Skip to content
2000
image of Insights into the Synthesis and Bioactivity of Indole-Based Compounds: A Short Review

Abstract

Indole derivatives are a significant class of organic compounds with diverse biological activities. They are found in numerous natural products and synthetic drugs, playing a crucial role in medicinal chemistry. In this comprehensive review, we have summarized the synthetic approaches and biological evaluations of a variety of indole derivatives. We analyzed and studies assessing the bioactivity of indole derivatives, focusing on structure-activity relationships. The versatility and efficacy of indole-based compounds hold great potential for advancing medical therapies, particularly in the fields of cancer treatment, infectious diseases, and inflammatory disorders. This concise review aims to inspire further research on indole-based compounds for drug development.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728382848250610051815
2025-07-02
2025-11-06
Loading full text...

Full text loading...

References

  1. Sharma V. Kumar P. Pathak D. Biological importance of the indole nucleus in recent years: A comprehensive review. J. Heterocycl. Chem. 2010 47 3 491 502 10.1002/jhet.349
    [Google Scholar]
  2. Fernández S. Arnáiz V. Rufo D. Arroyo Y. Current status of indole-derived marine natural products: Synthetic approaches and therapeutic applications. Mar. Drugs 2024 22 3 126 10.3390/md22030126 38535467
    [Google Scholar]
  3. Rana M. Ranjan R. Sekhar Ghosh N. Kumar D. Singh R. A review on indole as a cardinal scaffold for anticancer drugs development. Curr. Cancer Ther. Rev. 2024 20 4 372 385 10.2174/0115733947249518231001001728
    [Google Scholar]
  4. Bariwal J. Voskressensky L.G. Van der Eycken E.V. Recent advances in spirocyclization of indole derivatives. Chem. Soc. Rev. 2018 47 11 3831 3848 10.1039/C7CS00508C 29632917
    [Google Scholar]
  5. Umer S.M. Solangi M. Khan K.M. Saleem R.S.Z. Indole-containing natural products 2019-2022: Isolations, reappraisals, syntheses, and biological activities. Molecules 2022 27 21 7586 36364413
    [Google Scholar]
  6. Omar F. Tareq A.M. Alqahtani A.M. Dhama K. Sayeed M.A. Emran T.B. Simal-Gandara J. Plant-based indole alkaloids: A comprehensive overview from a pharmacological perspective. Molecules 2021 26 8 2297 10.3390/molecules26082297 33921093
    [Google Scholar]
  7. Sun P. Huang Y. Yang X. Liao A. Wu J. The role of indole derivative in the growth of plants: A review. Front Plant. Sci. 2023 13 1120613 10.3389/fpls.2022.1120613 36726683
    [Google Scholar]
  8. Baeyer A. Emmerling A. Synthese des Indols. Ber. Dtsch. Chem. Ges. 1869 2 1 679 682 10.1002/cber.186900201268
    [Google Scholar]
  9. Heravi M.M. Amiri Z. Kafshdarzadeh K. Zadsirjan V. Synthesis of indole derivatives as prevalent moieties present in selected alkaloids. RSC Advances 2021 11 53 33540 33612 10.1039/D1RA05972F 35497516
    [Google Scholar]
  10. Sun H. Sun K. Sun J. Recent advances of marine natural indole products in chemical and biological aspects. Molecules 2023 28 5 2204 10.3390/molecules28052204 36903451
    [Google Scholar]
  11. Tsuruda S. Sato T. Aoyama H. Sirimangkalakitti N. Fujimura S. Arisawa M. Murai K. Total synthesis and antibacterial activity of marine tris-indole alkaloid tulongicin A. J. Nat. Prod. 2024 87 6 1556 1562 38758599
    [Google Scholar]
  12. Mohammad-Zadeh L.F. Moses L. Gwaltney-Brant S.M. Serotonin: A review. J. Vet. Pharmacol. Ther. 2008 31 3 187 199 10.1111/j.1365‑2885.2008.00944.x 18471139
    [Google Scholar]
  13. Moncrieff J. Cooper R.E. Stockmann T. Amendola S. Hengartner M.P. Horowitz M.A. The serotonin theory of depression: A systematic umbrella review of the evidence. Mol. Psychiatry 2023 28 8 3243 3256 10.1038/s41380‑022‑01661‑0 35854107
