Skip to content
2000
image of Insightful Synthetic Strategies and Pharmacological Potential of Thiophene Derivatives: A Comprehensive Review

Abstract

Thiophene and its substituted analogs play a significant role in medicinal chemistry due to their diverse biological activities and their importance as versatile synthons in drug design, discovery, and development. These include antimicrobial, antioxidant, anticancer, antitubercular, antirheumatic, anti-urease, anticonvulsant, antileishmanial, and anti-anxiety properties, underscoring its potential as a useful scaffold. Various thiophene derivatives have been reported to exhibit antimicrobial efficacy against multidrug-resistant strains by disrupting membrane permeability and inhibiting enzymes. Structural modifications, such as the introduction of electron-donating substituents, enhance their antioxidant capacity by stabilizing reactive oxygen species. In anticancer applications, these compounds target apoptosis pathways and inhibit enzymes essential for cancer cell survival. The aromatic structure of thiophene facilitates receptor binding and blood-brain barrier penetration in antianxiety applications. Notably, two thiophene-based drugs, tiaprofenic acid and tinoridine, have been investigated in clinical trials for their anti-inflammatory and analgesic properties. Overall, thiophene derivatives have emerged as versatile compounds in medicinal chemistry, offering a broad spectrum of biological activities. This review presents a comprehensive overview of the remarkable progress achieved through the exploration of various reactive sites within the thiophene synthon. It also highlights diverse synthetic approaches employed in the development of both existing and novel thiophene derivatives. This review aims to assist researchers and medicinal chemists in developing novel leads featuring the thiophene moiety, with a focus on identifying promising candidates for future drug development and advancements in medicine.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728382458250805095840
2025-09-11
2025-11-06
Loading full text...

Full text loading...

References

  1. Patel A.A. Mehta A.G. Synthesis of novel heterocyclic compound and their biological evaluation. Pharma Chem. 2010 2 1 215 223
    [Google Scholar]
  2. Mishra R. Tomar I. Pyrimidine: The molecule of diverse biological and medicinal importance. Int. J. Pharm. Res. Scholars 2011 4 2 758 711 10.13040/IJPSR.0975‑8232.2(4).758‑71
    [Google Scholar]
  3. Dongre R.S. Bhat A.R. Meshram J.S. Anticancer activity of assorted annulated pyrimidines. Am J. Pharm. Tech. Res. 2014 4 1 139 155
    [Google Scholar]
  4. Isloor A.M. Kalluraya B. Sridhar Pai K. Synthesis, characterization and biological activities of some new benzo[b]thiophene derivatives. Eur. J. Med. Chem. 2010 45 2 825 830 10.1016/j.ejmech.2009.11.015 19945198
    [Google Scholar]
  5. Chaudhary A. Jha K. Kumar S. Biological diversity of thiophene: A review. Int. J. Adv. Sci. Res. 2012 3 03 3 10 https://sciensage.info/index.php/JASR/article/view/106
    [Google Scholar]
  6. Mishra R. Jha K.K. Kumar S. Tomer I. Synthesis, properties and biological activity of thiophene: A review. Pharma Chem. 2011 3 4 38 54
    [Google Scholar]
  7. Nakayama J. Thiophenes and their benzo derivatives: Synthesis. In: CHEC: A Review of the Literature 1982–1995; 1996 2 607 677
    [Google Scholar]
  8. Chambhare R. Khadse B.G. Bobde A.S. Bahekar R.H. Synthesis and preliminary evaluation of some N-[5-(2-furanyl)-2-methyl-4-oxo-4H-thieno[2,3-d]pyrimidin-3-yl]-carboxamide and 3-substituted-5-(2-furanyl)-2-methyl-3H-thieno[2,3-d]pyrimidin-4-ones as antimicrobial agents. Eur. J. Med. Chem. 2003 38 1 89 100 10.1016/S0223‑5234(02)01442‑3 12593919
