isomeric triazolothienopyrimidines. J. Heterocycl. Chem. 1981 18 1 43 46 10.1002/jhet.5570180109
    [Google Scholar]
  2. Shishoo C.J. Devani M.B. Ullas G.V. Ananthan S. Bhadti V.S. Studies on the synthesis of 2‐(2‐arylvinyl)thieno[2,3‐ d ]pyrimidines and 5‐(2‐arylvinyl)triazolothieno[3,2‐ e ]pyrimidines. J. Heterocycl. Chem. 1985 22 3 825 830 10.1002/jhet.5570220343
    [Google Scholar]
  3. Shishoo C.J. Devani M.B. Ullas G.V. Ananthan S. Bhadti V.S. Studies on the synthesis and interconversion of isomeric triazolotheinopyrimidines. Part II. Effect of 5-substituents on the dimroth rearrangement of 1,2,4-triazolo[4,3-c]thieno[3,2-e]pyrimidines. J. Heterocycl. Chem. 1985 22 831 833 10.1002/jhet.5570220344
    [Google Scholar]
  4. Mohamed M.S. Rashad A.E. Zaki M.E.A. Fatahala S.S. Synthesis and antimicrobial screening of some fused heterocyclic pyrroles. Acta Pharm. 2005 55 3 237 249 16375835
    [Google Scholar]
  5. Rashad A.E. Heikal O.A. El-Nezhawy A.O.H. Abdel-Megeid F.M.E. Synthesis and isomerization of thienotriazolopyrimidine and thienotetrazolopyrimidine derivatives with potential anti-inflammatory activity. Heteroatom Chem. 2005 16 226 234 10.1002/hc.20114
    [Google Scholar]
  6. Shamroukh A.H. Zaki M.E.A. Morsy E.M.H. Abdel-Motti F.M. Abdel-Megeid F.M.E. Synthesis, isomerization, and antimicrobial evaluation of some pyrazolopyranotriazolopyrimidine derivatives. Arch. Pharm. (Weinheim) 2007 340 7 345 351 17610300
    [Google Scholar]
  7. Rashad A. Shamroukh A. Abdel-Megeid R. Ali H. Synthesis and isomerization of some novel pyrazolopyrimidine and pyrazolotriazolopyrimidine derivatives. Molecules 2014 19 5 5459 5469 10.3390/molecules19055459 24776812
    [Google Scholar]
  8. Dimroth O. On intramolecular rearrangements. Rearrangements in the 1,2,3-triazole series. Justus Liebigs Ann. Chem. 1909 364 183 10.1002/jlac.19093640204
    [Google Scholar]
  9. Brown D.J. Hoerger E. Mason S.F. Simple pyrimidines. Part III. The methylation and structure of the aminopyrimidines. J. Chem. Soc. 1955 4035 10.1039/jr9550004035
    [Google Scholar]
  10. Carrington H. C. Curd F. H. S. Richardson D. N. The synthesis of trypanocides. Part V. A rearrangement of some 6-amino-1-methylpyrimidinium salts, and the synthesis of 4-amino-1 : 2-dimethyl-6-(1:2-dimethyl-6-methylaminopyrimidinium-4-amino)-quinolinium di-iodide. J. Chem. Soc 1955 1955 1858 10.1039/jr9550001858
    [Google Scholar]
  11. Brown D.J. Harper J.S. The Dimroth rearrangement. Part I. Some alkylated 2-iminopyrimidines. J. Chem. Soc. 1963 1276 10.1039/jr9630001276
    [Google Scholar]
  12. Shaban M.A.E. Morgaan A.E.A. The Chemistry of 1,2,4-Triazolopyrimidines II: l,2,4-Triazolo[4,3-c]Pyrimidines. Adv. Heterocycl. Chem. 1999 75 243 281 10.1016/S0065‑2725(08)60986‑1
    [Google Scholar]
  13. Shaban M.A.E. Morgaan A.E.A. Chemistry of 1,2,4-triazolopyrimidines III: 1,2,4-triazolo[1,5-c]pyrimidines. Adv. Heterocycl. Chem. 2000 77 345 394 10.1016/S0065‑2725(00)77009‑7
    [Google Scholar]
  14. Krajczyk A. Boryski J. Dimroth rearrangement-old but not outdated. Curr. Org. Chem. 2017 21 25 2515 2529 10.2174/1385272821666170427125720
    [Google Scholar]
  15. Ferreira V.F. Silva T.B. Pauli F.P. Ferreira P.G. Forezi L.S.M. Lima C.G.S. Silva F.C. Dimroth’s rearrangement as a synthetic strategy towards new heterocyclic compounds. Curr. Org. Chem. 2020 24 1 1999 2018 10.2174/1385272824999200805114837
    [Google Scholar]