    [Google Scholar]
  14. Simon S. Petrášek J. Why plants need more than one type of auxin. Plant Sci. 2011 180 3 454 460 21421392
    [Google Scholar]
  15. Zhang B.X. Li P.S. Wang Y.Y. Wang J.J. Liu X.L. Wang X.Y. Hu X.M. Characterization and synthesis of indole-3-acetic acid in plant growth promoting Enterobacter sp. RSC Advances 2021 11 50 31601 31607 10.1039/D1RA05659J 35496854
    [Google Scholar]
  16. Bunsangiam S. Thongpae N. Limtong S. Srisuk N. Large scale production of indole-3-acetic acid and evaluation of the inhibitory effect of indole-3-acetic acid on weed growth. Sci. Rep. 2021 11 1 13094 34158557
    [Google Scholar]
  17. Kikuchi A.M. Tanabe A. Iwahori Y. A systematic review of the effect of L-tryptophan supplementation on mood and emotional functioning. J. Diet. Suppl. 2021 18 3 316 333 32272859
    [Google Scholar]
  18. Sutanto C.N. Loh W.W. Kim J.E. The impact of tryptophan supplementation on sleep quality: A systematic review, meta-analysis, and meta-regression. Nutr. Rev. 2022 80 2 306 316 33942088
    [Google Scholar]
  19. Olawale F. Adetunji T.L. Adetunji A.E. Iwaloye O. Folorunso I.M. The therapeutic value of alstonine: An updated review. S. Afr. J. Bot. 2023 152 288 295 10.1016/j.sajb.2022.11.047
    [Google Scholar]
  20. Elisabetsky E. Costa-Campos L. The alkaloid alstonine: A review of its pharmacological properties. Evid. Based Complement. Alternat. Med. 2006 3 1 39 48 10.1093/ecam/nek011 16550222
    [Google Scholar]
  21. Tfelt-Hansen P. Saxena P.R. Dahlöf C. Pascual J. Láinez M. Henry P. Diener H. Schoenen J. Ferrari M.D. Goadsby P.J. Ergotamine in the acute treatment of migraine: A review and European consensus. Brain 2000 123 1 9 18 10.1093/brain/123.1.9 10611116
    [Google Scholar]
  22. Bigal M.E. Tepper S.J. Ergotamine and dihydroergotamine: A review. Curr. Pain Headache Rep. 2003 7 1 55 62 10.1007/s11916‑003‑0011‑7 12525272
    [Google Scholar]
  23. Kamfar W.W. Khraiwesh H.M. Ibrahim M.O. Qadhi A.H. Azhar W.F. Ghafouri K.J. Alhussain M.H. Aldairi A.F. AlShahrani A.M. Alghannam A.F. Abdulal R.H. Al-Slaihat A.H. Qutob M.S. Elrggal M.E. Ghaith M.M. Azzeh F.S. Comprehensive review of melatonin as a promising nutritional and nutraceutical supplement. Heliyon 2024 10 2 e24266 10.1016/j.heliyon.2024.e24266 38293391
    [Google Scholar]
  24. Xie Z. Chen F. Li W.A. Geng X. Li C. Meng X. Feng Y. Liu W. Yu F. A review of sleep disorders and melatonin. Neurol. Res. 2017 39 6 559 565 10.1080/01616412.2017.1315864 28460563
    [Google Scholar]
  25. Emet M. Ozcan H. Ozel L. Yayla M. Halici Z. Hacimuftuoglu A. A review of melatonin, its receptors and drugs. Eurasian J. Med. 2016 48 2 135 141 10.5152/eurasianjmed.2015.0267 27551178
    [Google Scholar]
  26. Chauhan M. Saxena A. Saha B. An insight in anti-malarial potential of indole scaffold: A review. Eur. J. Med. Chem. 2021 218 113400 10.1016/j.ejmech.2021.113400 33823394
    [Google Scholar]
  27. Li J.Y. Sun X.F. Li J.J. Yu F. Zhang Y. Huang X.J. Jiang F.X. The antimalarial activity of indole alkaloids and hybrids. Arch. Pharm. (Weinheim) 2020 353 11 2000131 10.1002/ardp.202000131 32785974
    [Google Scholar]
  28. Singh A. Bhutani C. Khanna P. Talwar S. Singh S.K. Khanna L. Recent report on indoles as a privileged anti-viral scaffold in drug discovery. Eur. J. Med. Chem. 2025 281 117017 10.1016/j.ejmech.2024.117017 39509946
    [Google Scholar]
  29. He B. Hu Y. Mao P. Deng T. Wang Y. Luo X. Zou H. Wang Z. Xue W. Design, synthesis and antifungal activity of indole derivatives containing 1,3,4-oxadiazole. Arab. J. Chem. 2024 17 5 105758 10.1016/j.arabjc.2024.105758
    [Google Scholar]
  30. Shen Y. Pan M. Gao H. Zhang Y. Wang R. Li J. Mao Z. New azole derivatives linked to indole/indoline moieties combined with FLC against drug-resistant Candida albicans. RSC Medicinal Chemistry 2024 15 4 1236 1246 10.1039/D4MD00021H 38665837
