Skip to content
2000
image of A Review on Chemical Structure and Biological Activities of Monoterpene Glycosides

Abstract

Monoterpene glycosides are important active ingredients in many commonly used traditional Chinese medicines. Based on their different aglycones, monoterpene glycosides are primarily classified into five types: acyclic monoterpene glycosides, monocyclic monoterpene glycosides, bicyclic monoterpene glycosides, tricyclic monoterpene glycosides, and iridoid glucosides. These compounds exhibit significant medicinal efficacy, including antioxidant, anti-cancer, anti-tumor, anti-hypertensive, anti-diabetic, antibacterial, and anti-inflammatory properties. However, there have been few reviews published on monoterpene glycosides. This paper systematically summarizes and analyzes the classification, structural characteristics, and bioactivity of monoterpene glycosides, based on research conducted over the past 20 years on those isolated from natural products, thereby providing a scientific basis for the exploitation of monoterpene glycosides. The chemical structures and activities of monoterpene glycosides were obtained from well-known and widely utilized databases, including Web of Science, Science Direct, Google Scholar, PubMed, and CNKI, through the application of various search terms.

Loading

Article metrics loading...

/content/journals/coc/10.2174/0113852728382230250528164521
2025-06-20
2025-09-08
Loading full text...

Full text loading...

References

  1. Schwab W. Wüst M. Understanding the constitutive and induced biosynthesis of mono- and sesquiterpenes in grapes (Vitis vinifera): A key to unlocking the biochemical secrets of unique grape aroma profiles. J. Agric. Food Chem. 2015 63 49 10591 10603 26592256
    [Google Scholar]
  2. Stanková J. Jurášek M. Hajdúch M. Džubák P. Terpenes and terpenoids conjugated with BODIPYs: An overview of biological and chemical properties. J. Nat. Prod. 2024 87 4 1306 1319 10.1021/acs.jnatprod.3c00961 38482846
    [Google Scholar]
  3. Yang W. Chen X. Li Y. Guo S. Wang Z. Yu X. Advances in pharmacological activities of terpenoids. Nat. Prod Commun 2020 15 3 1934578X20903555 10.1177/1934578X20903555
    [Google Scholar]
  4. Yan Z. Research on processing technology of Paeonia suffruticosa seed paste. Thesis Shandong Agricultural University 2023
    [Google Scholar]
  5. Christianson D.W. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 2017 117 17 11570 11648 10.1021/acs.chemrev.7b00287 28841019
    [Google Scholar]
  6. Marmulla R. Harder J. Microbial monoterpene transformations—a review. Front. Microbiol. 2014 5 346 10.3389/fmicb.2014.00346 25076942
    [Google Scholar]
  7. Zhou Y. Wang Z. Overview of peony bark research. China Pharmaceuticals 2012 21 16 111 112
    [Google Scholar]
  8. Lee T.H. Lee S.S. Kuo Y.C. Chou C.H. Monoterpene glycosides and triterpene acids from Eriobotrya deflexa. J. Nat. Prod. 2001 64 7 865 869 10.1021/np0100237 11473413
    [Google Scholar]
  9. Wang Q. Grkovic T. Font J. Bonham S. Pouwer R.H. Bailey C.G. Moran A.M. Ryan R.M. Rasko J.E.J. Jormakka M. Quinn R.J. Holst J. Monoterpene glycoside ESK246 from Pittosporum targets LAT3 amino acid transport and prostate cancer cell growth. ACS Chem. Biol. 2014 9 6 1369 1376 10.1021/cb500120x 24762008
    [Google Scholar]
  10. Murakami N. Saka M. Shimada H. Matsuda H. Yamahara J. Yoshikawa M. ChemInform abstract: New bioactive monoterpene glycosides from Paeoniae radix. ChemInform 1996 2 747 chin.199647184 10.1002/chin.199647184
    [Google Scholar]
  11. Abdel-Rahman F.H. Alaniz N.M. Saleh M.A. Nematicidal activity of terpenoids. J. Environ. Sci. Health B 2013 48 1 16 22 10.1080/03601234.2012.716686 23030436
    [Google Scholar]