  16. Sheikhi-Mohammareh S. Shiri A. Mague J. Dimroth rearrangement-based synthesis of novel derivatives of [1,3]selenazolo[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine as a new class of selenium-containing heterocyclic architecture. Mol. Divers. 2022 26 2 923 937 10.1007/s11030‑021‑10203‑9 33721152
    [Google Scholar]
  17. Sirakanyan S.N. Geronikaki A. Spinelli D. Hovakimyan A.A. Noravyan A.S. Synthesis and structure of condensed triazolo- and tetrazolopyrimidines. Tetrahedron 2013 69 49 10637 10643 10.1016/j.tet.2013.10.015
    [Google Scholar]
  18. Wang M. Zhang G. Wang Y. Wang J. Zhu M. Cen S. Wang Y. Design, synthesis and anti-influenza A virus activity of novel 2,4-disubstituted quinazoline derivatives. Bioorg. Med. Chem. Lett. 2020 30 11 127143 10.1016/j.bmcl.2020.127143 32273213
    [Google Scholar]
  19. Mamedov V.А. Zhukova N.А. Kadyrova M.S. The Dimroth rearrangement in the synthesis of condensed pyrimidines – structural analogs of antiviral compounds. Chem. Heterocycl. Compd. 2021 57 4 342 368 10.1007/s10593‑021‑02913‑7 34024912
    [Google Scholar]
  20. Lauria A. Patella C. Abbate I. Martorana A. Almerico A.M. An unexpected Dimroth rearrangement leading to annelated thieno[3,2-d][1,2,3]triazolo[1,5-a]pyrimidines with potent antitumor activity. Eur. J. Med. Chem. 2013 65 381 388 10.1016/j.ejmech.2013.05.012 23747807
    [Google Scholar]
  21. Sirakanyan S.N. Spinelli D. Geronikaki A. Kartsev V.G. Hakobyan E.K. Hovakimyan A.A. Synthesis of new heterocyclic systems: Pyrido[3′,2′:4,5]thieno(furo)[2,3‐ e ][1,2,4]triazolopyrimidines and an unusual ANRORC rearrangement in the fused pyrimidine series. ChemistrySelect 2018 3 39 10938 10942 10.1002/slct.201802221
    [Google Scholar]
  22. Kohandel O. Sheikhi-Mohammareh S. Oroojalian F. Memariani T. Mague J. Shiri A. A Dimroth rearrangement approach for the synthesis of selenopheno[2,3-e][1,2,4]triazolo[1,5-c]pyrimidines with cytotoxic activity on breast cancer cells. Mol. Divers. 2022 26 3 1621 1633 10.1007/s11030‑021‑10290‑8 34357512
    [Google Scholar]
  23. Rashad A.E. El Malah T. Shamroukh A.H. Developments of Pyrrolo[2,3- d ]pyrimidines with pharmaceutical potential. Curr. Org. Chem. 2024 28 16 1244 1264 10.2174/0113852728306820240515054401
    [Google Scholar]
  24. Mohamed A.M. El-Sayed W.A. Ibrahim A.A. Abdel-Hafez N.A. Ali K.A.K. Mohamed S.F. Recent trends in the chemistry of [1,2,4]triazolo[1,5-a]pyrimidines. Org. Prep. Proced. Int. 2021 53 3 211 239 10.1080/00304948.2020.1871310
    [Google Scholar]
  25. Champiré A. Vala C. Laabid A. Benharref A. Marchivie M. Plé K. Routier S. Controlled dimroth rearrangement in the suzuki–miyaura cross coupling of triazolopyridopyrimidines. J. Org. Chem. 2016 81 24 12506 12513 10.1021/acs.joc.6b02357 27978739
    [Google Scholar]
  26. Salem M.A. Behalo M.S. Khidre R.E. Recent trend in the chemistry of triazolopyrimidines and their applications. Mini Rev. Org. Chem. 2021 18 8 1134 1149 10.2174/1570193X18666210203155358
    [Google Scholar]
  27. Rashad A.E. Shamroukh A.H. Hegab M.I. Awad H.M. Synthesis of some biologically active pyrazoles and C-nucleosides. Acta Chim. Slov. 2005 52 429 434
    [Google Scholar]
  28. L’Abbé G. Vanderstede E. Dimroth rearrangement of 5‐hydrazino‐1,2,3‐thiadiazoles. J. Heterocycl. Chem. 1989 26 6 1811 1814 10.1002/jhet.5570260652
    [Google Scholar]
  29. Nagamatsu T. Fujita T. The first reliable, general synthesis of the 5-oxo derivatives of 5,6-dihydro-1,2,4-triazolo[4,3-c]pyrimidine and the rates of isomerization of the [4,3-c] compounds into their [1,5-c] isomers. Heterocycles 2002 57 4 631 636 10.3987/COM‑02‑9450