    [Google Scholar]
  31. Jasiewicz B. Kozanecka-Okupnik W. Przygodzki M. Warżajtis B. Rychlewska U. Pospieszny T. Mrówczyńska L. Synthesis, antioxidant and cytoprotective activity evaluation of C-3 substituted indole derivatives. Sci. Rep. 2021 11 1 15425 10.1038/s41598‑021‑94904‑z 34326403
    [Google Scholar]
  32. Deb M.L. Baruah P.K. Boruah A. Microwave-assisted catalyst-free hydride transfer: synthesis and evaluation of antioxidant properties of N-Benzylindolines. Synlett 2024 10.1055/s‑0043‑1775421
    [Google Scholar]
  33. Wollela B. Jemal M. Anti-HIV Drug Discovery, development and synthesis of delavirdine: Review article. IRJPAC 2019 20 1 16
    [Google Scholar]
  34. Chen Q. Wu C. Zhu J. Li E. Xu Z. Therapeutic potential of indole derivatives as anti-HIV agents: A mini-review. Curr. Top. Med. Chem. 2022 22 12 993 1008 10.2174/1568026621666211012111901 34636313
    [Google Scholar]
  35. Reddy G.S. Pal M. Indole derivatives as anti-tubercular agents: an overview on their synthesis and biological activities. Curr. Med. Chem. 2021 28 22 4531 4568 10.2174/1875533XMTEwcMDkow 32951569
    [Google Scholar]
  36. Bhakhar K.A. Sureja D.K. Dhameliya T.M. Synthetic account of indoles in search of potential anti-mycobacterial agents: A review and future insights. J. Mol. Struct. 2022 1248 131522 10.1016/j.molstruc.2021.131522
    [Google Scholar]
  37. Phillips R.M. Hendriks H.R. Peters G.J. EO9 (Apaziquone): From the clinic to the laboratory and back again. Br. J. Pharmacol. 2013 168 1 11 18 10.1111/j.1476‑5381.2012.01996.x 22509926
    [Google Scholar]
  38. Luo M.L. Huang W. Zhu H.P. Peng C. Zhao Q. Han B. Advances in indole-containing alkaloids as potential anticancer agents by regulating autophagy. Biomed. Pharmacother. 2022 149 112827 10.1016/j.biopha.2022.112827 35316753
    [Google Scholar]
  39. Li S.M. Prenylated indole derivatives from fungi: Structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat. Prod. Rep. 2010 27 1 57 78 10.1039/B909987P 20024094
    [Google Scholar]
  40. Kumar S. Ritika, A brief review of the biological potential of indole derivatives. Future J. Pharm. Sci. 2020 6 1 121 10.1186/s43094‑020‑00141‑y
    [Google Scholar]
  41. Shaker A.M.M. Abdelall E.K.A. Abdellatif K.R.A. Abdel-Rahman H.M. Synthesis and biological evaluation of 2-(4-methylsulfonyl phenyl) indole derivatives: Multi-target compounds with dual antimicrobial and anti-inflammatory activities. BMC Chem. 2020 14 1 23 10.1186/s13065‑020‑00675‑5 32259135
    [Google Scholar]
  42. Deb M.L. Dey S.S. Bento I. Barros M.T. Maycock C.D. Copper-catalyzed regioselective intramolecular oxidative α-functionalization of tertiary amines: an efficient synthesis of dihydro-1,3-oxazines. Angew. Chem. Int. Ed. 2013 52 37 9791 9795 10.1002/anie.201304654 23893574
    [Google Scholar]
  43. Sridharan V. Menéndez J.C. Cerium(IV) ammonium nitrate as a catalyst in organic synthesis. Chem. Rev. 2010 110 6 3805 3849 10.1021/cr100004p 20359233
    [Google Scholar]
  44. Pegu C.D. Nasrin S.B. Deb M.L. Das D.J. Saikia K.K. Baruah P.K. CAN-catalyzed microwave promoted reaction of indole with Betti bases under solvent-free condition and evaluation of antibacterial activity of the products. Synth. Commun. 2017 47 21 2007 2014 10.1080/00397911.2017.1360912
    [Google Scholar]
  45. Wei C. Zhao L. Sun Z. Hu D. Song B. Discovery of novel indole derivatives containing dithioacetal as potential antiviral agents for plants. Pestic. Biochem. Physiol. 2020 166 104568 10.1016/j.pestbp.2020.104568 32448422
    [Google Scholar]
  46. Song Y.L. Wu F. Zhang C.C. Liang G.C. Zhou G. Yu J.J. Ionic liquid catalyzed synthesis of 2-(indole-3-yl)-thiochroman-4-ones and their novel antifungal activities. Bioorg. Med. Chem. Lett. 2015 25 2 259 261 10.1016/j.bmcl.2014.11.056 25499881