    [Google Scholar]
  9. Sroor F.M. Elhakim H.K.A. Abdelrehim S.M. Mahrous K.F. El-Sayed A.F. Abdelhamid I.A. New cyano-acrylamide derivatives incorporating the thiophene moiety: Synthesis, anti-cancer, gene expression, DNA fragmentation, DNA damage, and in silico studies. J. Mol. Struct. 2025 1321 140001 10.1016/j.molstruc.2024.140001
    [Google Scholar]
  10. El-Shoukrofy M.S. Abd El Razik H.A. AboulWafa, O.M.; Bayad, A.E.; El-Ashmawy, I.M. Pyrazoles containing thiophene, thienopyrimidine and thienotriazolopyrimidine as COX-2 selective inhibitors: Design, synthesis, in vivo anti-inflammatory activity, docking and in silico chemo-informatic studies. Bioorg. Chem. 2019 85 541 557 10.1016/j.bioorg.2019.02.036 30807897
    [Google Scholar]
  11. Da Cruz R.M.D. Mendonça-Junior F.J.B. de Mélo N.B. Scotti L. de Araújo R.S.A. de Almeida R.N. de Moura R.O. Thiophene-based compounds with potential anti-inflammatory activity. Pharmaceuticals 2021 14 7 692 10.3390/ph14070692 34358118
    [Google Scholar]
  12. Tehranchian S. Akbarzadeh T. Fazeli M.R. Jamalifar H. Shafiee A. Synthesis and antibacterial activity of 1-[1,2,4-triazol-3-yl] and 1-[1,3,4-thiadiazol-2-yl]-3-methylthio-6,7-dihydrobenzo[c]thiophen-4(5H)ones. Bioorg. Med. Chem. Lett. 2005 15 4 1023 1025 10.1016/j.bmcl.2004.12.039 15686905
    [Google Scholar]
  13. Russell R.K. Press J.B. Rampulla R.A. McNally J.J. Falotico R. Keiser J.A. Bright D.A. Tobia A. Thiophene systems. 9. Thienopyrimidinedione derivatives as potential antihypertensive agents. J. Med. Chem. 1988 31 9 1786 1793 10.1021/jm00117a019 2842504
    [Google Scholar]
  14. Al-Warhi T. Rashad N.M. Almahli H. Abdel-Aziz M.M. Elsayed Z.M. Shahin M.I. Eldehna W.M. Design and synthesis of benzo[b]thiophene‐based hybrids as novel antitubercular agents against MDR/XDR Mycobacterium tuberculosis. Arch. Pharm. 2024 357 2 2300529 10.1002/ardp.202300529 37946574
    [Google Scholar]
  15. Konus M. Algso M. Yilmaz C. Khorsheed B.A. Köroğlu A. Çetin D. Ergin D. Kivrak A. Synthesis of ethynyl‐thiophene derivatives, antioxidant properties and ADME analysis. ChemistrySelect 2022 7 12 e202200281 10.1002/slct.202200281
    [Google Scholar]
  16. Benabdellah M. Aouniti A. Dafali A. Hammouti B. Benkaddour M. Yahyi A. Ettouhami A. Investigation of the inhibitive effect of triphenyltin-2-thiophene carboxylate on corrosion of steel in 2MH3PO4 solutions. Appl. Surf. Sci. 2006 252 23 8341 8347 10.1016/j.apsusc.2005.11.037
    [Google Scholar]
  17. Kim C. Choi K.S. Oh J.H. Hong H.J. Han S.H. Kim S.Y. The efects of octylthiophene ratio on the performance of thiophene based polymer light-emitting diodes. Sci. Adv. Mater. 2015 7 11 2401 2409 10.1166/sam.2015.2669
    [Google Scholar]
  18. Priyanka SNK Jha KK Benzothiazole: The molecule of diverse biological activities. Int. J. Curr. Pharm. Res. 2010 2 2 01 06
    [Google Scholar]
  19. Molina-Panadero I. Morales-Tenorio M. García-Rubia A. Ginex T. Eskandari K. Martinez A. Gil C. Smani Y. Discovery of new antimicrobial thiophene derivatives with activity against drug-resistant Gram negative-bacteria. Front. Pharmacol. 2024 15 1412797 10.3389/fphar.2024.1412797 39228527
    [Google Scholar]
  20. Shah R. Verma P.K. Synthesis of thiophene derivatives and their anti-microbial, antioxidant, anticorrosion and anticancer activity. BMC Chem. 2019 13 1 54 10.1186/s13065‑019‑0569‑8 31384802
    [Google Scholar]
  21. Fang Z. Li Y. Zheng Y. Li X. Lu Y.J. Yan S.C. Wong W.L. Chan K.F. Wong K. Sun N. Antibacterial activity and mechanism of action of a thiophenyl substituted pyrimidine derivative. RSC Advances 2019 9 19 10739 10744 10.1039/C9RA01001G 35515309