  12. Na Y. Extraction and purification of oligomeric cocoons and monoterpene glycosides from peony seed extraction by-products for oil. Thesis Henan University of Science and Technology 2015
    [Google Scholar]
  13. Feng Y. Jiang S. Yu H. Long X. Monoterpenoid glycosides from Paeonia lactiflora Pall. And their chemotaxonomic significance. Biochem. Syst. Ecol. 2022 105 104540 10.1016/j.bse.2022.104540
    [Google Scholar]
  14. Rong N. Isolation and identification of monoterpene glycosides and oligomeric compounds in Paeonia peony seeds and their effects on lipid accumulation in HepG2 cells. Thesis Jiangnan University 2021
    [Google Scholar]
  15. Yoshikawa M. Nakamura S. Li X. Matsuda H. Reinvestigation of absolute stereostructure of (-)-rosiridol: structures of monoterpene glycosides, rosiridin, rosiridosides A, B, and C, from Rhodiola sachalinensis. Chem. Pharm. Bull. (Tokyo) 2008 56 5 695 700 10.1248/cpb.56.695 18451561
    [Google Scholar]
  16. Ma G. Li W. Dou D. Chang X. Bai H. Satou T. Li J. Sun D. Kang T. Nikaido T. Koike K. Rhodiolosides A-E, monoterpene glycosides from Rhodiola rosea. Chem. Pharm. Bull. (Tokyo) 2006 54 8 1229 1233 10.1248/cpb.54.1229 16880679
    [Google Scholar]
  17. Anero R. Díaz-Lanza A. Ollivier E. Baghdikian B. Balansard G. Bernabé M. Monoterpene glycosides isolated from Fadogia agrestis. Phytochemistry 2008 69 3 805 811 10.1016/j.phytochem.2007.09.024 17988698
    [Google Scholar]
  18. Ishikawa T. Kondo K. Kitajima J. Water-soluble constituents of coriander. Chem. Pharm. Bull. (Tokyo) 2003 51 1 32 39 10.1248/cpb.51.32 12520125
    [Google Scholar]
  19. Liu J. Li B. Gai Z. Advances in research of chemical constituents and pharmacological activities of monoterpene glucosides. Modern Medicin Clinical 2010 25 2 81 93
    [Google Scholar]
  20. Pan Y. Dong H. Zheng X. Flavonol glycosides and monoterpene glycosides in Macrophyllum. Modern Appl. Pharmacy China 2005 22 3 175 178
    [Google Scholar]
  21. Jung C.M. Kwon H.C. Seo J.J. Ohizumi Y. Matsunaga K. Saito S. Lee K.R. Two new monoterpene peroxide glycosides from Aster scaber. Chem. Pharm. Bull. (Tokyo) 2001 49 7 912 914 10.1248/cpb.49.912 11456102
    [Google Scholar]
  22. Tong W. Mi L. Liang H. Zhao Y. Isolation and identification of chemical constituents from Albizia julibrissin Durazz. J. Peking Univ (Health. Scienc) 2003 35 2 180 183 12920839
    [Google Scholar]
  23. Seo Y-W. Shin J-H. Cha H-J. Kim Y. A new monoterpene glucoside from Portulaca oleracea. Bull. Korean Chem. Soc. 2003 24 10 1475 1477 10.5012/bkcs.2003.24.10.1475
    [Google Scholar]
  24. Lee S.R. Moon E. Kim K.H. Neolignan and monoterpene glycoside from the seeds of Pharbitis nil. Phytochem. Lett. 2017 20 98 101 10.1016/j.phytol.2017.04.019
    [Google Scholar]
  25. Srinroch C. Sahakitpichan P. Chimnoi N. Ruchirawat S. Kanchanapoom T. Neolignan and monoterpene glycosides from Magnolia henryi. Phytochem. Lett. 2019 29 94 97 10.1016/j.phytol.2018.11.016
    [Google Scholar]
  26. Tang Y. Friesen J.B. Lankin D.C. McAlpine J.B. Nikolić D. Chen S.N. Pauli G.F. Geraniol-derived monoterpenoid glucosides from Rhodiola rosea: Resolving structures by QM-HifSA methodology. J. Nat. Prod. 2023 86 2 256 263 10.1021/acs.jnatprod.2c00836 36744762
    [Google Scholar]
  27. Voirin S.G. Baumes R.L. Bitteur S.M. Gunata Z.Y. Bayonove C.L. Novel monoterpene disaccharide glycosides of Vitis vinifera grapes. J. Agric. Food Chem. 1990 38 6 1373 1378 10.1021/jf00096a016
    [Google Scholar]
  28. Li R. Zhang J.F. Wu Y.Z. Li Y.C. Xia G.Y. Wang L.Y. Qiu B.L. Ma M. Lin S. Structures and biological evaluation of monoterpenoid glycosides from the roots of Paeonia lactiflora. J. Nat. Prod. 2018 81 5 1252 1259 10.1021/acs.jnatprod.8b00087 29741372