    [Google Scholar]
  47. Lei Z. Chen B. Koo Y.M. MacFarlane D.R. Introduction: Ionic liquids. Chem. Rev. 2017 117 10 6633 6635 10.1021/acs.chemrev.7b00246 28535681
    [Google Scholar]
  48. Yao H.C. Resnick P. Azo-hydrazone conversion. I. The Japp-Klingemann reaction. J. Am. Chem. Soc. 1962 84 18 3514 3517 10.1021/ja00877a018
    [Google Scholar]
  49. Cihan-Üstündağ G. Naesens L. Şatana D. Erköse-Genç G. Mataracı-Kara E. Çapan G. Design, synthesis, antitubercular and antiviral properties of new spirocyclic indole derivatives. Monatsh. Chem. 2019 150 8 1533 1544 10.1007/s00706‑019‑02457‑9 32214484
    [Google Scholar]
  50. Yousif M.N. Hussein H.A. Yousif N.M. El-Manawaty M.A. El-Sayed W.A. Synthesis and anticancer activity of novel 2-phenylindole linked imidazolothiazole, thiazolo-s-triazine and imidazolyl-sugar systems. J. Appl. Pharm. Sci. 2019 9 1 6 14 10.7324/JAPS.2019.90102
    [Google Scholar]
  51. Vasconcelos S.N.S. Meissner K.A. Ferraz W.R. Trossini G.H.G. Wrenger C. Stefani H.A. Indole-3-glyoxyl tyrosine: Synthesis and antimalarial activity against Plasmodium falciparum. Future Med. Chem. 2019 11 6 525 538 10.4155/fmc‑2018‑0246 30916995
    [Google Scholar]
  52. Ismail M.M. Kamel M.M. Mohamed L.W. Faggal S.I. Synthesis of new indole derivatives structurally related to donepezil and their biological evaluation as acetylcholinesterase inhibitors. Molecules 2012 17 5 4811 4823 10.3390/molecules17054811 22534665
    [Google Scholar]
  53. Gurkan-Alp A.S. Mumcuoglu M. Andac C.A. Dayanc E. Cetin-Atalay R. Buyukbingol E. Synthesis, anticancer activities and molecular modeling studies of novel indole retinoid derivatives. Eur. J. Med. Chem. 2012 58 346 354 10.1016/j.ejmech.2012.10.013 23142674
    [Google Scholar]
  54. Hong W. Li J. Chang Z. Tan X. Yang H. Ouyang Y. Yang Y. Kaur S. Paterson I.C. Ngeow Y.F. Wang H. Synthesis and biological evaluation of indole core-based derivatives with potent antibacterial activity against resistant bacterial pathogens. J. Antibiot. (Tokyo) 2017 70 7 832 844 10.1038/ja.2017.55 28465626
    [Google Scholar]
  55. Agrawal K. Patel T. Patel R. Synthesis, biological activity of newly designed sulfonamide based indole derivative as anti-microbial agent. Future J. Pharm. Sci. 2023 9 1 17 10.1186/s43094‑023‑00466‑4
    [Google Scholar]
  56. Han X. Wu H. Wang W. Dong C. Tien P. Wu S. Zhou H.B. Synthesis and SARs of indole-based α-amino acids as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Org. Biomol. Chem. 2014 12 41 8308 8317 10.1039/C4OB01333F 25209054
    [Google Scholar]
  57. Gaur A. Peerzada M.N. Khan N.S. Ali I. Azam A. Synthesis and anticancer evaluation of novel indole based arylsulfonylhydrazides against human breast cancer cells. ACS Omega 2022 7 46 42036 42043 10.1021/acsomega.2c03908 36440122
    [Google Scholar]
  58. Shaikh T.M.A. Debebe H. Synthesis and evaluation of antimicrobial activities of novel N‐substituted indole derivatives. J. Chem. 2020 2020 4358453
    [Google Scholar]
  59. Hawash M. Kahraman D.C. Ergun S.G. Cetin-Atalay R. Baytas S.N. Synthesis of novel indole-isoxazole hybrids and evaluation of their cytotoxic activities on hepatocellular carcinoma cell lines. BMC Chem. 2021 15 1 66 10.1186/s13065‑021‑00793‑8 34930409
    [Google Scholar]
  60. Al-Wahaibi L.H. Abou-Zied H.A. Abdelrahman M.H. Morcoss M.M. Trembleau L. Youssif B.G.M. Bräse S. Design and synthesis new indole-based aromatase/iNOS inhibitors with apoptotic antiproliferative activity. Front Chem. 2024 12 1432920 10.3389/fchem.2024.1432920 39308851
    [Google Scholar]
/content/journals/coc/10.2174/0113852728382848250610051815
Loading
/content/journals/coc/10.2174/0113852728382848250610051815
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test