    [Google Scholar]
  22. Boibessot T. Zschiedrich C.P. Lebeau A. Bénimèlis D. Dunyach-Rémy C. Lavigne J.P. Szurmant H. Benfodda Z. Meffre P. The rational design, synthesis, and antimicrobial properties of thiophene derivatives that inhibit bacterial histidine kinases. J. Med. Chem. 2016 59 19 8830 8847 10.1021/acs.jmedchem.6b00580 27575438
    [Google Scholar]
  23. Metwally H.M. Khalaf N.A. Abdel-Latif E. Ismail M.A. Synthesis, DFT investigations, antioxidant, antibacterial activity and SAR-study of novel thiophene-2-carboxamide derivatives. BMC Chem. 2023 17 1 6 10.1186/s13065‑023‑00917‑2 36803621
    [Google Scholar]
  24. Wen L. Jian W. Shang J. He D. Synthesis and antifungal activities of novel thiophene‐based stilbene derivatives bearing an 1,3,4‐oxadiazole unit. Pest Manag. Sci. 2019 75 4 1123 1130 10.1002/ps.5229 30284404
    [Google Scholar]
  25. Luna I. Neves W. de Lima-Neto R. Albuquerque A. Pitta M. Rêgo M. Neves R. Scotti M. Mendonça-Junior F. Design, synthesis and antifungal activity of new schiff bases bearing 2-aminothiophene derivatives obtained by molecular simplification. J. Braz. Chem. Soc. 2021 32 5 1017 1029 10.21577/0103‑5053.20210004
    [Google Scholar]
  26. Demicheli R. Hrushesky W.J.M. Saenger E. Biganzoli E. Medical and scientific evidence for the cancer attractor. Academia Oncology 2024 1 2 10.20935/AcadOnco7445
    [Google Scholar]
  27. Al-Maqtari H.M. Jamalis J. Chander S. Sirat H.M. Naveen S. Lokanath N.K. Bohari S.P.M. Bhagwat D.P. Sankaranarayanan M. Synthesis, in silico and antifungal studies of novel thiophene analogues containing pyrazole ring. Lett. Drug Des. Discov. 2018 15 11 1202 1210 10.2174/1570180815666180328144325
    [Google Scholar]
  28. Mabkhot Y.N. Kaal N.A. Alterary S. Al-Showiman S.S. Farghaly T.A. Mubarak M.S. Antimicrobial activity of thiophene derivatives derived from ethyl (E)-5-(3-(dimethylamino)acryloyl)-4-methyl-2-(phenylamino)thio-phene-3-carboxylate. Chem. Cent. J. 2017 11 1 75 10.1186/s13065‑017‑0307‑z 29086901
    [Google Scholar]
  29. Mehta A. Bhatt R. Sharma S. Patidar A.K. Rathore K.K. Senwar R.C. Synthesis, characterization and anti-microbial evaluation of some tetrahydroquinazoline derivatives of benzo[b]thiophene. Int. J. Pharm. Sci. Drug Res. 2015 7 5 417 420
    [Google Scholar]
  30. Konus M. Çetin D. Yılmaz C. Arslan S. Mutlu D. Kurt-Kızıldoğan A. Otur Ç. Ozok O. Algso A.S. M.; Kivrak, A. Synthesis, biological evaluation and molecular docking of novel thiophene‐based indole derivatives as potential antibacterial, GST inhibitor and apoptotic anticancer agents. ChemistrySelect 2020 5 19 5809 5814 10.1002/slct.202001523
    [Google Scholar]
  31. Fayed E.A. Mohsen M. El-Gilil S.M.A. Aboul-Magd D.S. Ragab A. Novel cyclohepta[b]thiophene derivative incorporating pyrimidine, pyridine, and chromene moiety as potential antimicrobial agents targeting DNA gyrase. J. Mol. Struct. 2022 1262 133028 10.1016/j.molstruc.2022.133028
    [Google Scholar]
  32. Prasad K.C. Angothu B.N. Latha T.M. Nagulu M. Synthesis of some novel 2-aminothiophene derivatives and evaluation for their anti-microbial activity. Int. J. Pharm. Biol. Sci. 2017 7 1 01 07
    [Google Scholar]
  33. Tavadyan L. Manukyan Z. Harutyunyan L. Musayelyan M. Sahakyan A. Tonikyan H. Antioxidant properties of selenophene, thiophene and their aminocarbonitrile derivatives. Antioxidants 2017 6 2 22 10.3390/antiox6020022 28338603
    [Google Scholar]
  34. Gusain A. Kumar N. Kumar J. Pandey G. Hota P.K. Antiradical properties of trans-2-(4-substituted-styryl)-thiophene. J. Fluoresc. 2021 31 1 51 61 10.1007/s10895‑020‑02629‑5 33057974
    [Google Scholar]