    [Google Scholar]
  30. Loakes D. Brown D.M. Salisbury S.A. Cyclisation and rearrangement of N4-acylaminodeoxycytidines. Tetrahedron Lett. 1998 39 22 3865 3868 10.1016/S0040‑4039(98)00634‑0
    [Google Scholar]
  31. Tyurin R.V. Vorob’ev E.V. Minyaeva L.G. Krasnikov V.V. Mezheritskii V.V. Alternative Routes to the Pyrazolo[4,3-e][1,2,4]triazolo-[1,5-c]pyrimidine System. Russ. J. Org. Chem. 2005 41 6 916 921 10.1007/s11178‑005‑0266‑z
    [Google Scholar]
  32. Foucourt A. Dubouilh-Benard C. Chosson E. Corbière C. Buquet C. Iannelli M. Leblond B. Marsais F. Besson T. Microwave-accelerated Dimroth rearrangement for the synthesis of 4-anilino-6-nitroquinazolines. Application to an efficient synthesis of a microtubule destabilizing agent. Tetrahedron 2010 66 25 4495 4502 10.1016/j.tet.2010.04.066
    [Google Scholar]
  33. Babu D.D. Saranga Pani A. Joshi S.D. Naik P. Jayaprakash G.K. Al-Ghorbani M. Rodrigues B. Momidi B.K. Computational and experimental insights into pharmacological potential: Synthesis, in vitro evaluation, and molecular docking analysis of bioactive urea and thiourea derivatives. Microb. Pathog. 2025 200 107209 10.1016/j.micpath.2024.107209 39653284
    [Google Scholar]
  34. kumar B.M. Hariprasad V. Joshi S.D. Jayaprakash G.K. Parashuram L. Pani A.S. Babu D.D. Naik P. Bis(azolyl)pyridine‐2,6‐dicarboxamide derivatives: Synthesis, bioassay analysis and molecular docking studies. ChemistrySelect 2023 8 12 e202204927 10.1002/slct.202204927
    [Google Scholar]
  35. Mallikarjunaswamy A.M.M. Naik P. Kumar M.B. Gouthami K. Reddy V.D. Nair V.A. Synthesis and antimicrobial evaluation of 2-thioxoimidazolidinone derivatives. Org. Commun. 2024 17 178 192 10.25135/acg.oc.174.21.3340
    [Google Scholar]
  36. Kumar M.B. Hariprasad V. Joshi S.D. Naik P. Jayaprakash G.K. Pani A.S. Babu D.D. Exploring the antimicrobial potential of pyrimidine linked hydrazinyl azole derivatives: Insights from biological assays and molecular docking studies. ChemistrySelect 2023 8 44 e202301998 10.1002/slct.202301998
    [Google Scholar]
  37. Soni I. Kumari A. Jayaprakash G.K. Naik P. Rajendrachari S. Evaluation of the role of ionic liquid as a modifier for carbon paste electrodes in the detection of anthracyclines and purine-pyrimidine-based anticancer agents. Mater. Res. Express 2024 11 1 012005 10.1088/2053‑1591/ad1bff
    [Google Scholar]
  38. Rashid H. Martines M.A.U. Duarte A.P. Jorge J. Rasool S. Muhammad R. Ahmad N. Umar M.N. Research developments in the syntheses, anti-inflammatory activities and structure–activity relationships of pyrimidines. RSC Advances 2021 11 11 6060 6098 10.1039/D0RA10657G 35423143
    [Google Scholar]
  39. Alidmat M.M. Khairuddean M. Norman N.M. Asri A.N.M. Suhaimi M.H.M. Sharma G. Synthesis, characterization, docking study and biological evaluation of new chalcone, pyrazoline, and pyrimidine derivatives as potent antimalarial compounds. Arab. J. Chem. 2021 14 103304 10.1016/j.arabjc.2021.103304
    [Google Scholar]
  40. Peytam F. Takalloobanafshi G. Saadattalab T. Norouzbahari M. Emamgholipour Z. Moghimi S. Firoozpour L. Bijanzadeh H.R. Faramarzi M.A. Mojtabavi S. Rashidi-Ranjbar P. Karima S. Pakraad R. Foroumadi A. Design, synthesis, molecular docking, and in vitro α-glucosidase inhibitory activities of novel 3-amino-2,4-diarylbenzo[4,5]imidazo[1,2-a]pyrimidines against yeast and rat α-glucosidase. Sci. Rep. 2021 11 1 11911 10.1038/s41598‑021‑91473‑z 34099819