    [Google Scholar]
  29. Wang X. Song H. Yang Y. Tao Y. Chemical profile of terpene glycosides from Meili grape detected by GC–MS and UPLC–Q-TOF-MS. Eur. Food Res. Technol. 2020 246 11 2323 2333 10.1007/s00217‑020‑03576‑y
    [Google Scholar]
  30. Liu P. Zhang Y. Xu Y.F. Zhu X-Y. Xu X-F. Chang S. Deng R-X. Three new monoterpene glycosides from oil peony seed cake. Ind. Crops Prod. 2018 111 371 378 10.1016/j.indcrop.2017.10.043
    [Google Scholar]
  31. Kamel M.S. Assaf M.H. Hasanean H.A. Ohtani K. Kasai R. Yamasaki K. Monoterpene glucosides from Origanum syriacum. Phytochemistry 2001 58 8 1149 1152 10.1016/S0031‑9422(01)00386‑7 11738398
    [Google Scholar]
  32. Ishikawa T. Takayanagi T. Kitajima J. Water-soluble constituents of cumin: Monoterpenoid glucosides. Chem. Pharm. Bull. (Tokyo) 2002 50 11 1471 1478 10.1248/cpb.50.1471 12419912
    [Google Scholar]
  33. Takeuchi H. Lu Z.G. Fujita T. New monoterpene glucoside from the aerial parts of thyme (Thymus vulgaris L.). Biosci. Biotechnol. Biochem. 2004 68 5 1131 1134 10.1271/bbb.68.1131 15170120
    [Google Scholar]
  34. Nakanishi T. Iida N. Inatomi Y. Murata H. Inada A. Murata J. Lang F.A. Iinuma M. Tanaka T. Sakagami Y. A monoterpene glucoside and three megastigmane glycosides from Juniperus communis var. depressa. Chem. Pharm. Bull. (Tokyo) 2005 53 7 783 787 10.1248/cpb.53.783 15997135
    [Google Scholar]
  35. Saeidnia S. Gohari A.R. Uchiyama N. Ito M. Honda G. Kiuchi F. Two new monoterpene glycosides and trypanocidal terpenoids from Dracocephalum kotschyi. Chem. Pharm. Bull. (Tokyo) 2004 52 10 1249 1250 10.1248/cpb.52.1249 15467247
    [Google Scholar]
  36. Yang G.Z. Li Y.F. Yu X. Mei Z.N. Terpenoids and flavonoids from Laggera pterodonta. Yao Xue Xue Bao 2007 42 5 511 515 17703774
    [Google Scholar]
  37. Dai H.F. Tan N.H. Zhou J. A new monoterpenoid glycoside from Schisandra chinensis. Chem. J. Chin. Univ. 2005 26 1659 1661
    [Google Scholar]
  38. Xue P.F. Lu X.H. Wang B. Liang H. Zhao Y.Y. The megastigman glycosides from herb of Potentilla multifida. Chin J. Materia Medica 2005 30 13 983 986 16161423
    [Google Scholar]
  39. Qiu L. Feng Q. Li H. Megastigmane glucosides from the stems and leaves of Physalis alkekengi L. var. francheti. J. Shenyang Pharm. Univ. 2008 25 6 461 464
    [Google Scholar]
  40. Wu B. Li W. Lin W. Two new monoterpenoid derivatives from Senecio cannabifolius Less. Chin J. Med. Chem. 2005 15 4 231 233
    [Google Scholar]
  41. Wang J. Ma W. Dai H. A new monoterpenoid glycoside from roots of Zanthoxylum simulans. Chin. Tradit. Herbal Drugs 2007 38 5 673 675
    [Google Scholar]
  42. Otsuka H. Shitamoto J. He D.H. Matsunami K. Shinzato T. Aramoto M. Takeda Y. Kanchanapoom T. Tricalysiosides P-U: Ent-kaurane glucosides and a labdane glucoside from leaves of Tricalysia dubia OHWI. Chem. Pharm. Bull. (Tokyo) 2007 55 11 1600 1605 10.1248/cpb.55.1600 17978519
    [Google Scholar]
  43. Yamada K. Murata T. Kobayashi K. Miyase T. Yoshizaki F. A lipase inhibitor monoterpene and monoterpene glycosides from Monarda punctata. Phytochemistry 2010 71 16 1884 1891 10.1016/j.phytochem.2010.08.009 20832830
    [Google Scholar]
  44. Selenge E. Murata T. Tanaka S. Sasaki K. Batkhuu J. Yoshizaki F. Monoterpene glycosides, phenylpropanoids, and acacetin glycosides from Dracocephalum foetidum. Phytochemistry 2014 101 91 100 10.1016/j.phytochem.2014.02.007 24582463
    [Google Scholar]
  45. Tang Y. Friesen J.B. Lankin D.C. McAlpine J.B. Nikolić D.S. Niemitz M. Seigler D.S. Graham J.G. Chen S.N. Pauli G.F. Quantum mechanics-based structure analysis of cyclic monoterpene glycosides from Rhodiola rosea. J. Nat. Prod. 2020 83 6 1950 1959 10.1021/acs.jnatprod.0c00212 32463230
    [Google Scholar]