  35. Mishra R. Kumar N. Sachan N. Thiophene and its analogs as prospective antioxidant agents: A retrospective study. Mini Rev. Med. Chem. 2022 22 10 1420 1437 10.2174/1389557521666211022145458 34719361
    [Google Scholar]
  36. Adeleke A.A. Islam M.S. Omondi B. Silver(I) pyridinyl complexes with benzothiazole, thiophene, and furan moieties: DNA/protein‐binding, antibacterial, antioxidant, and anticancer studies. Arch. Pharm. 2023 356 1 2200308 10.1002/ardp.202200308 36253106
    [Google Scholar]
  37. Mehdhar F.S. Abdel-Galil E. Saeed A. Abdel-Latif E. el Ghani G.E.A. Synthesis of new substituted thiophene derivatives and evaluating their antibacterial and antioxidant activities. Polycycl. Aromat. Compd. 2022 43 5 4496 4511 10.1080/10406638.2022.2092518
    [Google Scholar]
  38. Serdaroğlu G. Synthesis of thiophene derivatives: Substituent effect, antioxidant activity, cyclic voltammetry, molecular docking, DFT, and TD-DFT calculations. 2022 Available from: https://hdl.handle.net/20.500.12418/14070
    [Google Scholar]
  39. Balamon M.G. Hamed A.A. El-Bordany E.A. Swilem A.E. Mahmoud N.F.H. Elaboration of newly synthesized tetrahydrobenzo[b]thiophene derivatives and exploring their antioxidant evaluation, molecular docking, and DFT studies. Sci. Rep. 2024 14 1 27339 10.1038/s41598‑024‑74275‑x 39521808
    [Google Scholar]
  40. Abumelha H.M. Bayazeed A. Alsoliemy A. Hossan A. Alharbi A. Saad F.A. El-Metwaly N.M. Molecular modeling of new thiazolyl-thiophene based compounds as antioxidant agents. J. Mol. Struct. 2022 1262 133112 10.1016/j.molstruc.2022.133112
    [Google Scholar]
  41. Abu-Melha S. Molecular modeling and antioxidant activity of newly synthesized 3 hydroxy-2-substituted-thiophene derivatives. J. Mol. Struct. 2022 1250 131821 10.1016/j.molstruc.2021.131821
    [Google Scholar]
  42. Madhavi K. Soumya K.R. Subhashini C. Cyanoacetylation of substituted 2-aminothiophenes and evaluation for antioxidant and anti-bacterial activities. Res. J. Pharm. Biol. Chem. Sci. 2017 8 2 387 394
    [Google Scholar]
  43. Bindu P.J. Mahadevan K.M. Ravikumar Naik T.R. An efficient one-pot synthesis and photoinduced DNA cleavage studies of 2-chloro-3-(5-aryl-4,5-dihydroisoxazol-3-yl)quinolines. Bioorg. Med. Chem. Lett. 2012 22 19 6095 6098 10.1016/j.bmcl.2012.08.034 22959207
    [Google Scholar]
  44. Anand P. Kunnumakara A.B. Sundaram C. Harikumar K.B. Tharakan S.T. Lai O.S. Sung B. Aggarwal B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008 25 9 2097 2116 10.1007/s11095‑008‑9661‑9 18626751
    [Google Scholar]
  45. Lee J.S. Hwang Y. Oh H. Sung D. Tae G. Choi W.I. All-in-one nanosponge with pluronic shell for synergistic anticancer therapy through effectively overcoming multidrug resistance in cancer. Nanomedicine 2022 40 102486 10.1016/j.nano.2021.102486 34748960
    [Google Scholar]
  46. Sankaran M. Kumarasamy C. Chokkalingam U. Mohan P.S. Synthesis, antioxidant and toxicological study of novel pyrimido quinoline derivatives from 4-hydroxy-3-acyl quinolin-2-one. Bioorg. Med. Chem. Lett. 2010 20 23 7147 7151 10.1016/j.bmcl.2010.09.018 20947350
    [Google Scholar]
  47. Abdel-Rahman S.A. Wafa E.I. Ebeid K. Geary S.M. Naguib Y.W. El-Damasy A.K. Salem A.K. Thiophene derivative-loaded nanoparticles mediate anticancer activity through the inhibition of kinases and microtubule assembly. Adv. Ther. 2021 4 7 2100058 10.1002/adtp.202100058 34423112
    [Google Scholar]
  48. Mishra R. Kumar N. Mishra I. Sachan N. A review on anticancer activities of thiophene and its analogs. Mini Rev. Med. Chem. 2020 20 19 1944 1965 10.2174/1389557520666200715104555 32669077
    [Google Scholar]