    [Google Scholar]
  41. Romeo R. Iannazzo D. Veltri L. Gabriele B. Macchi B. Frezza C. Marino-Merlo F. Giofrè S.V. Pyrimidine 2,4-diones in the design of new HIV RT inhibitors. Molecules 2019 24 9 1718 31052607
    [Google Scholar]
  42. Ugwu D.I. Okoro U.C. Mishra N.K. Synthesis, characterization and anthelmintic activity evaluation of pyrimidine derivatives bearing carboxamide and sulphonamide moieties. J. Serb. Chem. Soc. 2018 83 401 409 10.2298/JSC170127109U
    [Google Scholar]
  43. Król M. Ślifirski G. Kleps J. Ulenberg S. Belka M. Bączek T. Siwek A. Stachowicz K. Szewczyk B. Nowak G. Duszyńska B. Herold F. Synthesis of novel pyrido[1,2-c]pyrimidine Derivatives with 6-Fluoro-3-(4-piperidynyl)-1,2-benzisoxazole moiety as potential SSRI and 5-HT1A receptor ligands. Int. J. Mol. Sci. 2021 22 5 2329 10.3390/ijms22052329 33652672
    [Google Scholar]
  44. Bassyouni F. Tarek M. Salama A. Ibrahim B. Salah El Dine S. Yassin N. Hassanein A. Moharam M. Abdel-Rehim M. Promising antidiabetic and antimicrobial agents based on fused pyrimidine derivatives: Molecular modeling and biological evaluation with histopathological effect. Molecules 2021 26 8 2370 10.3390/molecules26082370 33921827
    [Google Scholar]
  45. Awad S.M. Zohny Y.M. Ali S.A. Mahgoub S. Said A.M. Design, synthesis, molecular modeling, and biological evaluation of novel thiouracil derivatives as potential antithyroid agents. Molecules 2018 23 11 2913 10.3390/molecules23112913 30413058
    [Google Scholar]
  46. Peng Z. Wang G. Zeng Q.H. Li Y. Wu Y. Liu H. Wang J.J. Zhao Y. Synthesis, antioxidant and anti-tyrosinase activity of 1,2,4-triazole hydrazones as antibrowning agents. Food Chem. 2021 341 Pt 2 128265 10.1016/j.foodchem.2020.128265 33031957
    [Google Scholar]
  47. Strzelecka M. Świątek P. 1,2,4-triazoles as important antibacterial agents. Pharmaceuticals 2021 14 3 224 10.3390/ph14030224 33799936
    [Google Scholar]
  48. Appna N.R. Nagiri R.K. Korupolu R.B. Kanugala S. Chityal G.K. Thipparapu G. Banda N. Design and synthesis of novel 4-hydrazone functionalized/1,2,4-Triazole Fused Pyrido[2,3-d]Pyrimidine derivatives, their evaluation for antifungal activity and docking studies. Med. Chem. Res. 2019 28 1509 1528 10.1007/s00044‑019‑02390‑w
    [Google Scholar]
  49. El Sawy M.A. Elshatanofy M.M. El Kilany Y. Kandeel K. Elwakil B.H. Hagar M. Aouad M.R. Albelwi F.F. Rezki N. Jaremko M. El Ashry E.S.H. Novel Hybrid 1,2,4- and 1,2,3-Triazoles targeting Mycobacterium Tuberculosis Enoyl Acyl Carrier Protein Reductase (InhA): Design, synthesis, and molecular docking. Int. J. Mol. Sci. 2022 23 9 4706 35563096
    [Google Scholar]
  50. Grytsai O. Valiashko O. Penco-Campillo M. Dufies M. Hagege A. Demange L. Martial S. Pagès G. Ronco C. Benhida R. Synthesis and biological evaluation of 3-amino-1,2,4-triazole derivatives as potential anticancer compounds. Bioorg. Chem. 2020 104 104271 10.1016/j.bioorg.2020.104271 32992279
    [Google Scholar]
  51. Khan B. Naiyer A. Athar F. Ali S. Thakur S.C. Synthesis, characterization and anti-inflammatory activity evaluation of 1,2,4-triazole and its derivatives as a potential scaffold for the synthesis of drugs against prostaglandin-endoperoxide synthase. J. Biomol. Struct. Dyn. 2021 39 2 457 475 10.1080/07391102.2019.1711193 31900051
    [Google Scholar]