  46. Nie R. Zhang Y. Jin Q. Zhang S. Wu G. Chen L. Zhang H. Wang X. Identification and characterisation of bioactive compounds from the seed kernels and hulls of Paeonia lactiflora Pall by UPLC-QTOF-MS. Food Res. Int. 2021 139 109916 10.1016/j.foodres.2020.109916 33509483
    [Google Scholar]
  47. Xu S. Cao H. Yang R. Xu R. Zhu X. Ma W. Liu X. Yan X. Fu P. Genus Paeonia monoterpene glycosides: A systematic review on their pharmacological activities and molecular mechanisms. Phytomedicine 2024 127 155483 10.1016/j.phymed.2024.155483 38432036
    [Google Scholar]
  48. Tran M.N. Lee I.S. Lee Y.M. Jung H. Kim J.S. Inhibitors of aldose reductase and formation of advanced glycation end-products in Moutan Cortex (Paeonia suffruticosa). Natural Products 2009 72 5 1234 1238
    [Google Scholar]
  49. Cui H. Chi Y. Shen Y. Research progress on chemical constituents and pharmacological effects of Paeonia Radix Alba. J Xinxiang Med. Univ 2024 41 2 123 130
    [Google Scholar]
  50. Furuya R. Hu H. Zhang Z. Shigemori H. Suffruyabiosides A and B, two new monoterpene diglycosides from moutan cortex. Molecules 2012 17 5 4915 4923 10.3390/molecules17054915 22547314
    [Google Scholar]
  51. Duan W.J. Yang J.Y. Chen L.X. Zhang L.J. Jiang Z.H. Cai X.D. Zhang X. Qiu F. Monoterpenes from Paeonia albiflora and their inhibitory activity on nitric oxide production by lipopolysaccharide-activated microglia. J. Nat. Prod. 2009 72 9 1579 1584 10.1021/np9001898 19691309
    [Google Scholar]
  52. Wang L-Y. Wang X-Q. Chen X-M. Chemical constituents and pharmacological activities of Radix Paeoniae Alba: Research advances. J. Int. Pharm. Res. 2020 47 2 123 130
    [Google Scholar]
  53. Song W.H. Cheng Z.H. Chen D.F. Anticomplement monoterpenoid glucosides from the root bark of Paeonia suffruticosa. J. Nat. Prod. 2014 77 1 42 48 10.1021/np400571x 24377852
    [Google Scholar]
  54. Zhang R.H. Li C.R. Yang H. Li M.N. Tsim K.W.K. Li P. Gao W. An UPLC-MS/MS method for simultaneous determination of multiple constituents in Guizhi Fuling capsule with ultrafast positive/negative ionization switching. Chin. J. Nat. Med. 2018 16 4 313 320 10.1016/S1875‑5364(18)30061‑X 29703331
    [Google Scholar]
  55. Wang S. Huang J. Mao H. Wang Y. Kasimu R. Xiao W. Wang J. A novel method HPLC-DAD analysis of the contents of Moutan Cortex and Paeoniae Radix Alba with similar constituents-monoterpene glycosides in Guizhi Fuling Wan. Molecules 2014 19 11 17957 17967 10.3390/molecules191117957 25375336
    [Google Scholar]
  56. Peng T-T. Fan B. Shi X-F. Wang X. Research progress on chemical composition, activity, development and utilization of Paeonia rockii. Nat. Product Research Devel 2024 36 717 735
    [Google Scholar]
  57. Fu B. Zhang J.L. Meng X. Wu J-T. Liu Y. Wang Y-Q. Zhang Y-Q. Pan J. Guan W. Fan R-F. Naseem A. Kuang H-X. Yang B-Y. Two new monoterpenoids from the roots of Paeonia lactiflora and their neuroprotective activities. Phytochem. Lett. 2024 59 36 40 10.1016/j.phytol.2023.12.002
    [Google Scholar]
  58. Liu P. Zhang Y. Gao J. Du M. Zhang K. Zhang J. Xue N. Yan M. Qu C. Deng R. HPLC-DAD analysis of 15 monoterpene glycosides in oil peony seed cakes sourced from different cultivation areas in China. Ind. Crops Prod. 2018 118 259 270 10.1016/j.indcrop.2018.03.033
    [Google Scholar]
  59. Liang W-J. Wan L. Li X-F. Monoterpene glycosides from Paeonia mairei and their biological activities. Zhongchengyao 2023 45 3 795 799
    [Google Scholar]
  60. Zhang Y.L. Tian Y. Fu Q.F. Research progress of chemical constituents and pharmacological action of Paeonia tactilora Pall. Acta. Chinese Medicine and Pharmacology 2021 49 2 104 109
    [Google Scholar]