  49. Abdelnaby R.M. El-Malah A.A. In vitroanticancer activity screening of novel fused thiophene derivatives as VEGFR-2/AKT dual inhibitors and apoptosis inducers. Pharmaceuticals 2022 15 6 700 10.3390/ph15060700 35745619
    [Google Scholar]
  50. Hawash M. Qaoud M.T. Jaradat N. Abdallah S. Issa S. Adnan N. Hoshya M. Sobuh S. Hawash Z. Anticancer activity of thiophene carboxamide derivatives as CA-4 biomimetics: Synthesis, biological potency, 3D spheroid model, and molecular dynamics simulation. Biomimetics 2022 7 4 247 10.3390/biomimetics7040247 36546947
    [Google Scholar]
  51. Alalawy A.I. Alatawi K. Alenazi N.A. Qarah A.F. Alatawi O.M. Alnoman R.B. Alharbi A. El-Metwaly N.M. Synthesis, molecular modeling, and anticancer activity of new thiophene and thiophene-pyrazole analogues incorporating benzene-sulfonamide moiety as carbonic anhydrase isozymes (CA-IX and CA-XII). J. Mol. Struct. 2024 1295 136609 10.1016/j.molstruc.2023.136609
    [Google Scholar]
  52. Roque Marques K.M. do Desterro M.R. de Arruda S.M. de Araújo Neto L.N. do Carmo Alves de Lima M. de Almeida S.M.V. da Silva E.C.D. de Aquino T.M. da Silva-Júnior E.F. de Araújo-Júnior J.X. 5-Nitro-thiophene-thiosemicarbazone derivatives present antitumor activity mediated by apoptosis and DNA intercalation. Curr. Top. Med. Chem. 2019 19 13 1075 1091 10.2174/1568026619666190621120304 31223089
    [Google Scholar]
  53. Dumontet C. Sikic B.I. Mechanisms of action of and resistance to antitubulin agents: Microtubule dynamics, drug transport, and cell death. J. Clin. Oncol. 1999 17 3 1061 1070 10.1200/JCO.1999.17.3.1061 10071301
    [Google Scholar]
  54. Abdel-Rahman S.A. El-Damasy A.K. Hassan G.S. Wafa E.I. Geary S.M. Maarouf A.R. Salem A.K. Cyclohepta[b]thiophenes as potential antiproliferative agents: Design, synthesis, in vitro, and in vivo anticancer evaluation. ACS Pharmacol. Transl. Sci. 2020 3 5 965 977 10.1021/acsptsci.0c00096 33073194
    [Google Scholar]
  55. Wafa E.I. Geary S.M. Ross K.A. Goodman J.T. Narasimhan B. Salem A.K. Pentaerythritol-based lipid A bolsters the antitumor efficacy of a polyanhydride particle-based cancer vaccine. Nanomedicine 2019 21 102055 10.1016/j.nano.2019.102055 31319179
    [Google Scholar]
  56. Chen Z. Ku T.C. Seley-Radtke K.L. Thiophene-expanded guanosine analogues of Gemcitabine. Bioorg. Med. Chem. Lett. 2015 25 19 4274 4276 10.1016/j.bmcl.2015.07.086 26316465
    [Google Scholar]
  57. Hamad H.T. The anti-cancer effectiveness of some heterocyclic compounds containing sulfur atom. Results Chem. 2025 15 102182 10.1016/j.rechem.2025.102182
    [Google Scholar]
  58. Antón V. Artigas H. Lomba L. Giner B. Lafuente C. Thermophysical properties of the thiophene family. J. Therm. Anal. Calorim. 2016 125 1 509 518 10.1007/s10973‑016‑5448‑0
    [Google Scholar]
  59. Alsayari A. Bin Muhsinah A. Asiri Y.I. Venkatesan K. Mabkhot Y.N. Synthesis and biological screening of thiophene derivatives. Polycycl. Aromat. Compd. 2022 42 9 6720 6731 10.1080/10406638.2021.1988998
    [Google Scholar]
  60. Bin Muhsinah A. Alsayari A. Asiri Y.I. Venkatesan K. Al-Ghorbani M. Mabkhot Y.N. Synthesis and biological evaluation of certain tetrasubstituted thiophene derivatives. Polycycl. Aromat. Compd. 2022 42 8 5261 5271 10.1080/10406638.2021.1933104
    [Google Scholar]
  61. Gediya P. Vyas V.K. Carafa V. Sitwala N. Della Torre L. Poziello A. Kurohara T. Suzuki T. Sanna V. Raguraman V. Suthindhiran K. Ghosh D. Bhatia D. Altucci L. Ghate M.D. Discovery of novel tetrahydrobenzo[b]thiophene-3-carbonitriles as histone deacetylase inhibitors. Bioorg. Chem. 2021 110 104801 10.1016/j.bioorg.2021.104801 33756235
    [Google Scholar]