  52. Kaproń B. Łuszczki J.J. Siwek A. Karcz T. Nowak G. Zagaja M. Andres-Mach M. Stasiłowicz A. Cielecka-Piontek J. Kocki J. Plech T. Preclinical evaluation of 1,2,4-triazole-based compounds targeting voltage-gated sodium channels (VGSCs) as promising anticonvulsant drug candidates. Bioorg. Chem. 2020 94 103355 10.1016/j.bioorg.2019.103355 31662213
    [Google Scholar]
  53. Ben Hassen M. Msalbi D. Jismy B. Elghali F. Aifa S. Allouchi H. Abarbri M. Chabchoub F. Three component one-pot synthesis and antiproliferative activity of new [1,2,4]Triazolo[4,3-a]pyrimidines. Molecules 2023 28 9 3917 10.3390/molecules28093917 37175327
    [Google Scholar]
  54. Hassan M. Barsy M.A. El Rady E.A. Al-Ayed A.S. Frempong M. Sadek K.U. Application of the aza‐Wittig reaction for efficient synthesis of diversely substituted benzo[f]Chromeno[2,3‐d]pyrimidine and benzo[f]chromeno[2,3‐d][1,2,4]triazolopyrimidine derivatives. J. Heterocycl. Chem. 2024 61 4 543 549 10.1002/jhet.4784
    [Google Scholar]
  55. Mohamed H.S. Amin N.H. El-Saadi M.T. Abdel-Rahman H.M. Design, synthesis, biological assessment, and in-Silico studies of 1,2,4-triazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors. Bioorg. Chem. 2022 121 105687 10.1016/j.bioorg.2022.105687 35196595
    [Google Scholar]
  56. Ng J.H. Dolzhenko A.V. One-pot synthesis of novel pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines under microwave irradiation in a green solvent. Tetrahedron 2023 141 133521 133529 10.1016/j.tet.2023.133521
    [Google Scholar]
  57. Li Z. Yuan Y. Wang P. Zhang Z. Ma H. Sun Y. Zhang X. Li X. Qiao Y. Zhang F. Su Y. Song J. Xie Z. Li L. Ma L. Ma J. Zhang Z. Design, synthesis and in vitro in vivo anticancer activity of tranylcypromine-based triazolopyrimidine analogs as novel LSD1 inhibitors. Eur. J. Med. Chem. 2023 253 115321 10.1016/j.ejmech.2023.115321 37037137
    [Google Scholar]
  58. Feitosa L.M. Franca R.R.F. Ferreira M.L.G. Aguiar A.C.C. de Souza G.E. Maluf S.E.C. de Souza J.O. Zapata L. Duarte D. Morais I. Nogueira F. Nonato M.C. Pinheiro L.C.S. Guido R.V.C. Boechat N. Boechat N. Discovery of new piperaquine hybrid analogs linked by triazolopyrimidine and pyrazolopyrimidine scaffolds with antiplasmodial and transmission blocking activities. Eur. J. Med. Chem. 2024 267 116163 10.1016/j.ejmech.2024.116163 38290351
    [Google Scholar]
  59. Luo J. Nie H. He L. Zhao A. Wang T. New library of pyrimido[5,4-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives: Synthesis, herbicidal activity, and molecular docking study. J. Mol. Struct. 2024 1300 137246 10.1016/j.molstruc.2023.137246
    [Google Scholar]
  60. Kandeel M.M. Refaat H.M. Kassab A.E. Shahin I.G. Abdelghany T.M. Synthesis, anticancer activity and effects on cell cycle profile and apoptosis of novel thieno[2,3-d]pyrimidine and thieno[3,2-e] triazolo[4,3-c]pyrimidine derivatives. Eur. J. Med. Chem. 2015 90 620 632 10.1016/j.ejmech.2014.12.009 25499930
    [Google Scholar]
  61. Ragab S.S. Ibrahim N.E. Abdel-Aziz M.S. Elrashedy A.A. Allayeh A.K. Synthesis, biological activity, and molecular dynamic studies of new triazolopyrimidine derivatives. Results Chem. 2023 6 101163 10.1016/j.rechem.2023.101163
    [Google Scholar]
  62. Nazari S. Zabihzadeh M. Shirini F. Tajik H. A dicationic molten salt catalyzed synthesis of 1,2,4-Triazolopyrimidine, Quinazolinone and Biscoumarin derivatives under green conditions. Polycycl. Aromat. Compd. 2023 43 2 1524 1535 10.1080/10406638.2022.2030765
    [Google Scholar]