  61. Wang Y.H. Study on extraction, separation and function of active components from oil by-products of tree peony press. Thesis Henan University of Science and Technology, 2023
    [Google Scholar]
  62. Zhu Z.W. Xu Q.P. Zhang M.T. Determination of Bornenol-7-O-[β-D-apiofuranosyl-(1→6)]-β-D-glucopyranoside and Borneol-7-O-β-D-glucopyranoside in Ophiopogonis Radix and Shenmai Injection by HPLC-MS/MS. Chinese Journal of Modern Applied Pharmacy 2023 40 6 792 797
    [Google Scholar]
  63. Wang F.Q. Extraction, purification, identification and inhibitory effect on HepG2 cells of monoterpene glycosides from Paeonia suffruticosa seed meal. Thesis Shandong Agricultural University 2023
    [Google Scholar]
  64. Jun W. Chemical constituents of Paederia scandens and their bioactivities. Thesis Shaanxi University of Science and Technology 2015
    [Google Scholar]
  65. Pan T.H. Preparation of pseudo-monoterpene indole alkaloid analogues based on swertidin and their antitumor and reversal drug resistance activities. Thesis Guizhou University 2023
    [Google Scholar]
  66. Xu J. Zhou R.R. Luo L. Dai Y. Dou Z. Quality evaluation of decoction pieces of Gardeniae Fructus based on qualitative analysis of the HPLC fingerprint and triple-Q-TOF-MS/MS combined with quantitative analysis of 12 representative components. J. Anal. Methods Chem. 2022 2022 1 13 10.1155/2022/2279404
    [Google Scholar]
  67. Peng S.H. Studies on chemical constituents of Verbena officinalis and their biosynthetic pathway. Thesis Tianjin University of Traditional Chinese Medicine 2023
    [Google Scholar]
  68. Li Z-M. Zhang X-L. Li H-F. Dynamic changes of Neonuezhenide, Oleoside-11-methyl ester and Nuezhenidic acid in wine steaming process of Ligustri Lucidi Fructus. Chin J. Exp. Tradit 2014 20 12 14 16
    [Google Scholar]
  69. Liu Y-X. Sun W-Z. Ni Y-J. Isolation and identification of iridoidal glycosides from the whole plant of Gentianella acuta. J. Shenyang Pharm. Univ. 2016 33 9 702 705
    [Google Scholar]
  70. Chai X. Su Y.F. Zheng Y.H. Yan S-L. Zhang X. Gao X-M. Iridoids from the roots of Triosteum pinnatifidum. Biochem. Syst. Ecol. 2010 38 2 210 212 10.1016/j.bse.2009.12.037
    [Google Scholar]
  71. Gousiadou C. Kokubun T. Albach D.C. Gotfredsen C.H. Jensen S.R. Iridoid glucosides in the genus Sutera (Scrophulariaceae) as chemotaxonomic markers in tribe Limoselleae. Phytochemistry 2019 158 149 155 10.1016/j.phytochem.2018.10.021 30576968
    [Google Scholar]
  72. Wang F. Zhang Y. Zheng X. Research progress of the structure and biological activities of iridoids compounds. Chin Pharmaceutical Affair 2019 33 3 323 330
    [Google Scholar]
  73. Mahibalan S. Rao P.C. Khan R. Basha A. Siddareddy R. Masubuti H. Fujimoto Y. Begum A.S. Cytotoxic constituents of Oldenlandia umbellata and isolation of a new symmetrical coumarin dimer. Med. Chem. Res. 2016 25 3 466 472 10.1007/s00044‑015‑1500‑z
    [Google Scholar]
  74. Zhang Y. Wang S. Kang W. Chemical constituents of Adina rubella. Chem. Nat. Compd. 2016 52 1 181 182 10.1007/s10600‑016‑1587‑6
    [Google Scholar]
  75. Gousiadou C. Kokubun T. Gotfredsen C.H. Jensen S.R. Further iridoid glucosides in the genus Manulea (Scrophulariaceae). Phytochemistry 2015 109 43 48 10.1016/j.phytochem.2014.10.004 25457503
    [Google Scholar]
  76. Hou Y.D. Shang Z.H. Chen P. Research progress in chemical constituents and biological activities of cornel iridoid glycosides. Chin Archiv Traditional Chinese 2024 42 6 69 76
    [Google Scholar]
  77. Thongphasuk P. Suttisri R. Bavovada R. Verpoorte R. Antioxidant lignan glucosides from Strychnos vanprukii. Fitoterapia 2004 75 7-8 623 628 10.1016/j.fitote.2004.04.013 15567235
    [Google Scholar]