  62. Romagnoli R. Preti D. Hamel E. Bortolozzi R. Viola G. Brancale A. Ferla S. Morciano G. Pinton P. Concise synthesis and biological evaluation of 2-Aryl-3-Anilinobenzo[b]thiophene derivatives as potent apoptosis-inducing agents. Bioorg. Chem. 2021 112 104919 10.1016/j.bioorg.2021.104919 33957538
    [Google Scholar]
  63. Ali T.E. Assiri M.A. Alzahrani A.Y. Salem M.A. Shati A.A. Alfaifi M.Y. Elbehairi S.E.I. An effective green one-pot synthesis of some novel 5-(thiophene-2-carbonyl)-6-(trifluoromethyl)pyrano[2,3-c]pyrazoles and 6-(thiophene-2-carbonyl)-7-(trifluoromethyl)pyrano[2,3-d]pyrimidines bearing chromone ring as anticancer agents. Synth. Commun. 2021 51 21 3267 3276 10.1080/00397911.2021.1966804
    [Google Scholar]
  64. Abd-Hafiz Al-Ghorafi M. Mohammed Kamal A. Abdullah J.H. Ahmed Ali Yahya T. Yassin S.H. Design, synthesis, molecular docking and biological evaluation of some new thiophene derivatives as anticancer agents. Eur. J. Pharm. Med. Res. 2019 6 12 160 167
    [Google Scholar]
  65. Orgeur M. Sous C. Madacki J. Brosch R. Evolution and emergence of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 2024 48 2 fuae006 10.1093/femsre/fuae006 38365982
    [Google Scholar]
  66. Sossen B. Kubjane M. Meintjes G. Tuberculosis and HIV coinfection: Progress and challenges towards reducing incidence and mortality. Int. J. Infect. Dis. 2025 155 107876 10.1016/j.ijid.2025.107876 40064284
    [Google Scholar]
  67. Qin R. Wang P. Wang B. Fu L. Batt S.M. Besra G.S. Wu C. Wang Y. Huang H. Lu Y. Li G. Identification of thiophene-benzenesulfonamide derivatives for the treatment of multidrug-resistant tuberculosis. Eur. J. Med. Chem. 2022 231 114145 10.1016/j.ejmech.2022.114145 35101648
    [Google Scholar]
  68. Shah R. Verma P.K. Sharma H.K. Kumar S. Synthesis of thiophene-based flavone and pyrazole derivatives through intramolecular cyclization and condensation reactions: Molecular docking, biological evaluation including antimicrobial, antioxidant, and antitubercular activities. Indian J. Heterocycl. Chem. 2025 35 1 91 105 10.59467/IJHC.2025.35.91
    [Google Scholar]
  69. Wang P. Batt S.M. Wang B. Fu L. Qin R. Lu Y. Li G. Besra G.S. Huang H. Discovery of novel thiophene-arylamide derivatives as DprE1 inhibitors with potent antimycobacterial activities. J. Med. Chem. 2021 64 9 6241 6261 10.1021/acs.jmedchem.1c00263 33852302
    [Google Scholar]
  70. Wilson R. Kumar P. Parashar V. Vilchèze C. Veyron-Churlet R. Freundlich J.S. Barnes S.W. Walker J.R. Szymonifka M.J. Marchiano E. Shenai S. Colangeli R. Jacobs W.R. Neiditch M.B. Kremer L. Alland D. Antituberculosis thiophenes define a requirement for Pks13 in mycolic acid biosynthesis. Nat. Chem. Biol. 2013 9 8 499 506 10.1038/nchembio.1277 23770708
    [Google Scholar]
  71. Dong H.M. Chen J.X. Cai Y.X. Tian L.X. Yang Z.C. Compounds derived from 5‐fluoropyridine and benzo[b]thiophene: Killing Mycobacterium tuberculosis and reducing its virulence. Chem. Biodivers. 2024 21 11 e202401191 10.1002/cbdv.202401191 39058423
    [Google Scholar]
  72. Mahajan P.S. Nikam M.D. Nawale L.U. Khedkar V.M. Sarkar D. Gill C.H. Synthesis and antitubercular activity of new benzo[b]thiophenes. ACS Med. Chem. Lett. 2016 7 8 751 756 10.1021/acsmedchemlett.6b00077 27563398
    [Google Scholar]
  73. Karkara B.B. Mishra S.S. Singh B.N. Panda G. Synthesis of 2-methoxy-3-(thiophen-2-ylmethyl)quinoline containing amino carbinols as antitubercular agents. Bioorg. Chem. 2020 99 103775 10.1016/j.bioorg.2020.103775 32222618
    [Google Scholar]
  74. Pulipati L. Sridevi J.P. Yogeeswari P. Sriram D. Kantevari S. Synthesis and antitubercular evaluation of novel dibenzo[b,d]thiophene tethered imidazo[1,2-a]pyridine-3-carboxamides. Bioorg. Med. Chem. Lett. 2016 26 13 3135 3140 10.1016/j.bmcl.2016.04.088 27184765
    [Google Scholar]