  63. Nie H. He L. Zhao A. Huang H. Wang T. Luo J. Design, synthesis, and biological activity of new 8-decylthio-10-methylthio-pyrimido[5,4- e ][1,2,4]triazolo[1,5- c ]pyrimidine derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2024 199 1 37 44 10.1080/10426507.2023.2245528
    [Google Scholar]
  64. Singh S. Lakhia R. Yadav S. Devi P. Yadav K. Chaudhri V. Pundeer R. Advancements in the synthesis of Triazolopyrimidines. Curr. Org. Chem. 2024 28 20 1567 1578 10.2174/0113852728313437240607095009
    [Google Scholar]
  65. Shamroukh A.H. Malah T.E. Rashad A.E. The Chemistry and Biological Effects of Fused 1,2,4-triazolo[4,3-c]pyrimidines and their Isomeric 1,2,4-triazolo[1,5-c]pyrimidines. Curr. Org. Chem. 2025 29 4 259 273 10.2174/0113852728331504240820050800
    [Google Scholar]
  66. El Mrayej H. En-nabety G. Ettahiri W. Jghaoui M. Sabbahi R. Hammouti B. Rais Z. Taleb M. Triazolopyrimidine derivatives: A comprehensive review of their synthesis, reactivity, biological properties, and molecular docking studies. Indones. J. Sci. Technol 2025 10 41 74
    [Google Scholar]
  67. Romagnoli R. De Ventura T. Manfredini S. Baldini E. Supuran C.T. Nocentini A. Brancale A. Varricchio C. Bortolozzi R. Manfreda L. Viola G. Design, synthesis, and biological investigation of selective human carbonic anhydrase II, IX, and XII inhibitors using 7-aryl/heteroaryl triazolopyrimidines bearing a sulfanilamide scaffold. J. Enzyme Inhib. Med. Chem. 2023 38 1 2270180 10.1080/14756366.2023.2270180 37850364
    [Google Scholar]
  68. Miller G.W. Rose F.L. S-triazolopyrimidines. Part I. Synthesis as potential therapeutic agents. J. Chem. Soc. 1964 5642 5644 10.1039/JR9630005642
    [Google Scholar]
  69. Miller G.W. Rose F.L. s-Triazolopyrimidines. Part II. Synthesis as potential therapeutic agents. J. Chem. Soc. 1965 3357 3368 10.1039/jr9650003357 14298466
    [Google Scholar]
  70. Hassan Hilmy K.M. Khalifa M.M.A. Allah Hawata M.A. AboAlzeen Keshk R.M. El-Torgman A.A. Synthesis of new pyrrolo[2,3-d]pyrimidine derivatives as antibacterial and antifungal agents. Eur. J. Med. Chem. 2010 45 11 5243 5250 10.1016/j.ejmech.2010.08.043 20828885
    [Google Scholar]
  71. Mohamed M.S. Kamel R. Fatahala S.S. New condensed pyrroles of potential biological interest. Eur. J. Med. Chem. 2011 46 7 3022 3029 10.1016/j.ejmech.2011.04.034 21549457
    [Google Scholar]
  72. Nagamatsu T. Ahmed S. Hossion A-G.M.L. Ohno S. Synthesis of Thieno[3,2-e][1,2,4]Triazolo[1,5-c]pyrimidin-5(6H)-ones via Their [1,2,4]triazolo[4,3-c]pyrimidine compounds as new ring systems by dimroth-type rearrangement. Heterocycles 2007 73 777 793 10.3987/COM‑07‑S(U)58
    [Google Scholar]
  73. Vlasov S.V. Synthesis and antimicrobial activity of 3-(thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-2-yl)propanoic and butanoic acids. Pharma Chem. 2015 7 11 26 31
    [Google Scholar]
  74. Abdel-Fattah B. Kandeel M.M. Abdel-Hakeem M. Fahmy Z.M. Synthesis of certain fused thienopyrimidines of biological interest. J. Chin. Chem. Soc. (Taipei) 2006 53 2 403 412 10.1002/jccs.200600051
    [Google Scholar]
  75. Hegab M.I. Hassan N.A. Rashad A.E. Fahmy A.A. Abdel-Megeid F.M.E. Synthesis, reactions, and antimicrobial activity of some fused thieno[2,3- d ]pyrimidine derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2007 182 7 1535 1556 10.1080/10426500701247151
    [Google Scholar]
  76. Guetzoyan L.J. Spooner R.A. Lord J.M. Roberts L.M. Clarkson G.J. Simple oxidation of pyrimidinylhydrazones to triazolopyrimidines and their inhibition of Shiga toxin trafficking. Eur. J. Med. Chem. 2010 45 1 275 283 10.1016/j.ejmech.2009.10.007 19883956