  78. Yang Y. Sun S. Wei D. Isolation and identification of iridoid glycosides chemical constituents from Ilex pubescens Hook. et Arn. J. Shenyang Pharm. Univ. 2017 34 8 634 639
    [Google Scholar]
  79. Ni Y-J. Liu Y-X. Ruan J-Y. Isolation and identification of iridoidal glycosides from the whole plant of Gentianella acuta (II). Chin J. Med. Chem. 2017 27 2 133 137
    [Google Scholar]
  80. Yang R. Lu Y. Hao H. Zhang M.D. Xuan J. Zhang Y.Q. Research progress on chemical constituents and pharmacological activities of iridoid glycosides in Lonicera japonica. Chin J. Chinese Materia Medica 2021 46 11 2746 2752 34296571
    [Google Scholar]
  81. Gao X. Dong W-R. Chen P-P. Pharmacology research on different structure of iridoid glycosides. J. Harbin Univ Commerce 2016 32 6 655 658
    [Google Scholar]
  82. Ralambonirina Rasoarivelo T.S. Grougnet R. Michel S. Rakotobe Guillou C. Deguin B. Chemical constituents of Anthospermum perrieri (Rubiaceae). Biochem. Syst. Ecol. 2018 80 29 31 10.1016/j.bse.2018.06.002
    [Google Scholar]
  83. Pérez-Bonilla M. Salido S. van Beek T.A. Altarejos J. Radical-scavenging compounds from olive tree (Olea europaea L.) wood. J. Agric. Food Chem. 2014 62 1 144 151 10.1021/jf403998t 24328093
    [Google Scholar]
  84. Delazar A. Byres M. Gibbons S. Kumarasamy Y. Modarresi M. Nahar L. Shoeb M. Sarker S.D. Iridoid glycosides from Eremostachys g labra. J. Nat. Prod. 2004 67 9 1584 1587 10.1021/np040044b 15387666
    [Google Scholar]
  85. Al-Hamoud G.A. Saud Orfali R. Perveen S. Mizuno K. Takeda Y. Nehira T. Masuda K. Sugimoto S. Yamano Y. Otsuka H. Matsunami K. Lasianosides A–E: New iridoid glucosides from the leaves of Lasianthus verticillatus (Lour.) Merr. and their antioxidant activity. Molecules 2019 24 21 3995 10.3390/molecules24213995 31694179
    [Google Scholar]
  86. Zhu Y. Wang J. Tang L. Shang Y. Zhao W. Zhang W. Hai P. Zheng Y. Li W. Su Y. Iridoid and lignan glycosides from Lancea tibetica. Phytochem. Lett. 2024 59 15 19 10.1016/j.phytol.2023.11.006
    [Google Scholar]
  87. Luecha P. Umehara K. Miyase T. Noguchi H. Antiestrogenic constituents of the Thai medicinal plants Capparis flavicans and Vitex glabrata. J. Nat. Prod. 2009 72 11 1954 1959 10.1021/np9006298 19943620
    [Google Scholar]
  88. Thabet A.A. Ayoub I.M. Youssef F.S. Al-Sayed E. Efferth T. Singab A.N.B. Phytochemistry, structural diversity, biological activities and pharmacokinetics of iridoids isolated from various genera of the family Scrophulariaceae Juss. Phytomed Plus 2022 2 3 100287 10.1016/j.phyplu.2022.100287
    [Google Scholar]
  89. Ohta T. Inoha M. Kawahara C. Development of naturally occurring compounds for the treatment of intractable diseases. J. Med. Chem. 2023 77 7 508 514
    [Google Scholar]
  90. Phong N.V. Heo M.S. Vinh L.B. Kim Y.H. Yang S.Y. Investigation of the inhibitory activity of triterpenoids isolated from Actinidia polygama stems against β-glucuronidase via enzyme kinetics, molecular docking, and molecular dynamics analyses. J. Mol. Struct. 2024 1317 139135 10.1016/j.molstruc.2024.139135
    [Google Scholar]
  91. Gong M. Wang J. Song L. Wu X. Wang Y. Li B. Zhang Y. Qin L. Duan Y. Long B. Role of BDNF-TrkB signaling in the antidepressant-like actions of loganin, the main active compound of Corni Fructus. CNS Neurosci. Ther. 2023 29 12 3842 3853 37408379
    [Google Scholar]
  92. Zhang X. Du Q. Liu C. Yang Y. Wang J. Duan S. Duan J. Rhodioloside ameliorates depressive behavior via up-regulation of monoaminergic system activity and anti-inflammatory effect in olfactory bulbectomized rats. Int. Immunopharmacol. 2016 36 300 304 27214337
    [Google Scholar]
  93. Yu J-B. Zhao Z-X. Peng R. Pan L.B. Fu J. Ma S.R. Han P. Cong L. Zhang Z.W. Sun L.X. Jiang J.D. Wang Y. Gut microbiota-based pharmacokinetics and the antidepressant mechanism of paeoniflorin. Front. Pharmacol. 2019 10 268 30949054