  75. Nakao M. Synthesis of novel 2,3-disubstituted thiophenes via tandem thia-Michael/aldol reaction of allenyl esters. Heterocycles 2022 104 2 379 388 Feb;
    [Google Scholar]
  76. Ahmed M. Khan M. Rainsford K. Synthesis of thiophene and NO-curcuminoids for antiinflammatory and anti-cancer activities. Molecules 2013 18 2 1483 1501 10.3390/molecules18021483 23353121
    [Google Scholar]
  77. Dawood D.H. Nossier E.S. Abdelhameed M.F. Asaad G.F. Abd El-Rahman S.S. Design, synthesis, anti-inflammatory evaluation and molecular docking of novel thiophen-2-ylmethylene-based derivatives as potential TNF-α production inhibitors. Bioorg. Chem. 2022 122 105726 10.1016/j.bioorg.2022.105726 35364361
    [Google Scholar]
  78. Qandeel N.A. El-Damasy A.K. Sharawy M.H. Bayomi S.M. El-Gohary N.S. Synthesis, in vivo anti-inflammatory, COX-1/COX-2 and 5-LOX inhibitory activities of new 2,3,4-trisubstituted thiophene derivatives. Bioorg. Chem. 2020 102 103890 10.1016/j.bioorg.2020.103890 32801081
    [Google Scholar]
  79. Svane S. Sigurdarson J.J. Finkenwirth F. Eitinger T. Karring H. Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis. Sci. Rep. 2020 10 1 8503 10.1038/s41598‑020‑65107‑9 32444844
    [Google Scholar]
  80. Munir R. Zaib S. Zia-ur-Rehman M. Javed H. Roohi A. Zaheer M. Fatima N. Bhat M.A. Khan I. Exploration of morpholine-thiophene hybrid thiosemicarbazones for the treatment of ureolytic bacterial infections via targeting urease enzyme: Synthesis, biochemical screening and computational analysis. Front Chem. 2024 12 1403127 10.3389/fchem.2024.1403127 38855062
    [Google Scholar]
  81. Aslam M. Rahman J. Iqbal A. Mujtaba S. Ashok A.K. Kaouche F.C. Hayat M.M. Nisa M.U. Ashraf M. Ashraf M. Antiurease activity of antibiotics: In vitro, in silico, structure-activity relationship, and MD simulations of cephalosporins and fluoroquinolones. ACS Omega 2024 9 12 14005 14016 10.1021/acsomega.3c09355 38559955
    [Google Scholar]
  82. Ullah H. Bashir M. Khan F. Iqbal I. Iqbal A. Rahim F. Synthesis and molecular docking study of thiophene-bearing thiourea derivatives as potential acetylcholinesterase, and butyrylcholinesterase inhibitors. Chem. Data Collect 2024 50 101113 10.1016/j.cdc.2024.101113
    [Google Scholar]
  83. Rashid M. Rafique H. Roshan S. Shamas S. Iqbal Z. Ashraf Z. Abbas Q. Hassan M. Qureshi Z.U.R. Asad M.H.H.B. Enzyme inhibitory kinetics and molecular docking studies of halo‐substituted mixed ester/amide‐based derivatives as jack bean urease inhibitors. BioMed Res. Int. 2020 2020 1 8867407 10.1155/2020/8867407 33426080
    [Google Scholar]
  84. Nayab S. Alam A. Ali Khan F. Khan H. Khan S. Ali Khan F. Synthesis, characterization and urease inhibitory activities of Zn(II) complexes bearing C1-symmetric ligands derived from (R)-phenylethanamine. Bull. Chem. Soc. Ethiop. 2021 35 2 301 314 10.4314/bcse.v35i2.7
    [Google Scholar]
  85. Góra M. Czopek A. Rapacz A. Dziubina A. Głuch-Lutwin M. Mordyl B. Obniska J. Synthesis, anticonvulsant and antinociceptive activity of new hybrid compounds: Derivatives of 3-(3-methylthiophen-2-yl)-pyrrolidine-2,5-dione. Int. J. Mol. Sci. 2020 21 16 5750 10.3390/ijms21165750 32796594
    [Google Scholar]
  86. Deep A. Narasimhan B. Aggarwal S. Kaushik D. Sharma A.K. Thiophene scaffold as prospective central nervous system agent: A review. Cent. Nerv. Syst. Agents Med. Chem. 2016 16 2 158 164 10.2174/1871524916666160204114424 26844957
    [Google Scholar]
  87. Kulandasamy R. Adhikari A.V. Stables J.P. Synthesis and anticonvulsant activity of some new bishydrazones derived from 3,4-dipropyloxythiophene. Eur. J. Med. Chem. 2009 44 9 3672 3679 10.1016/j.ejmech.2009.02.009 19286282