    [Google Scholar]
  77. Marzouk N.A. Shamroukh A.H. Al-Saadny A.H. Micky J.A. Synthesis, Isomerization, and Antimicrobial Evaluation of Some IndenothienoPyrimidine Derivatives. Am. J. Sci. 2011 7 8 362 369 10.13140/RG.2.2.10388.42884
    [Google Scholar]
  78. Rashad A.E. Shamroukh A.H. Abdel-Megeid R.E. Sayed H.H. Abdel-Wahed N.A. Studies on the reactivity of (9-Methyl-5,6-dihydronaphtho[1′,2′:4,5]thieno[2,3-d]pyrimidin-11-yl)hydrazine towards some reagents for biological evaluation. Sci. Pharm. 2010 78 1 1 12 10.3797/scipharm.0910‑11 21179366
    [Google Scholar]
  79. Kumar V. Kumar M. Kumar S. (Diacetoxyiodo)Benzene mediated fused 1,2,4-triazole derivatives: Synthetic and medicinal perspective. Mini Rev. Org. Chem. 2018 16 1 12 25 10.2174/1570193X15666180406142116
    [Google Scholar]
  80. Tang C. Wang C. Li Z. Wang Q. Synthesis of 8-Bromo-7-chloro[1, 2, 4] triazolo[4, 3-c]pyrimidines, their ring rearrangement to [1,5-c] analogues, and further diversification. Synthesis 2014 46 2734 2746 10.1055/s‑0034‑1378453
    [Google Scholar]
  81. Sirakanyan S.N. Spinelli D. Geronikaki A. Kartsev V.G. Hakobyan E.K. Stepanyan H.M. Zuppiroli L. Hovakimyan A.A. New Cyclopenta[4′,5′]pyrido[3′,2′:4,5]thieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidines and Cyclopenta[4′,5′]pyrido[3′,2′:4,5]thieno[2,3-e][1,2,4] triazolo[1,5-c]pyrimidines: Synthesis and antimicrobial activities. Curr. Org. Chem. 2017 21 13 1227 1241 10.2174/1385272821666170222102400
    [Google Scholar]
  82. Sirakanyan S.N. Kartsev V.G. Hovakimyan A.A. Noravyan A.S. Shakhatuni A.A. New Heterocyclic systems based on 5,6,7,8-tetrahydroisoquinolines. Chem. Heterocycl. Compd. 2013 48 1676 1683 10.1007/s10593‑013‑1192‑6
    [Google Scholar]
  83. Abdel-Megeid F.M.E. Hassan N.A. Zahran M.A. Rashad A.E. Synthesis of 5,6-dihydronaphtho[1′,2′: 4,5]thieno[2,3-d]pyrimidines, 5,6-dihydronaphtho[1′,2′: 4,5]thieno[3,2-e] [1,2,4]triazolo[1,5-c]pyrimidines, and some of their nucleosides. Sulfur Lett. 1998 21 269 284
    [Google Scholar]
  84. Paronikyan E.G. Dashyan S.S. Synthesis of Cyclopenta[4′,5′]pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine derivatives. Dimroth Rearrangement of Triazolopyrimidines. Russ. J. Gen. Chem. 2018 88 1623 1628 10.1134/S1070363218080121
    [Google Scholar]
  85. Sirakanyan S.N. Hakobyan E.K. Hovakimyan A.A. Synthesis of new sulfur-substituted pentacyclic 1,2,4-Triazolopyrimidine derivatives. Russ. J. Org. Chem. 2019 55 3 308 313 10.1134/S1070428019030059
    [Google Scholar]
  86. Oganisyan A.S. Noravyan A.S. Karapetyan A.A. Aleksanyan M.S. Struchkov Y.T. Derivatives of condensed Thienopyrimidimines. 13. Synthesis and structure of Pyrano[4′,3′:4,5]thieno[3,2-e]-1,2,4-triazolo[2,3-c]pyrimidines. Chem. Heterocycl. Compd. 2001 37 5 628 632 10.1023/A:1011668908331
    [Google Scholar]
  87. Tang C. Li Z. Wang Q. IBD-mediated oxidative cyclization of pyrimidinylhydrazones and concurrent Dimroth rearrangement: Synthesis of [1,2,4]triazolo[1,5- c ]pyrimidine derivatives. Beilstein J. Org. Chem. 2013 9 2629 2634 10.3762/bjoc.9.298 24367427
    [Google Scholar]
  88. Vilapara K. Butani H. Gami S. Khunt H. Naliapara Y. One-pot sequential approach for the construction of highly functionalized Triazolo[4,3- c ]pyrimidine library. Synth. Commun. 2015 45 20 2355 2363 10.1080/00397911.2015.1083579
    [Google Scholar]