    [Google Scholar]
  94. Blier P. The pharmacology of putative early-onset antidepressant strategies. Eur. Neuropsychopharmacol. 2003 13 2 57 66 10.1016/S0924‑977X(02)00173‑6 12650947
    [Google Scholar]
  95. Qiu F. Zhong X. Mao Q. Huang Z. The antidepressant-like effects of paeoniflorin in mouse models. Exp. Ther. Med. 2013 5 4 1113 1116 10.3892/etm.2013.925 23599734
    [Google Scholar]
  96. Ma W. Wang Z. Zhao Y. Wang Q. Zhang Y. Lei P. Lu W. Yan S. Zhou J. Li X. Yu W. Zhong Y. Chen L. Zheng T. Salidroside suppresses the proliferation and migration of human lung cancer cells through AMPK-dependent NLRP3 inflammasome regulation. Oxid. Med. Cell. Longev. 2021 2021 1 6614574 10.1155/2021/6614574 34457117
    [Google Scholar]
  97. Fan X.J. Wang Y. Wang L. Zhu M. Salidroside induces apoptosis and autophagy in human colorectal cancer cells through inhibition of PI3K/Akt/mTOR pathway. Oncol. Rep. 2016 36 6 3559 3567 10.3892/or.2016.5138 27748934
    [Google Scholar]
  98. Yu G. Li N. Zhao Y. Wang W. Feng X.L. Salidroside induces apoptosis in human ovarian cancer SKOV3 and A2780 cells through the p53 signaling pathway. Oncol. Lett. 2018 15 5 6513 6518 10.3892/ol.2018.8090 29616120
    [Google Scholar]
  99. Feng X. Sun J. Zhao X. Combined treatment of salidroside and cisplatin enhances antitumor effects on human ovarian cancer SKOV-3 cells. Chin. J. Integr. Med. 2021 27 7 845 852
    [Google Scholar]
  100. Zhang C. Wang N. Tan H.Y. Guo W. Chen F. Zhong Z. Man K. Tsao S.W. Lao L. Feng Y. Direct inhibition of the TLR4/MyD88 pathway by geniposide suppresses HIF‐1α‐independent VEGF expression and angiogenesis in hepatocellular carcinoma. Br. J. Pharmacol. 2020 177 14 3240 3257 10.1111/bph.15046 32144747
    [Google Scholar]
  101. Deng X. Li Y. Chen Y. Hu Q. Zhang W. Chen L. Lu X. Zeng J. Ma X. Efferth T. Paeoniflorin protects hepatocytes from APAP-induced damage through launching autophagy via the MAPK/mTOR signaling pathway. Cell. Mol. Biol. Lett. 2024 29 1 119 10.1186/s11658‑024‑00631‑4 39244559
    [Google Scholar]
  102. Gao M. Zhang D. Jiang C. Jin Q. Zhang J. Paeoniflorin inhibits hepatocellular carcinoma growth by reducing PD-L1 expression. Biomed. Pharmacother. 2023 166 115317 10.1016/j.biopha.2023.115317 37597322
    [Google Scholar]
  103. Lu Q. Sun Y. Shu Y. Tan S. Yin L. Guo Y. Tang L. HSCCC separation of the two iridoid glycosides and three phenolic compounds from Veronica ciliata and their in vitro antioxidant and anti-hepatocarcinoma activities. Molecules 2016 21 9 1234 10.3390/molecules21091234 27649125
    [Google Scholar]
  104. Xu C. Song L. Zhang W. Zou R. Zhu M. 6′-O-galloylpaeoniflorin alleviates inflammation and oxidative stress in pediatric pneumonia through activating Nrf2 activation. Allergol. Immunopathol. (Madr.) 2022 50 4 71 76 10.15586/aei.v50i4.639 35789405
    [Google Scholar]
  105. Huang X.F. Li J.J. Tao Y.G. Wang X.Q. Zhang R.L. Zhang J.L. Su Z.Q. Huang Q.H. Deng Y.H. Geniposide attenuates Aβ 25–35 -induced neurotoxicity via the TLR4/NF-κB pathway in HT22 cells. RSC Advances 2018 8 34 18926 18937 10.1039/C8RA01038B 35539637
    [Google Scholar]
  106. Wang X. Wu Y. Wang Z. Li J. Li W. Li Q. Luan N. Shang X. Anti-inflammatory iridoid glycosides from fruits of Cornus officinalis. Phytochem. Lett. 2022 52 122 125 10.1016/j.phytol.2022.10.006
    [Google Scholar]
  107. Kang J. Guo C. Thome R. Yang N. Zhang Y. Li X. Cao X. Hypoglycemic, hypolipidemic and antioxidant effects of iridoid glycosides extracted from Corni fructus: possible involvement of the PI3K–Akt/PKB signaling pathway. RSC Advances 2018 8 53 30539 30549 10.1039/C8RA06045B 35546813
    [Google Scholar]