    [Google Scholar]
  88. Rollas S. Küçükgüzel S.G. Biological activities of hydrazone derivatives. Molecules 2007 12 8 1910 1939 10.3390/12081910 17960096
    [Google Scholar]
  89. Kumar A. Kumar P. P, C.; S, S.; Dheeraj Rajesh, G.; Bhaskar K, V. Design and evaluation of thiophene incorporated benzothiazepines targeting GABA-A receptor as anticonvulsant. Res. J. Pharm. Technol 2024 17 5 2114 2120 10.52711/0974‑360X.2024.00335
    [Google Scholar]
  90. Ahmad G. Rasool N. Rizwan K. Imran I. Zahoor A.F. Zubair M. Sadiq A. Rashid U. Synthesis, in-vitro cholinesterase inhibition, in-vivo anticonvulsant activity and in-silico exploration of N-(4-methylpyridin-2-yl)thiophene-2-carboxamide analogs. Bioorg. Chem. 2019 92 103216 10.1016/j.bioorg.2019.103216 31491567
    [Google Scholar]
  91. Rodriguez F. Iniguez E. Pena Contreras G. Ahmed H. Costa T.E.M.M. Skouta R. Maldonado R.A. Development of thiophene compounds as potent chemotherapies for the treatment of cutaneous leishmaniasis caused by Leishmania major. Molecules 2018 23 7 1626 10.3390/molecules23071626 29973498
    [Google Scholar]
  92. Rodrigues K.A. Dias C.N. Néris P.L. 2-Amino-thiophene derivatives present antileishmanial activity mediated by apoptosis and immunomodulation in vitro. Eur. J. Med. Chem. 2015 106 1 14 10.1016/j.ejmech.2015.10.011 26513640
    [Google Scholar]
  93. Bigot S. Leprohon P. Vasquez A. Bhadoria R. Skouta R. Ouellette M. Thiophene derivatives activity against the protozoan parasite Leishmania infantum. Int. J. Parasitol. Drugs Drug Resist. 2023 21 13 20 10.1016/j.ijpddr.2022.11.004 36525934
    [Google Scholar]
  94. Sousa J.P.A. Sousa J.M.S. Rodrigues R.R.L. Nunes T.A.L. Machado Y.A.A. Araujo A.C. da Silva I.G.M. Barros-Cordeiro K.B. Báo S.N. Alves M.M.M. Mendonça-Junior F.J.B. Rodrigues K.A.F. Antileishmanial activity of 2-amino-thiophene derivative SB-200. Int. Immunopharmacol. 2023 123 110750 10.1016/j.intimp.2023.110750 37536181
    [Google Scholar]
  95. Félix M.B. de Souza E.R. de Lima M.C.A. Frade D.K.G. Serafim V.L. Rodrigues K.A.F. Néris P.L.N. Ribeiro F.F. Scotti L. Scotti M.T. de Aquino T.M. Mendonça Junior F.J.B. de Oliveira M.R. Antileishmanial activity of new thiophene–indole hybrids: Design, synthesis, biological and cytotoxic evaluation, and chemometric studies. Bioorg. Med. Chem. 2016 24 18 3972 3977 10.1016/j.bmc.2016.04.057 27515718
    [Google Scholar]
  96. Pathan S. Singh G.P. Synthesis of novel tetrazole tetrahydrobenzo[b]thiophene via Ugi-MCR: As new antileishmanial prototype. J. Saudi Chem. Soc. 2021 25 8 101295 10.1016/j.jscs.2021.101295
    [Google Scholar]
  97. Amr A.E.G.E. Sherif M.H. Assy M.G. Al-Omar M.A. Ragab I. Antiarrhythmic, serotonin antagonist and antianxiety activities of novel substituted thiophene derivatives synthesized from 2-amino-4,5,6,7-tetrahydro-N-phenylbenzo[b]thiophene-3-carboxamide. Eur. J. Med. Chem. 2010 45 12 5935 5942 10.1016/j.ejmech.2010.09.059 20950897
    [Google Scholar]
  98. El-Kerdawy M.M. El-Bendary E.R. Abdel-Aziz A.A.M. El-wasseef D.R. El-Aziz N.I.A. Synthesis and pharmacological evaluation of novel fused thiophene derivatives as 5-HT2A receptor antagonists: Molecular modeling study. Eur. J. Med. Chem. 2010 45 5 1805 1820 10.1016/j.ejmech.2010.01.013 20149493
    [Google Scholar]
  99. Nakao T. Tanaka H. Morimoto Y. Takehara S. Thiophene compounds and their use as intermediates in the preparation of antianxiety drugs, hypnotics, antiepileptic drugs and nuotropics. Patent EP0729960A1 1996
    [Google Scholar]
/content/journals/coc/10.2174/0113852728382458250805095840
Loading
/content/journals/coc/10.2174/0113852728382458250805095840
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test