  89. Kamal R. Kumar V. Kumar R. Bhardwaj J.K. Saraf P. Kumari P. Bhardwaj V. Design, synthesis, and screening of Triazolopyrimidine–Pyrazole hybrids as potent apoptotic inducers. Arch. Pharm. (Weinheim) 2017 350 11 1700137 1700146 10.1002/ardp.201700137 29034498
    [Google Scholar]
  90. Hibot A. Oumessaoud A. Hafid A. Khouili M. Pujol M.D. Different synthetic methods for the preparation of Triazolopyrimidines and their biological profile. ChemistrySelect 2023 8 23 e202301654 10.1002/slct.202301654
    [Google Scholar]
  91. Son H.Y. Song Y.H. A convenient synthesis of new 3,7-Diphenylthieno[3,2-e]bis[1,2,4] triazolo[4,3-a:4′,3′-c]pyrimidine derivatives by oxidative cyclization using alumina-supported calcium hypochlorite. Bull. Korean Chem. Soc. 2010 31 8 2242 2246 10.5012/bkcs.2010.31.8.2242
    [Google Scholar]
  92. Shawali A.S. Hassaneen H.M. Shurrab N.K. A convenient synthesis of novel series of 4-cyclohexyl-2-substituted[1,2,4]triazolo[1,5-a]quinazolin-5(4H)-ones. Novel isoomers of H1 antihistaminic acitve agents. Heterocycles 2008 75 1479 1488 10.3987/COM‑07‑11311
    [Google Scholar]
  93. El-Gazzar A.B.A. Hassan N.A. Synthesis of polynuclear heterocyclic compounds derived from Thieno[2,3-d]pyrimidine derivatives. Molecules 2000 5 6 835 850 10.3390/50600835
    [Google Scholar]
  94. Ciesielski M. Pufky D. Döring M. A convenient new synthesis of fused 1,2,4-triazoles: The oxidation of heterocyclic hydrazones using copper dichloride. Tetrahedron 2005 61 24 5942 5947 10.1016/j.tet.2005.01.111
    [Google Scholar]
  95. Prakash O. Kumar R. Kumar R. tyagi P. Kuhad R.C. Organoiodine(III) mediated synthesis of 3,9-diaryl- and 3,9-difuryl-bis-1,2,4-triazolo[4,3-a][4,3-c]pyrimidines as antibacterial agents. Eur. J. Med. Chem. 2007 42 6 868 872 10.1016/j.ejmech.2006.11.019 17222483
    [Google Scholar]
  96. Hamed A.A. Zeid I.F. El-Ganzory H.H. Abdel Aal M.T. Synthesis and structure of some thienopyrimidine derivatives. Monatsh. Chem. 2008 139 7 809 820 10.1007/s00706‑007‑0823‑y
    [Google Scholar]
  97. Kumar R. Nair R.R. Dhiman S.S. Sharma J. Prakash O. Organoiodine (III)-mediated synthesis of 3-aryl/heteroaryl-5,7-dimethyl-1,2,4-triazolo[4,3-c]pyrimidines as antibacterial agents. Eur. J. Med. Chem. 2009 44 5 2260 2264 10.1016/j.ejmech.2008.06.004 18657340
    [Google Scholar]
  98. Song Y.H. Son H.Y. Synthesis of new 1‐phenylthieno[1,2,4]triazolo[4,3‐ a ]pyrimidin‐5(4 H )‐one derivatives. J. Heterocycl. Chem. 2011 48 3 597 603 10.1002/jhet.549
    [Google Scholar]
  99. Son H.Y. Song Y.H. A convenient synthesis of new 2-Phenylthieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidine derivatives by dimroth rearrangement. J. Korean Chemical Society 2010 54 3 350 353 10.5012/jkcs.2010.54.3.350
    [Google Scholar]
  100. Shawali A.S. Hassaneen H.M. Shurrab N.K. A new strategy for the synthesis of pyrazolo[4,3-e][1,2,4]triazolo[4,3-c]pyrimidines and pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidines. Tetrahedron 2008 64 45 10339 10343 10.1016/j.tet.2008.08.082
    [Google Scholar]
  101. Shurrab N.K. El-Louh A.K. Al-Meghari I.M. Ferrwanah A.E.R. Synthesis of a new series of biphenyl-substituted, fused 1,2,4-triazoles by oxidative cyclisation and Dimroth rearrangement. J. Chem. Res. 2013 37 2 91 94 10.3184/174751913X13570601346457
    [Google Scholar]
/content/journals/coc/10.2174/0113852728385677250513065230
Loading
/content/journals/coc/10.2174/0113852728385677250513065230
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test