  108. Zhu H. Wang Y. Liu Z. Wang J. Wan D. Feng S. Yang X. Wang T. Antidiabetic and antioxidant effects of catalpol extracted from Rehmannia glutinosa (Di Huang) on rat diabetes induced by streptozotocin and high-fat, high-sugar feed. Chin. Med. 2016 11 1 25 10.1186/s13020‑016‑0096‑7 27175212
    [Google Scholar]
  109. Jayabharathi J. Thanikachalam V. Jayamoorthy K. Antioxidant benzimidazole bind bovine serum albumin. J. Photochem. Photobiol. B 2012 115 85 92 10.1016/j.jphotobiol.2012.06.014 22854224
    [Google Scholar]
  110. Xue H. Jin L. Jin L. Zhang P. Li D. Xia Y. Lu Y. Xu Y. Neuroprotection of aucubin in primary diabetic encephalopathy. Sci. China C Life Sci. 2008 51 6 495 502 10.1007/s11427‑008‑0069‑x 18488169
    [Google Scholar]
  111. Xue H.Y. Jin L. Jin L.J. Li X.Y. Zhang P. Ma Y.S. Lu Y.N. Xia Y.Q. Xu Y.P. Aucubin prevents loss of hippocampal neurons and regulates antioxidative activity in diabetic encephalopathy rats. Phytother. Res. 2009 23 7 980 986 10.1002/ptr.2734 19140154
    [Google Scholar]
  112. Hao Z.Y. Wang X.L. Yang M. Cao B. Zeng M.N. Zhou S.Q. Li M. Cao Y.G. Xie S.S. Zheng X.K. Feng W.S. Minor iridoid glycosides from the fruits of Cornus officinalis Sieb. et Zucc. and their anti-diabetic bioactivities. Phytochemistry 2023 205 113505 10.1016/j.phytochem.2022.113505 36347307
    [Google Scholar]
  113. Lu S.H. Li X.X. Zuo H.J. Li W.N. Pan J.P. Huang J. Monoterpenoid glycosides from the leaves of Ligustrum robustum and their bioactivities (II). Molecules 2023 28 21 7274 10.3390/molecules28217274 37959693
    [Google Scholar]
  114. Pham T.K.Q. Nguyen H.Q. Lee J.H. Anti-osteoporotic effects of monoterpene glycosides from Paeonia lactiflora roots on osteoblast differentiation. J. Ethnopharmacol. 2007 112 3 456 463
    [Google Scholar]
  115. Guimarães A.G. Quintans J.S.S. Quintans-Júnior L.J. Monoterpenes with analgesic activity: A systematic review. Phytother. Res. 2013 27 1 1 15 10.1002/ptr.4686 23296806
    [Google Scholar]
  116. Shen Y. Zhang Q. Wu Y. He Y. Han T. Zhang J. Zhao L. Hsu H. Song H. Lin B. Xin H. Qi Y. Zhang Q. Pharmacokinetics and tissue distribution of monotropein and deacetyl asperulosidic acid after oral administration of extracts from Morinda officinalis root in rats. BMC Complement. Altern. Med. 2018 18 1 288 10.1186/s12906‑018‑2351‑1 30355303
    [Google Scholar]
  117. He Y.Q. Yang H. Shen Y. Zhang J.H. Zhang Z.G. Liu L.L. Song H.T. Lin B. Hsu H.Y. Qin L.P. Han T. Xin H.L. Zhang Q.Y. Monotropein attenuates ovariectomy and LPS-induced bone loss in mice and decreases inflammatory impairment on osteoblast through blocking activation of NF-κB pathway. Chem. Biol. Interact. 2018 291 128 136 10.1016/j.cbi.2018.06.015 29908987
    [Google Scholar]
  118. Zhong W.C. Li E.C. Hao R.R. Zhang J.F. Jin H.T. Lin S. Anti-anaphylactic potential of benzoylpaeoniflorin through inhibiting HDC and MAPKs from Paeonia lactiflora. Chin. J. Nat. Med. 2021 19 11 825 835 10.1016/S1875‑5364(21)60086‑9 34844721
    [Google Scholar]
  119. Oh K.I. Lim E. Uprety L.P. Jeong J. Jeong H. Park E. Jeong S.Y. Anti-adipogenic and anti-obesity effects of morroniside in vitro and in vivo. Biomed. Pharmacother. 2024 176 116762 10.1016/j.biopha.2024.116762 38788597
    [Google Scholar]
  120. Zhi S.M. Cui Y. Liu Y. Zhang J.T. Li X.J. Sheng B. Chen X.X. Yan C. Li W. Mao J.N. Yan H.Y. Jin W. Paeoniflorin suppresses ferroptosis after traumatic brain injury by antagonizing P53 acetylation. Phytomedicine 2024 133 155940 10.1016/j.phymed.2024.155940 39128303
    [Google Scholar]
/content/journals/coc/10.2174/0113852728382230250528164521
Loading
/content/journals/coc/10.2174/0113852728382230250528164521
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test